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The Maslov Index: an introduction

I In semi-Riemannian geometry, when the metric g is
non-positive, the index form of a geodesic γ : [a, b] → M,

I (V ,W ) =

∫ b

a
(g(V ′,W ′)− g(RV γ̇W , γ̇))ds

associated to the energy functional

f (γ) =

∫ b

a
g(γ̇, γ̇)ds

is always strongly indefinite, its index and coindex are infinite.

I There is no Morse Index Theorem in the classical sense,
(index of the index form equals the number of conjugate
points counted with multiplicity).
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Some interpretations and applications

It is possible to establish a semi-Riemannian Morse Index Theorem
making a splitting of

H = {E a vector field along γ of class H1 and E (a) = E (b) = 0}

as H = H1 +H2. Then the index and coindex of these subspaces
are finite and its difference gives the Maslov index.

See

P. Piccione and D. V. Tausk, The Morse index theorem in
semi-Riemannian geometry, Topology, 41 (2002), no. 6,
1123–1159.

It is used in order to show a result of bifurcation when a
non-degenerate conjugate point has non zero Maslov Index. It is
also related with the spectral flow. See the reference:

P. Piccione, A. Portaluri, D. V. Tausk, Spectral Flow, Maslov
Index and Bifurcation of semi-Riemannian Geodesics, Ann.
Global Anal. Geom. 25 (2004), no. 2, 121–149.
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The Maslov Index: abstract definition

I Given a symplectic space (V , ω), a Lagrangian L0 and a path
of Lagrangians in the Lagrangian Grasmannian Λ
t → Φ(t) ∈ Λ, the Maslov index µL0(Φ) is an intersection
number of Φ with

Λ≥1(L0) = {L ∈ Λ such that L ∩ L0 6= {0}}

I It is computed through a “canonical map”

π : H1(Λ,Λ(L0)) → Z
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The Maslov Index applied to geodesics

Let (M, g) be a semi-Riemannian manifold and γ : [a, b] → M a
geodesic. Then

I We associate to γ an orthonormal parallel frame, so that the
vector fields are represented as V : [a, b] → Rn

I Let (Rn × Rn, ω) be the symplectic space given by

ωg ((v1,w1), (v2,w2)) = g(v1,w2)− g(v2,w1)

I For every t ∈ [a, b], the subspace

Φ(t) = {(J(t), J ′(t)) : J is a Jacobi field such that J(0) = 0}

is a Lagrangian in Rn × Rn, ω).

I Finally, we fix the Lagrangian L0 = {0} × Rn. The Maslov
Index of γ is µL0(Φ)
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Main properties of the Maslov Index

I The curve t → Φ(t) intersects with L0 only when t0 is a
conjugate instant.

I When t0 is a non-degenerate conjugate instant, its
contribution to the Maslov Index is given by the signature of
the space J[t0]

⊥, where

J[t0] = {J[t0] : J is a Jacobi field along γ with J(0) = 0}

I In the Riemannian case, the Maslov index coincides with the
Morse Index

I In semi-Riemannian geometry conjugate instants can
accumulate
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Semi-Riemannian submersions: definition
Let M and B be two semi-Riemannian manifolds. A
semi-Riemannian submersions is a map π : M → B such that

(S1) It is a submersion (that is, dpπ is surjective for every p ∈ M),

(S2) the fibers π−1(p) with p ∈ B are non-degenerate,

(S3) dπ is an isometry on the orthogonal space to the fibers
(horizontal space).

For every point p ∈ M we can split the tangent space as

TpM = VTpM +HTpM.

B. O’Neill introduces the fundamental tensors T and A on M
defined as follows. We denote by ∇ and ∇∗ the Levi-Civita
connections of M and B. Then for E and F of X(M),

TEF = H∇VE (VF ) + V∇VE (HF ) ⇒ T = 0 ⇔ fibers are tot. geo..

and the dual tensor A:

AEF = V∇HEHF +H∇HEVF . ⇒ A = 0 ⇔ Hor. distri. is integr..
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O’Neill’s papers

The fundamental equations were studied in the paper by B. O’Neill:

B. O’Neill, The fundamental equations of a submersion,
Michigan Math. J., 13 (1966), pp. 459–469.

A year later he pusblished another paper studying the relation
between geodesics in the total space M and the projection in B:

, Submersions and geodesics, Duke Math. J., 34 (1967),
pp. 363–373.

The results in the first paper are easily extended to the
semi-Riemannian case, but there are some difficulties for the
second paper.
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The derivatives of a curve and its projection

Proposition

Let α be a curve in M with X = Hα′ and U = Vα′. Then

H(α′′) = α′′∗ + 2AXU + TUU

V(α′′) = TUX + V(U ′)

where α′′∗ is the horizontal lift to α of the acceleration of π ◦α in B.

Theorem
Let π : M → B a semi-Riemannian submersion. If γ is a geodesic
of M that is horizontal at some point, then it is always horizontal
(hence π ◦ γ is a geodesic of B).
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The derived vector field

Definition
If E = H + V is a vector field on a horizontal curve γ and X = γ′,
then

D(E ) = V(V ′)− TV X + 2AXH

is the derived vector field of E .

The geometric interpretation follows from

Proposition

The derived vector field of E is zero if and only if it can be
obtained as the variational field of a variation by horizontal curves.

We can interpret D(E ) as a measure of how far from being
horizontal the variation is.



The derived vector field

Definition
If E = H + V is a vector field on a horizontal curve γ and X = γ′,
then

D(E ) = V(V ′)− TV X + 2AXH

is the derived vector field of E .

The geometric interpretation follows from

Proposition

The derived vector field of E is zero if and only if it can be
obtained as the variational field of a variation by horizontal curves.

We can interpret D(E ) as a measure of how far from being
horizontal the variation is.



The derived vector field

Definition
If E = H + V is a vector field on a horizontal curve γ and X = γ′,
then

D(E ) = V(V ′)− TV X + 2AXH

is the derived vector field of E .

The geometric interpretation follows from

Proposition

The derived vector field of E is zero if and only if it can be
obtained as the variational field of a variation by horizontal curves.

We can interpret D(E ) as a measure of how far from being
horizontal the variation is.



The derived vector field

Definition
If E = H + V is a vector field on a horizontal curve γ and X = γ′,
then

D(E ) = V(V ′)− TV X + 2AXH

is the derived vector field of E .

The geometric interpretation follows from

Proposition

The derived vector field of E is zero if and only if it can be
obtained as the variational field of a variation by horizontal curves.

We can interpret D(E ) as a measure of how far from being
horizontal the variation is.



Lifting variations

Proposition

Let β : [a, b] → B be a curve in B and fix p ∈ π−1(β(a)).

I Then there exists a horizontal lift γ : [a, c | → M (c ≤ b) that
projects into β and it is the maximal horizontal lift through
p = γ(a) projecting to β.

I Furthermore, let Ψ : [a, b]× (−ε, ε) → B be a variation of the
curve β and η : (−ε, ε) → M such that π ◦ η(s) = Ψ(a, s),
then there exists a variation Γ : [a, c | × (−δ, δ) → M with
Γ(a, s) = η(s) and such that Γ(t, s) is the horizontal lift of
Ψ(t, s) departing from η(s) for every s ∈ (−δ, δ).
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Γ(a, s) = η(s) and such that Γ(t, s) is the horizontal lift of
Ψ(t, s) departing from η(s) for every s ∈ (−δ, δ).



Derived vector field and Jacobi fields

Theorem
Let E be a vector field on a horizontal geodesic γ in M. Then

H(E ′′ − REXX ) = (E ′
∗ − R∗

E∗XX ) + 2AXD

V(E ′′ − REXX ) = V(D ′) + TDX

where D = D(E ) is the derived vector field of E , X = γ′ and R
and R∗ are the curvature tensors of M and B.

Corollary

A field E on a horizontal geodesic in M with derived vector field
D(E ) = 0 is Jacobi if and only if P = dπ(E ) is a Jacobi field of
π ◦ γ in B.
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The main result

Theorem
Let π : M → B be a semi-Riemannian submersion and
γ : [a, b] → M a horizontal geodesic segment. Then

I an instant t0 is a focal point of γ related to the fibre F(a) in
γ(a) if and only if is a conjugate instant of the curve π ◦ γ.

I Furthermore, if t0 is a non-degenerate focal instant of γ, then
so is of π ◦ γ and the contribution to the Maslov index given
by γ(t0) coincides with the one of π ◦ γ(t0) as a conjugate
instant.
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Scheme of the proof

Lemma
Let γ be a horizontal geodesic in M and let F(a) be the fibre
passing through γ(a).
Then a field E on γ is a F(a)-Jacobi field iff E is Jacobi,
D(E ) = 0 and E (a) is vertical.

“⇒”
F(a)-Jacobi field means that it is the variational vector field of a
variation by geodesics orthogonal to the fiber F(a). Then these
geodesics are horizontal, so that D(E ) = 0 and E (a) is vertical.

“⇐”
D(E )(a) = 0 is just the condition to E be F(a)-Jacobi.
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Scheme of the proof

J = {Jacobi fields along γ}
J 0
∗ = {E J Jacobi fields along π ◦ γ such that J(a) = 0}
J v

δ = {E ∈ J : E (a) is vertical and D(E ) = 0}

It is enough to show that J v
δ [t0]

⊥ and J 0
∗ [t0]

⊥ are isometric
subspaces. In fact we will see that J v

δ [t0] is the lifting of J 0
∗ [t0]

(so that contains the vertical subspace).

I If F ∈ J 0
∗ then it is the variation vector field of a variation by

geodesics ψ : [a, b]× (−ε, ε) → B.

I Given v a vertical vector tangent to γ(t0), we can choose a
curve s → β(s) ∈ M such that β′(0) = v + F [t0].

I The variation η(t, s) = expβ(s)((t − t0)ψt(t0, s)) is a lift of
ψ(t, s) by horizontal geodesics. Then ηs(t, 0) ∈ J v

δ and
v + F [t0] ∈ J v

δ [t0]
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Applications to static spacetimes

I A standard static spacetime is a product manifold M × R
endowed of a Lorentzian metric

l((ξ, τ), (ξ, τ)) = g(ξ, ξ)− β(x)τ2

where g is a Riemannian metric in M and β is a positive
fucntion in M.

I The projection π : M × R → M is a semi-Riemannian
submersion. Thus, if we consider a horizontal geodesic in
M × R we can compute the Maslov index respect to the
integral curve of the Killing filed through the origin.

I It is just the geometric index of the projected geodesic in M.
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