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■ Informal versions of Cosmic censorship:

◆ Weak Cosmic Censorship Conjecture: An observer
who has viewed a singularity is destined to fall into
it.
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■ Informal versions of Cosmic censorship:

◆ Weak Cosmic Censorship Conjecture: An observer
who has viewed a singularity is destined to fall into
it.

◆ Strong Cosmic Censorship Conjecture: No
singularity is ever visible to an observer
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■ Informal versions of Cosmic censorship:

◆ Weak Cosmic Censorship Conjecture: An observer
who has viewed a singularity is destined to fall into
it.

◆ Strong Cosmic Censorship Conjecture: No
singularity is ever visible to an observer

■ Wrong! There are non-generic examples.
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Whereas Stephen W. Hawking (having lost a previous bet on this subject by not
demanding genericity) still firmly believes that naked singularities are an anathema
and should be prohibited by the laws of classical physics, And whereas John Preskill
and Kip Thorne (having won the previous bet) still regard naked singularities as
quantum gravitational objects that might exist, unclothed by horizons, for all the
Universe to see,
Therefore Hawking offers, and Preskill/Thorne accept, a wager that
When any form of classical matter or field that is incapable of becoming singular in
flat spacetime is coupled to general relativity via the classical Einstein equations,
then
A dynamical evolution from generic initial conditions (i.e., from an open set of
initial data) can never produce a naked singularity (a past-incomplete null geodesic
from scri-plus).
The loser will reward the winner with clothing to cover the winner’s nakedness. The
clothing is to be embroidered with a suitable, truly concessionary message.

Stephen W. Hawking, John P. Preskill, Kip S. Thorne Pasadena, California, 5

February 1997
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■ Let Σ be compact. Then for generic vacuum Cauchy
data (g,K) on Σ, the maximal globally hyperbolic
vacuum development of (Σ, g,K) is the maximal
vacuum (say C2) spacetime containing (Σ, g,K) as a
hypersurface.
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■ Let Σ be compact. Then for generic vacuum Cauchy
data (g,K) on Σ, the maximal globally hyperbolic
vacuum development of (Σ, g,K) is the maximal
vacuum (say C2) spacetime containing (Σ, g,K) as a
hypersurface.

■ Let Σ be a manifold which is a connected sum of R
3 with

a compact manifold. Then, for generic, asymptotically
flat vacuum data (g,K) on Σ, the maximal globally
hyperbolic development of (Σ, g,K) is asymptotically
flat at future null infinity, with complete I+
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Let (M,g) be a 3+1 dimensions globally hyperbolic
spacetime.

■ Raychaudhuri equation for vorticity free (hypersurface
orthogonal) null congruence generated by ξ:

dθ

dλ
= −1

2
θ2 − |σ|2 − Rµνξ

µξν

where θ is the “expansion”, σ is the “shear”
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Let (M,g) be a 3+1 dimensions globally hyperbolic
spacetime.

■ Raychaudhuri equation for vorticity free (hypersurface
orthogonal) null congruence generated by ξ:

dθ

dλ
= −1

2
θ2 − |σ|2 − Rµνξ

µξν

where θ is the “expansion”, σ is the “shear”
■ If Null Energy Condition Rµν`

µ`ν ≥ 0 for any null vector
` holds, then

dθ

dλ
+

1

2
θ2 ≤ 0
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■ If θ(0) < 0, then θ ↘ −∞ at some λ ≤ 2/|θ(0)|
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■ If θ(0) < 0, then θ ↘ −∞ at some λ ≤ 2/|θ(0)|
■ this implies null curves must have conjugate points
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■ If θ(0) < 0, then θ ↘ −∞ at some λ ≤ 2/|θ(0)|
■ this implies null curves must have conjugate points
■ In 3+1 dimensions, let S ∈ M be spacelike 2-surface.

Let θ± be the null expansions for future null normals of
S. Assume θ± ≤ −θ0 < 0, for some θ0 > 0. Assume M

satisfies null energy condition and has noncompact
Cauchy surface.
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■ If θ(0) < 0, then θ ↘ −∞ at some λ ≤ 2/|θ(0)|
■ this implies null curves must have conjugate points
■ In 3+1 dimensions, let S ∈ M be spacelike 2-surface.

Let θ± be the null expansions for future null normals of
S. Assume θ± ≤ −θ0 < 0, for some θ0 > 0. Assume M

satisfies null energy condition and has noncompact
Cauchy surface.

■ Then there is a future null geodesic starting at S with
finite affine length, i.e. M must be “singular”
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■ Suppose M satisfies the Strong Energy Condition
RµνV

µV ν ≥ 0 for all timelike vectors V . Assume M

contains a Cauchy hypersurface where trK > K0 for
some K0 > 0. Then M contains an incomplete timelike
geodesic, i.e. is “singular”.
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■ Suppose M satisfies the Strong Energy Condition
RµνV

µV ν ≥ 0 for all timelike vectors V . Assume M

contains a Cauchy hypersurface where trK > K0 for
some K0 > 0. Then M contains an incomplete timelike
geodesic, i.e. is “singular”.

■ Conditions can be weakened by adding “generic”
condition
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■ Message from singularity theorems:
positive energy gives focussing effect, spacetimes tend to
be incomplete
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■ Message from singularity theorems:
positive energy gives focussing effect, spacetimes tend to
be incomplete

■ singularity theorems do not give information about what
happens at the “edge” of spacetimes
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■ Message from singularity theorems:
positive energy gives focussing effect, spacetimes tend to
be incomplete

■ singularity theorems do not give information about what
happens at the “edge” of spacetimes

■ conjecture: suppose (M,g) maximally globally
hyperbolic, is vacuum and has compact Cauchy surface.
Then either M has an incomplete causal geodesic, or
splits as a product.
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■ Message from singularity theorems:
positive energy gives focussing effect, spacetimes tend to
be incomplete

■ singularity theorems do not give information about what
happens at the “edge” of spacetimes

■ conjecture: suppose (M,g) maximally globally
hyperbolic, is vacuum and has compact Cauchy surface.
Then either M has an incomplete causal geodesic, or
splits as a product.

■ The only positive results on censorship, which do not
assume small data, are for systems with at least
2-dimensional isometry group: Gowdy or Bianchi.
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■ Message from singularity theorems:
positive energy gives focussing effect, spacetimes tend to
be incomplete

■ singularity theorems do not give information about what
happens at the “edge” of spacetimes

■ conjecture: suppose (M,g) maximally globally
hyperbolic, is vacuum and has compact Cauchy surface.
Then either M has an incomplete causal geodesic, or
splits as a product.

■ The only positive results on censorship, which do not
assume small data, are for systems with at least
2-dimensional isometry group: Gowdy or Bianchi.

■ Programme on low regularity well posedness for the
Einstein equations (Klainerman, Rodnianski) may lead to
progress on the 3-dimensional problem
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■ Friedrich: small hyperboloidal data, semi-global existence
to the future
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■ Friedrich: small hyperboloidal data, semi-global existence
to the future

■ Christodoulou-Klainerman: small AF data, global
existence, geodesically complete spacetime, weak fall-off
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■ Friedrich: small hyperboloidal data, semi-global existence
to the future

■ Christodoulou-Klainerman: small AF data, global
existence, geodesically complete spacetime, weak fall-off

■ Lindblad-Rodnianski: simplified proof of Ch-Kl, used
weak null condition
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■ Friedrich: small hyperboloidal data, semi-global existence
to the future

■ Christodoulou-Klainerman: small AF data, global
existence, geodesically complete spacetime, weak fall-off

■ Lindblad-Rodnianski: simplified proof of Ch-Kl, used
weak null condition

■ Chrusciel-Delay: examples of data which lead to
asymptotically simple spacetimes, used gluing +
Friedrich
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■ Friedrich: small hyperboloidal data, semi-global existence
to the future

■ Christodoulou-Klainerman: small AF data, global
existence, geodesically complete spacetime, weak fall-off

■ Lindblad-Rodnianski: simplified proof of Ch-Kl, used
weak null condition

■ Chrusciel-Delay: examples of data which lead to
asymptotically simple spacetimes, used gluing +
Friedrich

■ Andersson-Moncrief, Rieris: small data global existence
to the future for spacetimes with compact Cauchy
surface
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■ Belinskǐı, Khalatnikov and Lifshitz (BKL) proposal:
heuristic scenario for generic cosmological singularities

■ The singularity is spacelike: observers near the
singularity can’t have communicated in the past; silence
holds — particle horizons shrink to zero.



BKL proposal

Review

Singularity
Theorems

Comments

Small data results

BKL proposal

Silent, oscillatory

BKL map

BKL map image

Spacetimes with
symmetries

The U(1) problem

Gowdy

U(1) × U(1) on

T
3

Cauchy problem Lars Andersson – 12 / 48

■ Belinskǐı, Khalatnikov and Lifshitz (BKL) proposal:
heuristic scenario for generic cosmological singularities

■ The singularity is spacelike: observers near the
singularity can’t have communicated in the past; silence
holds — particle horizons shrink to zero.

■ The singularity is local: spatial derivatives are
dynamically insignificant near the singularity
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■ Belinskǐı, Khalatnikov and Lifshitz (BKL) proposal:
heuristic scenario for generic cosmological singularities

■ The singularity is spacelike: observers near the
singularity can’t have communicated in the past; silence
holds — particle horizons shrink to zero.

■ The singularity is local: spatial derivatives are
dynamically insignificant near the singularity

■ For normal matter or spacetime dimension D ≤ 11, the
dynamics is oscillatory near the singularity.

■ Caveat: There are spacetimes with null or partly null
singularities (eg. spacetimes close to
Reissner-Nordström)

■ The observed nature of the singularity depends on the
Cauchy slicing used to analyze it.
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p =
1 + u

1 + u+ u2

q =
−u

1 + u+ u2

r =
u+ u2

1 + u+ u2

BKL observed that the (chaotic!) map

u 7→
{

u− 1 u > 1
1/u 0 < u < 1

is a good model for the asymptotic dynamics in generic
spatially homogenous cosmologies (Bianchi IX)
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Suppose (M,g) is vacuum, maximally globally hyperbolic
Σ Cauchy surface in M

ξ vector field

■ Lie derivative of g with respect to ξ:
Lξgµν = ∇µξν + ∇νξµ
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Suppose (M,g) is vacuum, maximally globally hyperbolic
Σ Cauchy surface in M

ξ vector field

■ Lie derivative of g with respect to ξ:
Lξgµν = ∇µξν + ∇νξµ

■ ξ is a Killing field if Lξg ≡ 0
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Suppose (M,g) is vacuum, maximally globally hyperbolic
Σ Cauchy surface in M

ξ vector field

■ Lie derivative of g with respect to ξ:
Lξgµν = ∇µξν + ∇νξµ

■ ξ is a Killing field if Lξg ≡ 0
■ Suppose data for ξ given at Σ and suppose Lξg = 0 at

Σ. Then the TT and Ti components of 0 = Lξg at Σ
determine ∂tξ at Σ.
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Suppose (M,g) is vacuum, maximally globally hyperbolic
Σ Cauchy surface in M

ξ vector field

■ Lie derivative of g with respect to ξ:
Lξgµν = ∇µξν + ∇νξµ

■ ξ is a Killing field if Lξg ≡ 0
■ Suppose data for ξ given at Σ and suppose Lξg = 0 at

Σ. Then the TT and Ti components of 0 = Lξg at Σ
determine ∂tξ at Σ.

■ Killing’s equation gives in vacuum

0 = ∇µ(∇µξν + ∇νξµ − 1

2
∇γξ

γgµν)

= �ξν + Rν
γξγ = �ξν
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■ Since we have Cauchy data for ξ at Σ, there is a unique
ξ defined globally on solving the above equation.
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■ Since we have Cauchy data for ξ at Σ, there is a unique
ξ defined globally on solving the above equation.

■ Suppose ξ is tangent to Σ. The structure equations
imply that ∂t(Lξg) = 0 at Σ, if ξ is Killing at Σ.
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■ Since we have Cauchy data for ξ at Σ, there is a unique
ξ defined globally on solving the above equation.

■ Suppose ξ is tangent to Σ. The structure equations
imply that ∂t(Lξg) = 0 at Σ, if ξ is Killing at Σ.

■ Calculation gives

�∇(µξν) = 2Rα
(µν)

γ∇(αξγ)
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■ Since we have Cauchy data for ξ at Σ, there is a unique
ξ defined globally on solving the above equation.

■ Suppose ξ is tangent to Σ. The structure equations
imply that ∂t(Lξg) = 0 at Σ, if ξ is Killing at Σ.

■ Calculation gives

�∇(µξν) = 2Rα
(µν)

γ∇(αξγ)

Since ∇(µξν) has trivial Cauchy data at Σ, ∇(µξν) ≡ 0
on M, so ξ is globally Killing
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■ Suppose a compact group G acts on M by isometries.
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■ Suppose a compact group G acts on M by isometries.
■ Then the action of G is generated by spacelike Killing

fields.
■ There is a foliation of M by Cauchy hypersurfaces

invariant under the action of G
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■ Suppose a compact group G acts on M by isometries.
■ Then the action of G is generated by spacelike Killing

fields.
■ There is a foliation of M by Cauchy hypersurfaces

invariant under the action of G
■ Proof: average a timefunction
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orbit dimension system type

3 Bianchi or K-S ODE
2 Surface symmetry or G2 1+1 PDE
1 G1 2+1 PDE
0 G0 3+1 PDE



Bianchi

Review

Singularity
Theorems

Spacetimes with
symmetries

Symmetries

Hierarchy

Bianchi

Kaluza-Klein

The U(1) problem

Gowdy

U(1) × U(1) on

T
3

Cauchy problem Lars Andersson – 21 / 48

■ spatially homogenous models ⇒ Einstein equations
become ODE’s.

■ Classify according to isometry group
■ “generic” Bianchi models have oscillatory singularity

(Ringström)

−1 0 1 2
−2

−1

0

1

2

Σ
+

Σ −

(a) (b)
(a) Kasner billiard — Bianchi IX — Mixmaster

(b) Taub-NUT has Cauchy horizon — extendible.
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■ (Σm, g) Lorentzian, (Nn, h) Riemannian, Rich = λ0h
■ Ansatz: g = e2αφg + e2αφh
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■ (Σm, g) Lorentzian, (Nn, h) Riemannian, Rich = λ0h
■ Ansatz: g = e2αφg + e2αφh

L =

∫

M

R
√
−g

=

∫

N

√
h

∫

Σ

√−ge(mα+nβ)φ
(

e−2αφRg + e−2βφRh

)

+ terms with ∂2φ and (∂φ)2
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■ (Σm, g) Lorentzian, (Nn, h) Riemannian, Rich = λ0h
■ Ansatz: g = e2αφg + e2αφh

L =

∫

M

R
√
−g

=

∫

N

√
h

∫

Σ

√−ge(mα+nβ)φ
(

e−2αφRg + e−2βφRh

)

+ terms with ∂2φ and (∂φ)2

■ Condition for Einstein-Hilbert type action for g:

(m− 2)α+ nβ = 0
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■ Using conformal transformation rules for Ricci and scalar
curvature, show that modulo total divergence the action
takes the form

L =

∫

N

√
h

∫

Σ

√−g[Rg

+ e(2α−2β)φnλ0 + (2 −m− n)αβ|dφ|2]
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■ Special case: N = S1, Σ 3-dimensional. Corresponds to
the case of M 3+1 dimensional, with spacelike,
hypersurface orthogonal Killing field, generating an S1

action.
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■ Special case: N = S1, Σ 3-dimensional. Corresponds to
the case of M 3+1 dimensional, with spacelike,
hypersurface orthogonal Killing field, generating an S1

action.
■ Reduced field equations:

0 = �φ, Ric = 2∇φ⊗∇φ

i.e. 2+1 dimensional Einstein-scalar field equations (with
V = 0).
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■ Special case: N = S1, Σ 3-dimensional. Corresponds to
the case of M 3+1 dimensional, with spacelike,
hypersurface orthogonal Killing field, generating an S1

action.
■ Reduced field equations:

0 = �φ, Ric = 2∇φ⊗∇φ

i.e. 2+1 dimensional Einstein-scalar field equations (with
V = 0).

■ This is the polarized U(1) problem
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■ Let J be a Killing field generating a spatial U(1) action
on M.

■ π : M → Σ = M/U(1) be the projection
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■ Let J be a Killing field generating a spatial U(1) action
on M.

■ π : M → Σ = M/U(1) be the projection
■ If M has compact Cauchy surface, Σ ∼= S × R, with S a

Riemann surface
■ Let λ = − log(|J |).
■ Calculate

dJ = Θ + 2dλ ∧ J
where iJΘ = 0.
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■ Then Θ = π∗(e2λF ), where F two form on Σ
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■ Then Θ = π∗(e2λF ), where F two form on Σ
■ Let E = − ? (e4λF ), 1-form on Σ
■ Einstein equations ⇒ dE = 0
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■ Then Θ = π∗(e2λF ), where F two form on Σ
■ Let E = − ? (e4λF ), 1-form on Σ
■ Einstein equations ⇒ dE = 0
■ assume E = dω (U(1) bundle is trivial in this case)
■ Field equations become

Ric =
1

2
〈∇u,∇u〉h, �u+ hΓ(〈∇u,∇u〉) = 0

where u = (λ, ω) is a map to H
2 with metric

h = 4dλ2 + e−4λdω2
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■ Then Θ = π∗(e2λF ), where F two form on Σ
■ Let E = − ? (e4λF ), 1-form on Σ
■ Einstein equations ⇒ dE = 0
■ assume E = dω (U(1) bundle is trivial in this case)
■ Field equations become

Ric =
1

2
〈∇u,∇u〉h, �u+ hΓ(〈∇u,∇u〉) = 0

where u = (λ, ω) is a map to H
2 with metric

h = 4dλ2 + e−4λdω2

■ This is the 2+1 dimensional Einstein-Wave maps
equation, with hyperbolic target
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■ small data, global existence result by Choquet-Bruhat
and Moncrief for polarized case, spatially compact, and
Choquet-Bruhat, trivial bundle case, spatially compact.
Genus of S > 1 is needed for these results
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■ small data, global existence result by Choquet-Bruhat
and Moncrief for polarized case, spatially compact, and
Choquet-Bruhat, trivial bundle case, spatially compact.
Genus of S > 1 is needed for these results

■ genus(S)=1 case open, nontrivial bundle case open
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■ small data, global existence result by Choquet-Bruhat
and Moncrief for polarized case, spatially compact, and
Choquet-Bruhat, trivial bundle case, spatially compact.
Genus of S > 1 is needed for these results

■ genus(S)=1 case open, nontrivial bundle case open
■ Heuristics and numerical studies indicate that polarized

U(1) has non-oscillatory behavior at the singularity while
generic U(1) has oscillatory behavior at the singularity
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■ Assume M has spatial U(1)× U(1) action, generated by
ξ1, ξ2

■ Assume ξ1, ξ2 are hypersurface orthogonal

ξ1 ∧ ξ2 ∧ dξ1 = 0, ξ1 ∧ ξ2 ∧ dξ2 = 0
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■ Assume M has spatial U(1)× U(1) action, generated by
ξ1, ξ2

■ Assume ξ1, ξ2 are hypersurface orthogonal

ξ1 ∧ ξ2 ∧ dξ1 = 0, ξ1 ∧ ξ2 ∧ dξ2 = 0

■ Let (t, x) be coordinates on M/U(1) × U(1)
A(t, x) area of orbit
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■ Assume M has spatial U(1)× U(1) action, generated by
ξ1, ξ2

■ Assume ξ1, ξ2 are hypersurface orthogonal

ξ1 ∧ ξ2 ∧ dξ1 = 0, ξ1 ∧ ξ2 ∧ dξ2 = 0

■ Let (t, x) be coordinates on M/U(1) × U(1)
A(t, x) area of orbit
Gowdy time: A = 4π2e−t (this is harmonic time)
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■ Orbit metric Ah, h = h(t, x) unit determinant metric on
T 2
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■ Orbit metric Ah, h = h(t, x) unit determinant metric on
T 2

■ y1, y2 coordinates on T 2. Unit determinant metric
parametrized as

h = ePdy2
1 + 2ePQdy1dy2 + (ePQ2 + e−P )dy2

2
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■ Orbit metric Ah, h = h(t, x) unit determinant metric on
T 2

■ y1, y2 coordinates on T 2. Unit determinant metric
parametrized as

h = ePdy2
1 + 2ePQdy1dy2 + (ePQ2 + e−P )dy2

2

■ P,Q coordinates on Teich(T 2) ∼= H
2 with metric

dP 2 + e2PdQ2
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■ Orbit metric Ah, h = h(t, x) unit determinant metric on
T 2

■ y1, y2 coordinates on T 2. Unit determinant metric
parametrized as

h = ePdy2
1 + 2ePQdy1dy2 + (ePQ2 + e−P )dy2

2

■ P,Q coordinates on Teich(T 2) ∼= H
2 with metric

dP 2 + e2PdQ2

■ Gowdy metric on T 3 × R:

`−2
0 ds2 = e(t−λ)/2 (− e−2t dt2 + dx2)

+ e−t [ eP (dy1 +Q dy2)
2 + e−P dy2

2 ] ,
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■ Einstein equations yield a wave maps type equation with
metric η = −dτ 2 + e2τdx2

ηαβ(∂α∂βu
a + Γa

bc∂αu
b∂βu

c) = 0

+ supplementary equations which allow one to
reconstruct the metric
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■ Einstein equations yield a wave maps type equation with
metric η = −dτ 2 + e2τdx2

ηαβ(∂α∂βu
a + Γa

bc∂αu
b∂βu

c) = 0

+ supplementary equations which allow one to
reconstruct the metric

■ The Gowdy Einstein equations can be viewed as
equations for a loop in H

2.
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■ global existence in holds (easy)
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■ global existence in holds (easy)
■ As t→ ∞, A↘ 0, so have cosmological singularity
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■ global existence in holds (easy)
■ As t→ ∞, A↘ 0, so have cosmological singularity
■ light cones in the η metric collapse as t→ ∞ ⇒

“asymptotic silence”
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■ global existence in holds (easy)
■ As t→ ∞, A↘ 0, so have cosmological singularity
■ light cones in the η metric collapse as t→ ∞ ⇒

“asymptotic silence”
■ Cosmic Censorship holds. Proof (Ringström) involves

showing the existence of an asymptotic velocity v̄. v̄ = 0
corresponds to “flat Kasner” which is extendible.
Curvature blowup for generic data is shown by
perturbing away from “flat Kasner”
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■ Energy

E =
1

2

∫

S1

〈∂tu, ∂tu〉 + e−2t〈∂xu, ∂xu〉 = EK + EV

EK , EV kinetic and potential energy terms
■

∂τE = −2EV

⇒ potential energy tends to zero for some sequence of
times tk ↗ ∞
⇒ (heuristically) scale-free variables (e−τ∂xP, e

−τ∂xQ)
become insignificant for the dynamics as τ → ∞
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■ Generic Gowdy spacetimes have AVTD (Asymptotically
Velocity Term Dominated) singularity

■ Asymptotic behavior for (P,Q)

P (τ, x) = k(x)τ + φ(x) + e−ετu(t, x)

Q(τ, x) = q(x) + e−2k(x)τ [ψ(x) + w(τ, x)]

where ε > 0, u,w → 0 as τ → ∞ and 0 < k < 1.
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■ velocity in H
2:

vH2(t, x) =
√

〈∂tu, ∂tu〉

(v2
H2 is the kinetic energy density)
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■ velocity in H
2:

vH2(t, x) =
√

〈∂tu, ∂tu〉

(v2
H2 is the kinetic energy density)

■ vH2(t, x) has limit v̄ as t→ ∞.
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■ velocity in H
2:

vH2(t, x) =
√

〈∂tu, ∂tu〉

(v2
H2 is the kinetic energy density)

■ vH2(t, x) has limit v̄ as t→ ∞.
■ Proof (Ringström) involves light cone energy estimates

for quantities of the form

eτ [(∂t∂
j
xP ± e−t∂j+1

x P )2 + e2P (∂t∂
j
xQ± e−t∂j+1

x Q)2]

note role of “null derivatives” ∂t ± e−t∂x



Spikes in Gowdy

Review

Singularity
Theorems

Spacetimes with
symmetries

The U(1) problem

Gowdy

Gowdy

Metric

Equation

Remarks

Energy

Asymptotic behavior

Asymptotic velocity

Spikes

Snapshot

Curvature blowup

U(1) × U(1) on

T
3

Cauchy problem Lars Andersson – 37 / 48

■ for generic data, v̄ is continuous almost everywhere, and
0 < v̄ < 1 at points of continuity, with jumps:

v̄(x∗) = lim
x→x∗

v̄(x) + 1

at jump points x∗ corresponding to the “spikes” in P
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■ for generic data, v̄ is continuous almost everywhere, and
0 < v̄ < 1 at points of continuity, with jumps:

v̄(x∗) = lim
x→x∗

v̄(x) + 1

at jump points x∗ corresponding to the “spikes” in P
■ v̄ = 0 corresponds to “flat Kasner”.
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P and Q at time τ = 40

Figure 1: Spikes in P,Q. The very sharp spikes (in Q), so–
called “false spikes” are coordinate effects.

.
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Snapshot of Gowdy, t = 2
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Snapshot of Gowdy, t = 6
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Snapshot of Gowdy, t = 12
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Review

Singularity
Theorems

Spacetimes with
symmetries

The U(1) problem

Gowdy

Gowdy

Metric

Equation

Remarks

Energy

Asymptotic behavior

Asymptotic velocity

Spikes

Snapshot

Curvature blowup

U(1) × U(1) on

T
3

Cauchy problem Lars Andersson – 44 / 48

■ For generic data, the Kretschmann scalar
κ = RαβγδR

αβγδ blows up as τ → ∞, along generic
timelines.
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■ For generic data, the Kretschmann scalar
κ = RαβγδR

αβγδ blows up as τ → ∞, along generic
timelines.

■ Proof involves using the genericity condition to perturb
away from “flat Kasner”.
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■ For generic data, the Kretschmann scalar
κ = RαβγδR

αβγδ blows up as τ → ∞, along generic
timelines.

■ Proof involves using the genericity condition to perturb
away from “flat Kasner”.

■ This means: Cosmic Censorship holds for Gowdy
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If we relax the condition that the Killing fields generating the
U(1) × U(1) action be hypersurface orthogonal, the general
spacetimes metric takes the form

`−2
0 ds2 = e(t+λ+µ)/2 [− e−(2t+µ/2) dt2 + dx2 ]

+ e−(t−P ) [ (G1 +QG2) dx+ dy1 +Q dy2 ]2

+ e−(t+P ) [G2 dx+ dy2 ]2 ,

where G1, G2 are “twist potentials” (= 0 in the Gowdy case)
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■ The reduced Einstein equations for U(1) × U(1) are a
quasi-linear system, related to wave maps

■ Global existence is well understood
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■ The reduced Einstein equations for U(1) × U(1) are a
quasi-linear system, related to wave maps

■ Global existence is well understood
■ The behavior at the singularity is oscillatory (according

to heuristics and numerical experiments)
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■ The reduced Einstein equations for U(1) × U(1) are a
quasi-linear system, related to wave maps

■ Global existence is well understood
■ The behavior at the singularity is oscillatory (according

to heuristics and numerical experiments)
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■ Cosmic censorship is open
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