Hypersurfaces in the light cone and Minkowski-type problems

Pablo Mira Universidad Politécnica de Cartagena (Spain)

Joint work with J.M. Espinar and J.A. Gálvez.

 \triangleright \land

 $G: \mathbb{S}^n \to \mathbb{S}^n \text{ a global diffeomorphism of } \mathbb{S}^n.$ $\phi: \mathbb{S}^n \to \mathbb{R} \text{ a smooth function.}$

 $G: \mathbb{S}^n \to \mathbb{S}^n$ a global diffeomorphism of \mathbb{S}^n .

 $\phi:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{R}^{n+1}$ with Gauss map G and with ϕ as a prescribed function of its principal curvatures?

$$\mathcal{F}(\kappa_1,\ldots,\kappa_n)=\phi.$$

 $G:\mathbb{S}^n\to\mathbb{S}^n$ a global diffeomorphism of $\mathbb{S}^n.$

 $\phi:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{R}^{n+1}$ with Gauss map G and with ϕ as a prescribed function of its principal curvatures?

$$\mathcal{F}(\kappa_1,\ldots,\kappa_n)=\phi.$$

The Christoffel problem in \mathbb{R}^{n+1} : prescribes ϕ as the mean of the curvature radii of the hypersurface:

$$\phi = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad R_i := \frac{1}{\kappa_i}.$$

 $G:\mathbb{S}^n\to\mathbb{S}^n$ a global diffeomorphism of $\mathbb{S}^n.$

 $\phi:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{R}^{n+1}$ with Gauss map G and with ϕ as a prescribed function of its principal curvatures?

$$\mathcal{F}(\kappa_1,\ldots,\kappa_n)=\phi.$$

The Christoffel problem in \mathbb{R}^{n+1} : prescribes ϕ as the mean of the curvature radii of the hypersurface:

$$\phi = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad R_i := \frac{1}{\kappa_i}.$$

What is the situation in other model spaces?

 $G:\mathbb{S}^n\to\mathbb{S}^n$ a global diffeomorphism of $\mathbb{S}^n.$

 $\phi:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{R}^{n+1}$ with Gauss map G and with ϕ as a prescribed function of its principal curvatures?

$$\mathcal{F}(\kappa_1,\ldots,\kappa_n)=\phi.$$

The Christoffel problem in \mathbb{R}^{n+1} : prescribes ϕ as the mean of the curvature radii of the hypersurface:

$$\phi = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad R_i := \frac{1}{\kappa_i}.$$

What is the situation in other model spaces? The unit normal is no longer a Gauss map into \mathbb{S}^n .

1. To extend the Christoffel problem to spacelike hypersurfaces in the de Sitter space \mathbb{S}_1^{n+1} .

A D D D

1. To extend the Christoffel problem to spacelike hypersurfaces in the de Sitter space \mathbb{S}_1^{n+1} .

2. To solve as far as possible this Christoffel problem.

1. To extend the Christoffel problem to spacelike hypersurfaces in the de Sitter space \mathbb{S}_1^{n+1} .

2. To solve as far as possible this Christoffel problem.

The approach to solve the Christoffel problem in \mathbb{S}_1^{n+1} will illustrate how the geometry of spacelike hypersurfaces in the positive light cone is very helpful in order to study the geometry of spacelike hypersurfaces in \mathbb{S}_1^{n+1} .

We need to find the appropriate extensions to spacelike hypersurfaces in \mathbb{S}_1^{n+1} of

- The Gauss map of a hypersurface $M^n \subset \mathbb{R}^{n+1}$
- The curvature radii of a hypersurface $M^n \subset \mathbb{R}^{n+1}$.

We need to find the appropriate extensions to spacelike hypersurfaces in \mathbb{S}_1^{n+1} of

- The Gauss map of a hypersurface $M^n \subset \mathbb{R}^{n+1}$
- The curvature radii of a hypersurface $M^n \subset \mathbb{R}^{n+1}$.

Specifically, for a spacelike hypersurface $M^n \subset \mathbb{S}_1^{n+1}$ we need ...

- 1. A Gauss map $G: M^n \to \mathbb{S}^n$.
- 2. A notion of curvature radii that make sense with the only hypothesis that the Gauss map G is a diffeomorphism.

The **Gauss map** G of a hypersurface in \mathbb{S}_1^{n+1} .

$$G: M^n \to \partial_{+,\infty} \mathbb{S}^{n+1}_1 \equiv \mathbb{S}^n_{+,\infty} \equiv \mathbb{S}^n.$$

⊞ ⊙

(A): It is a local diffeomorphism exactly when all principal curvatures are $\neq 1$.

(A): It is a local diffeomorphism exactly when all principal curvatures are $\neq 1$.

(B): The quantities $1/\kappa_i$ cannot be defined in general if we only know that G is a diffeomorphism.

(A): It is a local diffeomorphism exactly when all principal curvatures are $\neq 1$.

(B): The quantities $1/\kappa_i$ cannot be defined in general if we only know that G is a diffeomorphism.

(C): On the other hand, the quantities $1/\kappa_i$ would make sense exactly when the hypersurface is strictly convex (an ovaloid). This condition is quite meaningless to the Gauss map G.

(A): It is a local diffeomorphism exactly when all principal curvatures are $\neq 1$.

(B): The quantities $1/\kappa_i$ cannot be defined in general if we only know that G is a diffeomorphism.

(C): On the other hand, the quantities $1/\kappa_i$ would make sense exactly when the hypersurface is strictly convex (an ovaloid). This condition is quite meaningless to the Gauss map G.

Therefore: $R_i := 1/\kappa_i$ do not serve anymore as curvature radii in \mathbb{S}_1^{n+1} (they do not match the Gauss map properly).

The key observation:

If $M^n \subset \mathbb{R}^{n+1}$ with Gauss map N, and $p \in M^n$, then the principal curvature radii $R_i = 1/\kappa_i$ are linked to the Gauss map:

$$R_i(p) = \frac{1}{\kappa_i(p)} = \lim_{\epsilon \to 0} \frac{\text{arclength of } \alpha_i(-\epsilon, \epsilon)}{\text{arclength of } (N \circ \alpha_i)(-\epsilon, \epsilon)},$$

where α_i is the line of curvature of M^n associated to κ_i .

There is no natural pullback metric associated to G. However,

There is no natural pullback metric associated to G. However,

• $\lim_{t\to\infty} f_t(p) = G(p)$ for every $p \in M^n$, where here $\{f_t\}_{t\in\mathbb{R}}$ is the *parallel flux* of $f: M^n \to \mathbb{S}_1^{n+1}$.

There is no natural pullback metric associated to G. However,

• $\lim_{t\to\infty} f_t(p) = G(p)$ for every $p \in M^n$, where here $\{f_t\}_{t\in\mathbb{R}}$ is the *parallel flux* of $f: M^n \to \mathbb{S}_1^{n+1}$.

• we have the Epstein metric

$$g_{\infty} = \lim_{t \to \infty} 4e^{-2t} \langle df_t, df_t \rangle.$$

There is no natural pullback metric associated to G. However,

- $\lim_{t\to\infty} f_t(p) = G(p)$ for every $p \in M^n$, where here $\{f_t\}_{t\in\mathbb{R}}$ is the *parallel flux* of $f: M^n \to \mathbb{S}_1^{n+1}$.
- we have the Epstein metric

$$g_{\infty} = \lim_{t \to \infty} 4e^{-2t} \langle df_t, df_t \rangle.$$

Definition

The *curvature radii* of a spacelike hypersurface $M^n \subset \mathbb{S}_1^{n+1}$ with regular Gauss map G are

$$|\mathcal{R}_i| := \lim_{\epsilon \to 0} \frac{\text{arclength of } \alpha_i(-\epsilon, \epsilon)}{\text{arclength of } (G \circ \alpha_i)(-\epsilon, \epsilon)}.$$

 $G: \mathbb{S}^n \to \mathbb{S}^n$ a global diffeomorphism of \mathbb{S}^n .

 $C:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

 $G:\mathbb{S}^n\to\mathbb{S}^n$ a global diffeomorphism of $\mathbb{S}^n.$

 $C:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{S}^{n+1}_1$ with Gauss map G and with C as the mean of the curvature radii?

 $G: \mathbb{S}^n \to \mathbb{S}^n$ a global diffeomorphism of \mathbb{S}^n .

 $C:\mathbb{S}^n\to\mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$ with Gauss map G and with C as the mean of the curvature radii?

Remark: we may choose G(x) = x without loss of generality.

 $G: \mathbb{S}^n \to \mathbb{S}^n$ a global diffeomorphism of \mathbb{S}^n .

 $C: \mathbb{S}^n \to \mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$ with Gauss map G and with C as the mean of the curvature radii?

Remark: we may choose G(x) = x without loss of generality.

Remark: we can compute $\mathcal{R}_i = 1/(\kappa_i - 1)$.

 $G: \mathbb{S}^n \to \mathbb{S}^n$ a global diffeomorphism of \mathbb{S}^n . $C: \mathbb{S}^n \to \mathbb{R}$ a smooth function.

Is there a hypersurface $f : \mathbb{S}^n \to \mathbb{S}^{n+1}_1$ with Gauss map G and with C as the mean of the curvature radii?

Remark: we may choose G(x) = x without loss of generality.

Remark: we can compute $\mathcal{R}_i = 1/(\kappa_i - 1)$.

We need to find $f:\mathbb{S}^n\to\mathbb{S}^{n+1}_1$ with Gauss map G(x)=x and mean of curvature radii

$$C(x) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\kappa_i(x) - 1}.$$

The associated light cone immersion

Let $f: M^n \to \mathbb{S}_1^{n+1}$ be a spacelike hypersurface, with Gauss map $G: M^n \to \mathbb{S}^n$ and unit normal $N: M^n \to \mathbb{H}^{n+1}$.

Let $f: M^n \to \mathbb{S}_1^{n+1}$ be a spacelike hypersurface, with Gauss map $G: M^n \to \mathbb{S}^n$ and unit normal $N: M^n \to \mathbb{H}^{n+1}$.

 $\nu := f + N : M^n \to \mathbb{N}^{n+1}_+ \subset \mathbb{L}^{n+2}$ is the associated light cone map.

Properties of $\nu = f + N : M^n \to \mathbb{N}^{n+1}_+$

Let $f:\mathbb{S}^n\to\mathbb{S}^{n+1}_1$ denote a solution to the Christoffel problem. Then

(A): ν is an immersion.

Properties of $\nu = f + N : M^n \to \mathbb{N}^{n+1}_+$

Let $f:\mathbb{S}^n\to\mathbb{S}^{n+1}_1$ denote a solution to the Christoffel problem. Then

(A): ν is an immersion.

(B): It holds

$$g_{\infty} = \langle d\nu, d\nu \rangle = e^{2\rho} g_0,$$

where g_{∞} is the Epstein metric of f, and g_0 is the \mathbb{S}^n -metric.

Properties of $\nu = f + N : M^n \to \mathbb{N}^{n+1}_+$

Let $f:\mathbb{S}^n\to\mathbb{S}^{n+1}_1$ denote a solution to the Christoffel problem. Then

(A): ν is an immersion.

(B): It holds

$$g_{\infty} = \langle d\nu, d\nu \rangle = e^{2\rho} g_0,$$

where g_{∞} is the Epstein metric of f, and g_0 is the \mathbb{S}^n -metric.

(C): In particular, the Epstein metric g_{∞} is globally conformal to g_0

Solving the Christoffel problem...

Let $S(x) : \mathbb{S}^n \to \mathbb{R}$ denote a smooth function. Does it exist a conformal metric $g = e^{2u}g_0$ globally defined on \mathbb{S}^n whose scalar curvature function is S(x)?

Let $S(x) : \mathbb{S}^n \to \mathbb{R}$ denote a smooth function. Does it exist a conformal metric $g = e^{2u}g_0$ globally defined on \mathbb{S}^n whose scalar curvature function is S(x)?

Equivalently, we wish to solve globally on \mathbb{S}^n

$$\Delta^{g_0}u + \frac{n-2}{2} ||\nabla^{g_0}u||_{g_0}^2 - \frac{n}{2} + \frac{e^{2u}}{2(n-1)}S = 0.$$

Let $S(x) : \mathbb{S}^n \to \mathbb{R}$ denote a smooth function. Does it exist a conformal metric $g = e^{2u}g_0$ globally defined on \mathbb{S}^n whose scalar curvature function is S(x)?

Equivalently, we wish to solve globally on \mathbb{S}^n

$$\Delta^{g_0}u + \frac{n-2}{2} ||\nabla^{g_0}u||_{g_0}^2 - \frac{n}{2} + \frac{e^{2u}}{2(n-1)}S = 0.$$

There is an impressive amount of contributions regarding the Nirenberg problem but a both necessary and sufficient condition for its solvability remains unknown.

Let $S(x) : \mathbb{S}^n \to \mathbb{R}$ denote a smooth function. Does it exist a conformal metric $g = e^{2u}g_0$ globally defined on \mathbb{S}^n whose scalar curvature function is S(x)?

Equivalently, we wish to solve globally on \mathbb{S}^n

$$\Delta^{g_0}u + \frac{n-2}{2} ||\nabla^{g_0}u||_{g_0}^2 - \frac{n}{2} + \frac{e^{2u}}{2(n-1)}S = 0.$$

There is an impressive amount of contributions regarding the Nirenberg problem but a both necessary and sufficient condition for its solvability remains unknown.

OUR RESULT: The Christoffel problem in \mathbb{S}_1^{n+1} and the Nirenberg problem in \mathbb{S}^n are equivalent problems !!

The main theorem, Part I

Let $f: \mathbb{S}^n \to \mathbb{S}_1^{n+1}$ be a solution to the Christoffel problem for the smooth function C(x). Then its Epstein metric $g_{\infty} = e^{2\rho}g_0$ is a solution to the Nirenberg problem for the function

$$S := -n(n-1)(2C+1).$$

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Is g the Epstein metric of some hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$?

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Is g the Epstein metric of some hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$?

If YES : f is a solution to the Christoffel problem for ${\cal C}(x)$ such that

$$S(x) = -n(n-1)(2C(x) + 1).$$

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Is g the Epstein metric of some hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$?

If $\ensuremath{\mathsf{YES}}\xspace$: f is a solution to the Christoffel problem for C(x) such that

$$S(x) = -n(n-1)(2C(x) + 1).$$

The answer... NO, BUT ALMOST YES

For t > 0 large enough the conformal metric $g_t := e^{2t}g$ is the Epstein metric of a hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$.

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Is g the Epstein metric of some hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$?

If $\ensuremath{\mathsf{YES}}\xspace$: f is a solution to the Christoffel problem for C(x) such that

$$S(x) = -n(n-1)(2C(x) + 1).$$

The answer... NO, BUT ALMOST YES

For t > 0 large enough the conformal metric $g_t := e^{2t}g$ is the Epstein metric of a hypersurface $f : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$.

But the Nirenberg problem is invariant under dilations OK!

The main theorem, Part II

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Then for t large enough the Christoffel problem in \mathbb{S}_1^{n+1} for the function

$$C_t(x) := -\frac{1}{2} \left(1 + \frac{e^{2t}}{n(n-1)} \right) S(x).$$

has a solution $f_t : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$.

The main theorem, Part II

Let $g = e^{2\rho}g_0$ be a solution to the Nirenberg problem for the scalar curvature function S(x). Then for t large enough the Christoffel problem in \mathbb{S}_1^{n+1} for the function

$$C_t(x) := -\frac{1}{2} \left(1 + \frac{e^{2t}}{n(n-1)} \right) S(x).$$

has a solution $f_t : \mathbb{S}^n \to \mathbb{S}_1^{n+1}$. Moreover,

$$f_t = \frac{e^{\rho_t}}{2} \left(1 - e^{-2\rho_t} \left(1 + ||\nabla^{g_0} \rho||_{g_0}^2 \right) \right) (1, x) + e^{-\rho_t}(0, \xi),$$

where $\xi := -x + \nabla^{g_0} \rho$ and $\rho_t := \rho + t$.

There is an explicit equivalence between

(A) The Christoffel problem for spacelike hypersurfaces in \mathbb{S}_1^{n+1} .

There is an explicit equivalence between

(A) The Christoffel problem for spacelike hypersurfaces in \mathbb{S}_1^{n+1} .

(B) The Nirenberg problem in \mathbb{S}^n , modulo dilations.

There is an explicit equivalence between

(A) The Christoffel problem for spacelike hypersurfaces in \mathbb{S}_1^{n+1} .

(B) The Nirenberg problem in \mathbb{S}^n , modulo dilations.

This correspondence is made explicit via the associated light cone immersion ν .

There is an explicit equivalence between

(A) The Christoffel problem for spacelike hypersurfaces in \mathbb{S}_1^{n+1} .

(B) The Nirenberg problem in \mathbb{S}^n , modulo dilations.

This correspondence is made explicit via the associated light cone immersion ν .

This correspondence lets us translate the huge quantity of results on the Nirenberg problem into our Lorentzian setting problem.