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I. Cauchy problem for Quasi-linear wave equations

■ Wave equation in Minkowski space
■ Example: Wave maps equation
■ Yang-Mills and gauge fixing
■ Spacetimes and causality
■ Wave equation in spacetime
■ Cauchy problem for Quasi-linear wave equations



Overview

Overview of topics

The Wave equation

Spacetimes

Wave equation

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 3 / 54

II. Cauchy problem for the Einstein equation

■ Variational formulation
■ Einstein-matter equations
■ Constraints
■ Harmonic coordinates
■ Local well-posedness
■ Global uniqueness
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III. Survey

■ Cosmic censorship
■ Singularity theorems
■ Review of small data results
■ BKL proposal
■ Spacetimes with symmetries
■ Kaluza-Klein reduction
■ The U(1) problem
■ Gowdy
■ G2
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■ Minkowski space R
n,1, metric

m = −dt2 + (dx1)2 + · · · + (dxn)2,
■ wave operator � = −∂2

t + ∆.
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■ Minkowski space R
n,1, metric

m = −dt2 + (dx1)2 + · · · + (dxn)2,
■ wave operator � = −∂2

t + ∆.
■ The Cauchy problem for the wave equation

�u = F

u(0, x) = f(x), ∂tu(0, x) = g(x)

has unique solution for “nice” initial data f, g and
sources F .
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■ Minkowski space R
n,1, metric

m = −dt2 + (dx1)2 + · · · + (dxn)2,
■ wave operator � = −∂2

t + ∆.
■ The Cauchy problem for the wave equation

�u = F

u(0, x) = f(x), ∂tu(0, x) = g(x)

has unique solution for “nice” initial data f, g and
sources F .

■ Finite speed of propagation:

◆ Data in the ball |x| ≤ R has no influence outside the
domain of influence {(t, x) : |x| ≤ |t| +R}.
Data in |x| ≤ R determines the solution in the
domain of dependence {(t, x) : |x| ≤ R− |t|}
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■ In 1 + 1 dimensions
�u = 0

has general solution u = φ(x+ t) + ψ(x− t) for
functions φ, ψ.

■ Information propagates along null curves t+ r = const,
t− r = const.
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■ In 1 + 1 dimensions
�u = 0

has general solution u = φ(x+ t) + ψ(x− t) for
functions φ, ψ.

■ Information propagates along null curves t+ r = const,
t− r = const.

■ If n+ 1 is even, Huygen’s principle holds in flat R
n+1:

Information propagates along null curves =
characteristics.

■ If n+ 1 is odd, or in non-flat spacetimes Huygen’s
principle fails to hold in general.

■ In general, fundamental solution has support in the solid
lightcone.
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■ Lagrangian L =

∫

M

∇µu∇νum
µν
√
−m

■ Stress energy tensor Sµν = ∇µu∇νu−
1

2
∇γu∇γumµν

■ ∇µSµν = �u∇νu
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■ Lagrangian L =

∫

M

∇µu∇νum
µν
√
−m

■ Stress energy tensor Sµν = ∇µu∇νu−
1

2
∇γu∇γumµν

■ ∇µSµν = �u∇νu

■ Energy density Stt =
1

2
(u2

t + |∇xu|2)
■ Dominant energy condition: −Sµ

ν V
ν is future causal for

any future causal V µ

⇔ Stt ≥ |Sti|
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■ The solution to �u = F with trivial initial data in R
3+1

is

u(t, x) =
1

4π

∫ t

0

∫

|x−y|=t−s

|x− y|−1F (s, y)dsdσ(y)
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■ The solution to �u = F with trivial initial data in R
3+1

is

u(t, x) =
1

4π

∫ t

0

∫

|x−y|=t−s

|x− y|−1F (s, y)dsdσ(y)

■ Typical decay in 3+1 dimensions is
|u(t, x)| ≤ C(t+ |x|)−1, with faster decay away from the
null cone.

■ Proof uses vector fields method. Idea: Consider the
conformal Killing fields: translations, Lorentz rotations,
scaling, inverted translations. Apply powers of these to
both sides of wave eq. Use energy estimate to get
weighted estimates for u and its derivatives.
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■ Wave maps equation: u : (Rn,1,mµν) → (N, hAB),
where (N, hAB) Riemannian manifold

■ Lagrangian

∫

∇µu
A,∇νu

BhABmµν
√
−m
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■ Wave maps equation: u : (Rn,1,mµν) → (N, hAB),
where (N, hAB) Riemannian manifold

■ Lagrangian

∫

∇µu
A,∇νu

BhABmµν
√
−m

■ Stress energy tensor

Sµν = ∇µu
A∇νu

BhAB − 1

2
∇γu

A∇γuBhABmµν
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■ Wave maps equation: u : (Rn,1,mµν) → (N, hAB),
where (N, hAB) Riemannian manifold

■ Lagrangian

∫

∇µu
A,∇νu

BhABmµν
√
−m

■ Stress energy tensor

Sµν = ∇µu
A∇νu

BhAB − 1

2
∇γu

A∇γuBhABmµν

■ Cauchy problem:

�uA + ΓA
BC(u)∇µu

B∇νu
Cmµν = 0,

uA(0, x) = uA
0 (x), ∂tu

A(0, x) = uA
1 (x)
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■ The semilinear equation

�u = Q(∂u, ∂u)

satisfies the null condition if Q(ξ, ξ) = 0 for any null
vector ξ

■ Wave maps equation satisfies null condition
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■ The semilinear equation

�u = Q(∂u, ∂u)

satisfies the null condition if Q(ξ, ξ) = 0 for any null
vector ξ

■ Wave maps equation satisfies null condition
■ If null condition holds, have global existence for small

data in R3,1.
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■ The semilinear equation

�u = Q(∂u, ∂u)

satisfies the null condition if Q(ξ, ξ) = 0 for any null
vector ξ

■ Wave maps equation satisfies null condition
■ If null condition holds, have global existence for small

data in R3,1.
■ For n ≥ 4, have global existence for small data for

quadratic semi-linear equations.
■ Without null condition, expect blowup for small data in

R3,1. Example: �u = |∂tu|2 does not satisfy the null
condition. Have finite time blowup for small data.
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■ Consider n = 2. Assume SO(2) acts isometrically on N ,
so that h = dρ2 + f(ρ)2dΩ2

■ Consider equivariant maps u = (φ(r), kω), where the
integer k is the rotation number. Then wave maps
equation takes the form

−∂2
t φ+

1

r
∂rφ+ ∂2

rφ = k
f(φ)f ′(φ)

r2
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■ Consider n = 2. Assume SO(2) acts isometrically on N ,
so that h = dρ2 + f(ρ)2dΩ2

■ Consider equivariant maps u = (φ(r), kω), where the
integer k is the rotation number. Then wave maps
equation takes the form

−∂2
t φ+

1

r
∂rφ+ ∂2

rφ = k
f(φ)f ′(φ)

r2

■ For N = S2, k ≥ 1, there are blowup solutions.
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■ Consider n = 2. Assume SO(2) acts isometrically on N ,
so that h = dρ2 + f(ρ)2dΩ2

■ Consider equivariant maps u = (φ(r), kω), where the
integer k is the rotation number. Then wave maps
equation takes the form

−∂2
t φ+

1

r
∂rφ+ ∂2

rφ = k
f(φ)f ′(φ)

r2

■ For N = S2, k ≥ 1, there are blowup solutions.
■ Can have blowup only if there is a harmonic map from

R
2 → N . Global existence for N = H2

■ Detailed asymptotics of the blowup is known for N = S2
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■ Principal SU(2) bundle over R
3,1.

◆ A connection, F = dA+ [A,A] curvature
◆ gauge transformation: A→ U−1dU + U−1AU ,

F → U−1FU
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■ Principal SU(2) bundle over R
3,1.

◆ A connection, F = dA+ [A,A] curvature
◆ gauge transformation: A→ U−1dU + U−1AU ,

F → U−1FU

◆ Lagrangian L =

∫

FαβF
αβ

◆ L gauge invariant
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■ Principal SU(2) bundle over R
3,1.

◆ A connection, F = dA+ [A,A] curvature
◆ gauge transformation: A→ U−1dU + U−1AU ,

F → U−1FU

◆ Lagrangian L =

∫

FαβF
αβ

◆ L gauge invariant

■ Euler-Lagrange equation
∂αFαβ + [Aα, Fαβ] = 0
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■ ∂αFαβ = ∂α(∂αAβ − ∂βAα) + lower order terms
= �Aβ + ∂β∂

αAα + lower order terms
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■ ∂αFαβ = ∂α(∂αAβ − ∂βAα) + lower order terms
= �Aβ + ∂β∂

αAα + lower order terms
■ term ∂β∂

αAα due to gauge symmetry of L – ruins well
posedness

■ need gauge fixing to have well posed Cauchy problem
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■ ∂αFαβ = ∂α(∂αAβ − ∂βAα) + lower order terms
= �Aβ + ∂β∂

αAα + lower order terms
■ term ∂β∂

αAα due to gauge symmetry of L – ruins well
posedness

■ need gauge fixing to have well posed Cauchy problem
■ Gauge conditions:

∂αAα Lorentz gauge
A0 = 0 temporal gauge
∂iAi Coloumb gauge
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
■ Causality notions:

◆ causal curve
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
■ Causality notions:

◆ causal curve
◆ time orientation, time function
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
■ Causality notions:

◆ causal curve
◆ time orientation, time function
◆ Cauchy surface, globally hyperbolic, domain of

dependence
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
■ Causality notions:

◆ causal curve
◆ time orientation, time function
◆ Cauchy surface, globally hyperbolic, domain of

dependence
◆ Cauchy horizon
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■ (M,g) spacetime, signature − + + · · ·+, coordinates
xα

■ ∇ connection, R curvature
■ Causality notions:

◆ causal curve
◆ time orientation, time function
◆ Cauchy surface, globally hyperbolic, domain of

dependence
◆ Cauchy horizon



Spacelike hypersurface

Overview of topics

The Wave equation

Spacetimes

Spacetimes

Spacelike
hypersurface

Spacelike foliation

Wave equation

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 17 / 54

■ i : M → M spacelike hypersurface, coordinates xi

so that (xα) = (t, xi)
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■ i : M → M spacelike hypersurface, coordinates xi

so that (xα) = (t, xi)
■ timelike normal T , induced metric g = i∗g,

connection ∇
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■ i : M → M spacelike hypersurface, coordinates xi

so that (xα) = (t, xi)
■ timelike normal T , induced metric g = i∗g,

connection ∇
■ g = −N2dt2 + gij(dx

i +X idt)(dxj +Xjdt)

N = (−g00)
1

2 , X = g0i
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■ i : M → M spacelike hypersurface, coordinates xi

so that (xα) = (t, xi)
■ timelike normal T , induced metric g = i∗g,

connection ∇
■ g = −N2dt2 + gij(dx

i +X idt)(dxj +Xjdt)

N = (−g00)
1

2 , X = g0i

■ second fundamental form K = −i∗(∇T ),

Kij = −1

2
(LTg)ij
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■ i : M → M spacelike hypersurface, coordinates xi

so that (xα) = (t, xi)
■ timelike normal T , induced metric g = i∗g,

connection ∇
■ g = −N2dt2 + gij(dx

i +X idt)(dxj +Xjdt)

N = (−g00)
1

2 , X = g0i

■ second fundamental form K = −i∗(∇T ),

Kij = −1

2
(LTg)ij

■ structure equations

∇jkim −∇ikjm = RmTij Codazzi

Rij − kiak
a
j + kijtrk = RiT jT + Rij Gauss
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■ it : M → M foliation
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■ it : M → M foliation
■ T = Tα∂α, ∂t = NT +X

where N is the lapse function and X = X i∂i is the shift
vectorfield
N,X embedding parameters
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■ it : M → M foliation
■ T = Tα∂α, ∂t = NT +X

where N is the lapse function and X = X i∂i is the shift
vectorfield
N,X embedding parameters

■ Defining relation for K
L∂t

gij = −2NKij + LXgij
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■ it : M → M foliation
■ T = Tα∂α, ∂t = NT +X

where N is the lapse function and X = X i∂i is the shift
vectorfield
N,X embedding parameters

■ Defining relation for K
L∂t

gij = −2NKij + LXgij

■ structure equation (from second variation equation and
Gauss)

L∂t
Kij = −∇i∇jN +N(−Rij +Rij + trKKij − 2KimK

m
j )

+ LXKij
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■ Lagrangian L[u] =

∫

M

∇µu∇νug
µν
√−g

where
√−g =

√

− det(gµν) is the volume element.
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■ Lagrangian L[u] =

∫

M

∇µu∇νug
µν
√−g

where
√−g =

√

− det(gµν) is the volume element.

■ wave operator

�u =
1√−g

∂µ(gµν
√−g∂ν)u = gµν∇µ∇νu
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■ Lagrangian L[u] =
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where
√−g =

√

− det(gµν) is the volume element.

■ wave operator

�u =
1√−g

∂µ(gµν
√−g∂ν)u = gµν∇µ∇νu

■ stress energy tensor S = δgL:

Sµν = ∇µu∇νu−
1

2
∇γu∇γugµν
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■ Lagrangian L[u] =

∫

M

∇µu∇νug
µν
√−g

where
√−g =

√

− det(gµν) is the volume element.

■ wave operator

�u =
1√−g

∂µ(gµν
√−g∂ν)u = gµν∇µ∇νu

■ stress energy tensor S = δgL:

Sµν = ∇µu∇νu−
1

2
∇γu∇γugµν

■ �u = 0 ⇒ ∇µSµν = 0



Cauchy problem for the Wave equation

Overview of topics

The Wave equation

Spacetimes

Wave equation

Basic facts

Energy

Causality,
Uniqueness

Sobolev spaces

Quasilinear wave
equations

Properties of
solutions

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 21 / 54

■ Suppose (M,g) globally hyperbolic, M Cauchy surface,
F given function on M
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■ Suppose (M,g) globally hyperbolic, M Cauchy surface,
F given function on M

■ The Cauchy problem
�u = F ,
u
∣

∣

M
= u0, ∂tu

∣

∣

M
= u1

has unique global solution u for reasonable F, u0, u1
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■ Suppose (M,g) globally hyperbolic, M Cauchy surface,
F given function on M

■ The Cauchy problem
�u = F ,
u
∣

∣

M
= u0, ∂tu

∣

∣

M
= u1

has unique global solution u for reasonable F, u0, u1

■ Analogous statements hold for nonlinear equations.
Example: Yang-Mills in 3+1 dimensional, globally
hyperbolic spacetimes.
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■ energy density

e(u) = STT =
1

2
(T (u)2 + |∇xu|)

■ energy E [u, t] =

∫

M

e(u)
√
g
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■ energy density

e(u) = STT =
1

2
(T (u)2 + |∇xu|)

■ energy E [u, t] =

∫

M

e(u)
√
g

■ propagation law

∂tE [u, t] =

∫

M

(T (u)�u+ Sµν∇µT ν)
√
g
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■ energy density

e(u) = STT =
1

2
(T (u)2 + |∇xu|)

■ energy E [u, t] =

∫

M

e(u)
√
g

■ propagation law

∂tE [u, t] =

∫

M

(T (u)�u+ Sµν∇µT ν)
√
g

■ basic energy inequality

| ∂tE[u] | ≤ C (||f ||L2 + E[u]||∂g||L∞)
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■ Gronwall: assume f, a, b in L∞([0, T ]), a nondecreasing
and

f(t) ≤ a(t) +

∫ t

0

b(τ)f(τ)dτ

Then
f(T ) ≤ a(T )e

∫

T

0
b(τ)dτ
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■ Gronwall: assume f, a, b in L∞([0, T ]), a nondecreasing
and

f(t) ≤ a(t) +

∫ t

0

b(τ)f(τ)dτ

Then
f(T ) ≤ a(T )e

∫

T

0
b(τ)dτ

■ energy estimate

E[u, t1] ≤ Ce
∫ t1

t0
||∂g||L∞

(

E[u, t0] +

∫ t1

t0

||f ||L2
x
dt

)
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)

■ Assume F (0, 0, ∂2u) ≡ 0
Then F (u, ∂u, ∂2u) ≤ C(|u| + |∂u|) for small u ∈ C2.
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)

■ Assume F (0, 0, ∂2u) ≡ 0
Then F (u, ∂u, ∂2u) ≤ C(|u| + |∂u|) for small u ∈ C2.

■ Assume u = 0, ∂tu = 0 in Bp = I−(p) ∩M
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)

■ Assume F (0, 0, ∂2u) ≡ 0
Then F (u, ∂u, ∂2u) ≤ C(|u| + |∂u|) for small u ∈ C2.

■ Assume u = 0, ∂tu = 0 in Bp = I−(p) ∩M
Then u ≡ 0 in Λ−

p,M .
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)

■ Assume F (0, 0, ∂2u) ≡ 0
Then F (u, ∂u, ∂2u) ≤ C(|u| + |∂u|) for small u ∈ C2.

■ Assume u = 0, ∂tu = 0 in Bp = I−(p) ∩M
Then u ≡ 0 in Λ−

p,M .
■ Proof: Energy estimate + Gronwall.
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■ Let u be C2 solution of

�u = F (u, ∂u, ∂2u)

in Λ−
p,M = I−(p) ∩ J+(M)

■ Assume F (0, 0, ∂2u) ≡ 0
Then F (u, ∂u, ∂2u) ≤ C(|u| + |∂u|) for small u ∈ C2.

■ Assume u = 0, ∂tu = 0 in Bp = I−(p) ∩M
Then u ≡ 0 in Λ−

p,M .
■ Proof: Energy estimate + Gronwall.
■ Uniquenss of regular solutions to the Cauchy problem

proved similarly
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Let M be n-dimensional, s ≥ 0 integer.

■ L2-Sobolev norm ||f ||Hs =
∑

j≤s

||∂jf ||L2

Hs = closure of C∞
0 with respect to || · ||Hs
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Let M be n-dimensional, s ≥ 0 integer.

■ L2-Sobolev norm ||f ||Hs =
∑

j≤s

||∂jf ||L2

Hs = closure of C∞
0 with respect to || · ||Hs

■ Sobolev imbedding:
For s > n/2, Hs ⊂ L∞

For 0 ≤ s < n/2, Hs ⊂ Lp, p = 2n/(n− 2s)
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Let M be n-dimensional, s ≥ 0 integer.

■ L2-Sobolev norm ||f ||Hs =
∑

j≤s

||∂jf ||L2

Hs = closure of C∞
0 with respect to || · ||Hs

■ Sobolev imbedding:
For s > n/2, Hs ⊂ L∞

For 0 ≤ s < n/2, Hs ⊂ Lp, p = 2n/(n− 2s)
■ product estimate. For s ≥ 0,

||fg||Hs ≤ ||f ||L∞ ||g||Hs + ||f ||Hs ||g||L∞



Sobolev spaces

Overview of topics

The Wave equation

Spacetimes

Wave equation

Basic facts

Energy

Causality,
Uniqueness

Sobolev spaces

Quasilinear wave
equations

Properties of
solutions

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 26 / 54

■ commutator estimate (Ds some s-th order operator)

||[Ds, u]v||L2 ≤ C(||∂u||L∞ ||v||Hs−1 + ||u||Hs ||v||L∞)
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■ commutator estimate (Ds some s-th order operator)

||[Ds, u]v||L2 ≤ C(||∂u||L∞ ||v||Hs−1 + ||u||Hs ||v||L∞)

■ for s > n/2,

||fg||Hs ≤ ||f ||Hs ||g||Hs

■ If F ∈ C∞(R), s > n/2,

||F (u)||Hs ≤ C(F, ||u||L∞)||u||Hs



Quasilinear wave equations

Overview of topics

The Wave equation

Spacetimes

Wave equation

Basic facts

Energy

Causality,
Uniqueness

Sobolev spaces

Quasilinear wave
equations

Properties of
solutions

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 27 / 54

■ L[u]u = �g(u)u



Quasilinear wave equations

Overview of topics

The Wave equation

Spacetimes

Wave equation

Basic facts

Energy

Causality,
Uniqueness

Sobolev spaces

Quasilinear wave
equations

Properties of
solutions

The Einstein
equations

Global Uniqueness

Cauchy problem Lars Andersson – 27 / 54

■ L[u]u = �g(u)u
■ Consider the Cauchy problem

L[u]u = F (u, ∂u)

u
∣

∣

t=0
= u0, ∂t

∣

∣

t=0
= u1
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■ L[u]u = �g(u)u
■ Consider the Cauchy problem

L[u]u = F (u, ∂u)

u
∣

∣

t=0
= u0, ∂t

∣

∣

t=0
= u1

■ Higher order energies. Es[u] =
∑

j≤s−1

E[Dju], D = ∂x
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■ L[u]u = �g(u)u
■ Consider the Cauchy problem

L[u]u = F (u, ∂u)

u
∣

∣

t=0
= u0, ∂t

∣

∣

t=0
= u1

■ Higher order energies. Es[u] =
∑

j≤s−1

E[Dju], D = ∂x

■ Prove local existence and well-posedness by contraction
mapping principle
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■ Using commutator and product estimates, get

||L[u]Ds−1u||L2 ≤ C(||f ||Hs−1 + Es[u])

■ Energy estimate gives

Es[u, T ] ≤ C(Es[u, 0] + ||f ||L1([0,T ];Hs−1))
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■ Let X be the space of u ∈ L2[0, T ] × Σ, with

∂u ∈ L∞([0, T ];Hs) ∩ C([0, T ];L2)

with norm
|||u|||s = sup

t∈[0,T ]

Es[u, t]

■ For δ > 0, let Bδ be the set

Bρ = {u ∈ X,u(0) = u0, ∂tu(0) = u1, |||u|||s ≤ ρ}

■ The apriori bounds show for s > n/2 + 1, for δ, T
sufficiently small Bδ is invariant under F .
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■ Define a metric

ρ(u, v) = |||u− v|||1

on Bδ. Then (Bδ, ρ) is a complete metric space.
■ The map F : v → u defined by solving

L[u]u = F (v, ∂v) is a contraction T sufficiently small,

ρ(F(v1),F(v2)) ≤
1

2
ρ(v1, v2)

Proof: energy estimate
■ By the contraction mapping principle, there is a unique

solution to the equation F(u) = u in Bδ
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■ We have proved

Theorem 1. Local well-posedness holds for quasilinear

wave equations in Hs, s > n/2 + 1.

■ More explicitely:
Consider the Cauchy problem for the QL wave equation
L[u]u = F (u, ∂u)
with data
u
∣

∣

Σ
= u0, ∂tu

∣

∣

Σ
= u1

(u0, u1) ∈ Hs ×Hs−1, s > n/2 + 1
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■ We have proved

Theorem 2. Local well-posedness holds for quasilinear

wave equations in Hs, s > n/2 + 1.

■ More explicitely:
Consider the Cauchy problem for the QL wave equation
L[u]u = F (u, ∂u)
with data
u
∣

∣

Σ
= u0, ∂tu

∣

∣

Σ
= u1

(u0, u1) ∈ Hs ×Hs−1, s > n/2 + 1
■ then there is T > 0 so that there is a unique solution for

t ∈ [0, T ]
(this statement refers to a given foliation)
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■ Strong well-posedness: the solution curve depends
continuously on the data
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■ Strong well-posedness: the solution curve depends
continuously on the data

■ Continuation principle: solution can be continued as long
as ||∂u||L∞ is in L1

t .
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■ Strong well-posedness: the solution curve depends
continuously on the data

■ Continuation principle: solution can be continued as long
as ||∂u||L∞ is in L1

t .
■ smoothness propagates: C∞ initial data gives C∞

solution until blowup.
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■ Lagrangian
L = Lgeom + Lmatter

Lgeom =
1

Gn

∫

R
√−g

Lgeom is known as the Einstein-Hilbert Lagrangian
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■ Lagrangian
L = Lgeom + Lmatter

Lgeom =
1

Gn

∫

R
√−g

Lgeom is known as the Einstein-Hilbert Lagrangian
■ variations: δgµν = hµν

δ
√−g = −1

2
gµνh

µν
√−g
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■ Lagrangian
L = Lgeom + Lmatter

Lgeom =
1

Gn

∫

R
√−g

Lgeom is known as the Einstein-Hilbert Lagrangian
■ variations: δgµν = hµν

δ
√−g = −1

2
gµνh

µν
√−g

δ[R
√−g] = [(δRµν)g

µν + (Rµν −
1

2
Rgµν)h

µν ]
√−g

where (δRµν)g
µν is a total divergence
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■ Lagrangian
L = Lgeom + Lmatter

Lgeom =
1

Gn

∫

R
√−g

Lgeom is known as the Einstein-Hilbert Lagrangian
■ variations: δgµν = hµν

δ
√−g = −1

2
gµνh

µν
√−g

δ[R
√−g] = [(δRµν)g

µν + (Rµν −
1

2
Rgµν)h

µν ]
√−g

where (δRµν)g
µν is a total divergence
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■ Einstein vacuum equations:
δgLgeom = 0 ⇒ Gµν = 0
where

Gµν = Rµν −
1

2
Rgµν is the Einstein tensor.
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■ Einstein vacuum equations:
δgLgeom = 0 ⇒ Gµν = 0
where

Gµν = Rµν −
1

2
Rgµν is the Einstein tensor.

■ Bianchi ⇒ ∇µGµν = 0.



Variational formulation

Overview of topics

The Wave equation

Spacetimes

Wave equation

The Einstein
equations

Variational
formulation
Hamiltonian
formulation

Vacuum Constraints

Cauchy problem

Solving the
constraints,
Conformal method

Remarks

Matter
Harmonic
coordinates

Reduced Einstein

Gauge Propagation

Global Uniqueness

Cauchy problem Lars Andersson – 35 / 54

■ Einstein vacuum equations:
δgLgeom = 0 ⇒ Gµν = 0
where

Gµν = Rµν −
1

2
Rgµν is the Einstein tensor.

■ Bianchi ⇒ ∇µGµν = 0.
■ Einstein-matter equations:

δgL = 0 ⇒ Gµν = GnSµν

where Sµν = δgLmatter is the stress energy tensor
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■ Einstein vacuum equations:
δgLgeom = 0 ⇒ Gµν = 0
where

Gµν = Rµν −
1

2
Rgµν is the Einstein tensor.

■ Bianchi ⇒ ∇µGµν = 0.
■ Einstein-matter equations:

δgL = 0 ⇒ Gµν = GnSµν

where Sµν = δgLmatter is the stress energy tensor

■ G3 = 8πG.
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■ πij =
√
g(Kij − trKgij)
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■ πij =
√
g(Kij − trKgij)

Lgeom =

∫

dt

∫

Σ

πġ −NH−X iJi + total divergence

where

H =
√
gR+

1

2
(trπ)2/

√
g−|π|2/√g =

√
g(R+(trK)2−|K|2)

Ji = ∇jπij =
√
g(∇jKij −∇itrK)
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■ πij =
√
g(Kij − trKgij)

Lgeom =

∫

dt

∫

Σ

πġ −NH−X iJi + total divergence

where

H =
√
gR+

1

2
(trπ)2/

√
g−|π|2/√g =

√
g(R+(trK)2−|K|2)

Ji = ∇jπij =
√
g(∇jKij −∇itrK)

■ N,X i “Lagrange multipliers”, no E-L eq’s for N,X i

variatons w.r.t. N,X i give vacuum constraints
H = 0,J = 0
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■ Contracted Gauss and Codazzi equations give

GTT = R − |K|2 + (trK)2

GT i = ∇jKij −∇itrK

Thus, the vacuum Einstein constraint equations are
GTT = 0, GT i = 0.

■ Remarkable fact: In order to construct a vacuum Cauchy
development from a set of data (Σ, g,K), it is sufficient
that (Σ, g,K) solves the vacuum constraint equations.
We call such (Σ, g,K) a vacuum Cauchy data set.
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■ Vacuum constraint equations

R− |K|2 + (trK)2 = 0, ∇iKij −∇jtrK = 0

■ (Σ, g,K) where (g,K) solve vacuum constraints on Σ is
a vacuum Cauchy data set
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■ Vacuum constraint equations

R− |K|2 + (trK)2 = 0, ∇iKij −∇jtrK = 0

■ (Σ, g,K) where (g,K) solve vacuum constraints on Σ is
a vacuum Cauchy data set

■ Cauchy problem: Given vacuum Cauchy data set
(Σ, g,K), construct a (maximal) globally hyperbolic
vacuum spacetime (M,g) containing (Σ, g,K) as a
Cauchy hypersurface.
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■ Vacuum constraint equations

R− |K|2 + (trK)2 = 0, ∇iKij −∇jtrK = 0

■ (Σ, g,K) where (g,K) solve vacuum constraints on Σ is
a vacuum Cauchy data set

■ Cauchy problem: Given vacuum Cauchy data set
(Σ, g,K), construct a (maximal) globally hyperbolic
vacuum spacetime (M,g) containing (Σ, g,K) as a
Cauchy hypersurface.

■ M is called a Cauchy development, of (Σ, g,K)
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■ (Σ3, g) Riemannian.
g → φ4g conformal deformation. Scalar curvature
transforms according to
R[φ4g] = φ−5(−8∆φ+Rφ)
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■ (Σ3, g) Riemannian.
g → φ4g conformal deformation. Scalar curvature
transforms according to
R[φ4g] = φ−5(−8∆φ+Rφ)
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■ (Σ3, g) Riemannian.
g → φ4g conformal deformation. Scalar curvature
transforms according to
R[φ4g] = φ−5(−8∆φ+Rφ)

■ Yamabe theorem: For any compact (Σ, g), g can be
conformally deformed to constant scalar curvature
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■ (Σ3, g) Riemannian.
g → φ4g conformal deformation. Scalar curvature
transforms according to
R[φ4g] = φ−5(−8∆φ+Rφ)

■ Yamabe theorem: For any compact (Σ, g), g can be
conformally deformed to constant scalar curvature

■ Given conformal background metric ĝ on Σ3, σ
symmetric 2-tensor so that ĝijσij = 0, ∇̂iσij = 0, H =
constant, solve

−8∆ĝφ+R[ĝ]φ− |σ|2ĝφ−7 + 6H2φ−5 = 0
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■ (Σ3, g) Riemannian.
g → φ4g conformal deformation. Scalar curvature
transforms according to
R[φ4g] = φ−5(−8∆φ+Rφ)

■ Yamabe theorem: For any compact (Σ, g), g can be
conformally deformed to constant scalar curvature

■ Given conformal background metric ĝ on Σ3, σ
symmetric 2-tensor so that ĝijσij = 0, ∇̂iσij = 0, H =
constant, solve

−8∆ĝφ+R[ĝ]φ− |σ|2ĝφ−7 + 6H2φ−5 = 0

■ Define g = φ4ĝ K = φ−2σ +Hg
Then (g,K) solve the vacuum constraint equations with
trK = 3H
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■ Conformal method gives constant mean curvature data,
does not work in general

■ constructs solutions to constraints on all compact Σ
■ asymptotic conditions: AE, AH etc. can be handled
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■ Conformal method gives constant mean curvature data,
does not work in general

■ constructs solutions to constraints on all compact Σ
■ asymptotic conditions: AE, AH etc. can be handled
■ Linearization of

(g,K) → (R − |K|2 + (trK)2,∇iKij −∇jtrK)
has surjective but not injective symbol, i.e. degenerate
elliptic
solutions of constraints have “local” freedom, inspide of
elliptic nature

■ Gluing: data sets can be glued at non-KID points
AF data can be made asymptotically Schwarzschild
Constructs example of spacetime with no CMC slice
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■ Example:

Lmatter =

∫

〈∇φ,∇φ〉 + V (φ)
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■ Example:

Lmatter =

∫

〈∇φ,∇φ〉 + V (φ)

■ stress energy Sµν = δgLmatter

Sµν = ∇µφ∇νφ− 1

2
(∇γφ∇γφ+ V (φ))gµν
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■ Example:

Lmatter =

∫

〈∇φ,∇φ〉 + V (φ)

■ stress energy Sµν = δgLmatter

Sµν = ∇µφ∇νφ− 1

2
(∇γφ∇γφ+ V (φ))gµν

■ Einstein equation Rµν − Rgµν = GnSµν

■ matter equation �φ = V ′(φ)
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■ Einstein-matter constraints:
GTT = GnSTT , GT i = GnST i
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■ Einstein-matter constraints:
GTT = GnSTT , GT i = GnST i

■ For Einstein scalar field in 3+1 dimensions:

R− |K|2 + (trK)2 = 8πG(T (φ)2 + |∇φ|2 +V (φ)) =: 2ρ

∇iKij −∇jtrK = 8πGT (φ)∇jφ =: µj
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■ Einstein-matter constraints:
GTT = GnSTT , GT i = GnST i

■ For Einstein scalar field in 3+1 dimensions:

R− |K|2 + (trK)2 = 8πG(T (φ)2 + |∇φ|2 +V (φ)) =: 2ρ

∇iKij −∇jtrK = 8πGT (φ)∇jφ =: µj

■ Dominant energy condition (DEC): ρ ≥ |µ|
holds for Einstein-scalar field, if V ≥ 0.
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■ �xα =
1√−g

∂µ(gµα
√−g) = −gµνΓα

µν
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■ �xα =
1√−g

∂µ(gµα
√−g) = −gµνΓα

µν

■ Gauge source function:
Given Fα = Fα(x,g), let
V α = gµνΓα

µν − Fα
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■ �xα =
1√−g

∂µ(gµα
√−g) = −gµνΓα

µν

■ Gauge source function:
Given Fα = Fα(x,g), let
V α = gµνΓα

µν − Fα

■ Example:
Fix a background spacetime (M̂, ĝ), ∇̂ covariant
derivative, Γ̂ Christoffel’s of ĝ
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■ �xα =
1√−g

∂µ(gµα
√−g) = −gµνΓα

µν

■ Gauge source function:
Given Fα = Fα(x,g), let
V α = gµνΓα

µν − Fα

■ Example:
Fix a background spacetime (M̂, ĝ), ∇̂ covariant
derivative, Γ̂ Christoffel’s of ĝ

■ tension field
V α = gµν(Γα

µν − Γ̂α
µν)

■ V = 0 ⇔ Id : M → M̂ is harmonic
(cf. DeTurck’s trick for Ricci flow)

■ Simplest case: �xα = 0
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■ Computation gives

Rµν = −1

2
gαβ∇̂α∇̂βgµν +J(g, ∂g)µν +

1

2
(∇µVν +∇νVµ)

■ J(g, ∂g)µν is quadratic in ∂g
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■ Computation gives

Rµν = −1

2
gαβ∇̂α∇̂βgµν +J(g, ∂g)µν +

1

2
(∇µVν +∇νVµ)

■ J(g, ∂g)µν is quadratic in ∂g
■

Rred
µν := Rµν −

1

2
(∇µVν + ∇νVµ)

is a quasilinear hyperbolic operator ⇒ has well posed
Cauchy problem
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■ Suppose we have vacuum Cauchy data (Σ, g,K) solving
the Einstein constraints, and given lapse, shift N,X on
Σ

■ By choosing ∂tN, ∂tX, we can always get tension field
V = 0 on Σ
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■ Suppose we have vacuum Cauchy data (Σ, g,K) solving
the Einstein constraints, and given lapse, shift N,X on
Σ

■ By choosing ∂tN, ∂tX, we can always get tension field
V = 0 on Σ

■ Use result about Cauchy problem for QL wave equations
to construct a solution g to the reduced Einstein
equations

Rred
µν = 0

with data gµν , ∂tgµν corresponding to (g,N,X) and
(K, ∂tN, ∂tX)
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■ Assume we have solved Rred
µν = 0
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■ Assume we have solved Rred
µν = 0

■ Then

Gµν =
1

2
(∇µVν + ∇νVµ −∇γV

γgµν)

■ The Einstein constraints GTT = 0, GT i = 0 hold on Σ
by assumption,
this forces ∂tV = 0 ⇒ V has trivial Cauchy data
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■ Assume we have solved Rred
µν = 0

■ Then

Gµν =
1

2
(∇µVν + ∇νVµ −∇γV

γgµν)

■ The Einstein constraints GTT = 0, GT i = 0 hold on Σ
by assumption,
this forces ∂tV = 0 ⇒ V has trivial Cauchy data

■ From ∇µGµν = 0 get

∇µ(∇µVν + ∇νVµ −∇γV
γgµν) = 0

which gives
�Vν + Rν

δVδ = 0
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■ Since V has trivial initial data, V ≡ 0 by uniqueness, so
g solves the full vacuum Einstein equation Rµν = 0.

■ Important point: For general data (Σ, g,K) with
noncompact Σ, existence time may be = 0

■ However, due to causality (finite propagation speed) we
can solve the Cauchy problem locally and patch
together.
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■ Since V has trivial initial data, V ≡ 0 by uniqueness, so
g solves the full vacuum Einstein equation Rµν = 0.

■ Important point: For general data (Σ, g,K) with
noncompact Σ, existence time may be = 0

■ However, due to causality (finite propagation speed) we
can solve the Cauchy problem locally and patch together.

Theorem 4. Given vacuum Cauchy data set

S = (Σ, g,K), there is a vacuum Cauchy development

of S

Remark. This result does not claim any maximality or
uniqueness for the development of S
For n = 3, this proof requires data in Hs, s ≥ 4.
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Theorem 5 (Choquet-Bruhat, Geroch, 1969). Let

S = (Σ, g,K) be a vacuum Cauchy data set. Then there is

a maximal vacuum Cauchy development of S, which is

unique up to diffeomorphism.
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Theorem 6 (Choquet-Bruhat, Geroch, 1969). Let

S = (Σ, g,K) be a vacuum Cauchy data set. Then there is

a maximal vacuum Cauchy development of S, which is

unique up to diffeomorphism.

Proof: In the proof we will use the term extension both for a
vacuum Cauchy development of a Cauchy data set S and for
an extension in the following sense:
If M,M ′ are globally hyperbolic, vacuum and there is diffeo
ψ : M →M ′, then we call M ′ an extension of M
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Theorem 7 (Choquet-Bruhat, Geroch, 1969). Let

S = (Σ, g,K) be a vacuum Cauchy data set. Then there is

a maximal vacuum Cauchy development of S, which is

unique up to diffeomorphism.

Proof: In the proof we will use the term extension both for a
vacuum Cauchy development of a Cauchy data set S and for
an extension in the following sense:
If M,M ′ are globally hyperbolic, vacuum and there is diffeo
ψ : M →M ′, then we call M ′ an extension of M

■ Recall: A binary relation ≤ on a set X is a partial order
if it is reflexive, transitive and antisymmetric
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Theorem 8 (Choquet-Bruhat, Geroch, 1969). Let

S = (Σ, g,K) be a vacuum Cauchy data set. Then there is

a maximal vacuum Cauchy development of S, which is

unique up to diffeomorphism.

Proof: In the proof we will use the term extension both for a
vacuum Cauchy development of a Cauchy data set S and for
an extension in the following sense:
If M,M ′ are globally hyperbolic, vacuum and there is diffeo
ψ : M →M ′, then we call M ′ an extension of M

■ Recall: A binary relation ≤ on a set X is a partial order
if it is reflexive, transitive and antisymmetric

■ Zorn’s lemma: A partially ordered set such that each
totally ordered subset has an upper bound, has a
maximal element. Zorn ⇔ axiom of choice.
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Theorem 9 (Choquet-Bruhat, Geroch, 1969). Let

S = (Σ, g,K) be a vacuum Cauchy data set. Then there is

a maximal vacuum Cauchy development of S, which is

unique up to diffeomorphism.

Proof: In the proof we will use the term extension both for a
vacuum Cauchy development of a Cauchy data set S and for
an extension in the following sense:
If M,M ′ are globally hyperbolic, vacuum and there is diffeo
ψ : M →M ′, then we call M ′ an extension of M

■ Recall: A binary relation ≤ on a set X is a partial order
if it is reflexive, transitive and antisymmetric

■ Zorn’s lemma: A partially ordered set such that each
totally ordered subset has an upper bound, has a
maximal element. Zorn ⇔ axiom of choice.
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■ Let M = { extensions of S}
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■ Let M = { extensions of S}
■ Let N,N ′ ∈ M. (U,ψ) is a common part if U ⊂ N ,

ψ : U → N ′ diffeo. U is nonempty by local
well-posedness.
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■ Let M = { extensions of S}
■ Let N,N ′ ∈ M. (U,ψ) is a common part if U ⊂ N ,

ψ : U → N ′ diffeo. U is nonempty by local
well-posedness.

■ N,N ′ ∈ M. N ≤ N ′ if the maximal common part is
U = N . M is partially ordered by ≤.
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■ Let M = { extensions of S}
■ Let N,N ′ ∈ M. (U,ψ) is a common part if U ⊂ N ,

ψ : U → N ′ diffeo. U is nonempty by local
well-posedness.

■ N,N ′ ∈ M. N ≤ N ′ if the maximal common part is
U = N . M is partially ordered by ≤.

■ Consider totally ordered subset {Nα} of M. Common
parts (U,ψ) induce equivalence relation ∼. Let
K = (∪αNα)/ ∼. This defined a topology on K, as well
as a natural metric and differentiable structure.
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■ Let M = { extensions of S}
■ Let N,N ′ ∈ M. (U,ψ) is a common part if U ⊂ N ,

ψ : U → N ′ diffeo. U is nonempty by local
well-posedness.

■ N,N ′ ∈ M. N ≤ N ′ if the maximal common part is
U = N . M is partially ordered by ≤.

■ Consider totally ordered subset {Nα} of M. Common
parts (U,ψ) induce equivalence relation ∼. Let
K = (∪αNα)/ ∼. This defined a topology on K, as well
as a natural metric and differentiable structure.

■ From the definitions, K is a development of each Nα

and hence K is and upper bound to {Nα}. Therefore by
Zorn, M has a maximal element M .
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■ Remains to show: M is an extension of each extension
of S. Let M ′ be some other extension. Let
M̃ = M ∪M ′/ ∼. If M̃ ∈ M, then M̃ = M and we are
done. Suppose not, then can argue M̃ is fails to be
Hausdorff.
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■ Remains to show: M is an extension of each extension
of S. Let M ′ be some other extension. Let
M̃ = M ∪M ′/ ∼. If M̃ ∈ M, then M̃ = M and we are
done. Suppose not, then can argue M̃ is fails to be
Hausdorff.

■ Final steps in the proof:
Let (U,ψ) be maximal common part of M,M ′,
ψ : U →M . Take a non-Haussdorff point p′, consider
ψ(T ′ − p′) ∪ {p} for some Cauchy surface T ′ in M ′.
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■ Remains to show: M is an extension of each extension
of S. Let M ′ be some other extension. Let
M̃ = M ∪M ′/ ∼. If M̃ ∈ M, then M̃ = M and we are
done. Suppose not, then can argue M̃ is fails to be
Hausdorff.

■ Final steps in the proof:
Let (U,ψ) be maximal common part of M,M ′,
ψ : U →M . Take a non-Haussdorff point p′, consider
ψ(T ′ − p′) ∪ {p} for some Cauchy surface T ′ in M ′.

■ By local well posedness, get extension, which contradicts
maximality of U . Thus, M̃ is Haussdorff, and M̃ ∈ M.
Thus M̃ = M , and hence M is unique.
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1

■ Lorentz cone −dt2 + t2γn
H

for n ≥ 2, where γn
H

is an
n-dimensional compact hyperbolic manifold
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1

■ Lorentz cone −dt2 + t2γn
H

for n ≥ 2, where γn
H

is an
n-dimensional compact hyperbolic manifold

■ non-flat Kasner
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1

■ Lorentz cone −dt2 + t2γn
H

for n ≥ 2, where γn
H

is an
n-dimensional compact hyperbolic manifold

■ non-flat Kasner
■ Generic T 3 Gowdy spacetimes
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1

■ Lorentz cone −dt2 + t2γn
H

for n ≥ 2, where γn
H

is an
n-dimensional compact hyperbolic manifold

■ non-flat Kasner
■ Generic T 3 Gowdy spacetimes
■ Non-Taub Bianchi IX
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Maximal globally hyperbolic spacetimes, which do not have

any (even non-globally hyperbolic) C2 extensions

■ Minkowski space R
n+1

■ Lorentz cone −dt2 + t2γn
H

for n ≥ 2, where γn
H

is an
n-dimensional compact hyperbolic manifold

■ non-flat Kasner
■ Generic T 3 Gowdy spacetimes
■ Non-Taub Bianchi IX
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Maximal globally hyperbolic spacetimes which have

non-globally hyperbolic vacuum extensions

■ I+({0})) in R
n+1
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Maximal globally hyperbolic spacetimes which have

non-globally hyperbolic vacuum extensions

■ I+({0})) in R
n+1

■ 1+1 dimensional Misner: Lorentz cone −dt2 + t2S1
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Maximal globally hyperbolic spacetimes which have

non-globally hyperbolic vacuum extensions

■ I+({0})) in R
n+1

■ 1+1 dimensional Misner: Lorentz cone −dt2 + t2S1
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■ The Taub-NUT spacetime M ∼= R × S3, is a spatially
homogenous solution of the Einstein equations.

■ The Cauchy surfaces are S3 collapsing along the
Hopf-fibration.
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■ The Taub-NUT spacetime M ∼= R × S3, is a spatially
homogenous solution of the Einstein equations.

■ The Cauchy surfaces are S3 collapsing along the
Hopf-fibration.

■ The Cauchy horizon H is a pair of null S3, and the
spacetime metric is smooth at H.
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■ The Taub-NUT spacetime M ∼= R × S3, is a spatially
homogenous solution of the Einstein equations.

■ The Cauchy surfaces are S3 collapsing along the
Hopf-fibration.

■ The Cauchy horizon H is a pair of null S3, and the
spacetime metric is smooth at H.

■ There are inequivalent (non-globally hyperbolic) vacuum
extensions of Taub-NUT
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