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Scalar field spacetimes

How many ways scalar fields’ evolution study has

been approached in?

Some - very unexhaustive! - literature

@ qualitative [causal structure analysis](Christodoulou
1991-'98)

@ late time behavior (Joshi et al 2004, R.G. 2005, Rendall,
Miritzis 2006)

@ numerical (Choptuik 1983, Garfinkle 2004, Alcubierre et al
2004)

Can this problem be cast into a variational setup?
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The model

Assumptions and equations

@ metric: k = 0 FRW
© matter: scalar field ¢ with potential V()

@ line element:
g=—dteat+a(t) [ax' ® dx' + dx® @ dx® + dx® ® ax?]

@ field equations (in the unknowns a(t), ¢(t)):

el
(@=8rTd): oo = (F +2V(9)

e
(@ =8rTh): -T2 (2 _oy(y)
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Variational formulation

The Hilbert—Palatini action functional

Proposition

If (a,¢) € C3(R*,R) solves Euler-Lagrange equation for £, and
34(0)? = a3(#(0) + 2V(0)). )

then it is a solution for homogeneous scalar field equations.




Homogeneous scalar field with a potential
{ o]

Variational formulation

The Hilbert—Palatini action functional

How to get rid of the arrival time T (unknown, in principle)?




Homogeneous scalar field with a potential
{ o]

Variational formulation

The Hilbert—Palatini action functional

How to get rid of the arrival time T (unknown, in principle)?

Use a modified version of Euler—Maupertuis least action
principle [van Groesen 1985, see also R.G, F Giannoni, P Piccione
2006]

F(a, ) = </01 3ad® — a°¢? dt) - (/01 28° V(¢)dt>




Homogeneous scalar field with a potential
{ o]

Variational formulation

The Hilbert—Palatini action functional

How to get rid of the arrival time T (unknown, in principle)?

Use a modified version of Euler—Maupertuis least action
principle [van Groesen 1985, see also R.G, F Giannoni, P Piccione
2006]

F(a, ) = </ 3ad® — a°¢? dt> - (/01 28° V(¢)dt>




Homogeneous scalar field with a potential
oe

Variational formulation

We look for critical points between prescribed
configurations

£ a ao aq




Homogeneous scalar field with a potential
oe

Variational formulation

We look for critical points between prescribed
configurations

£ a ao aq




Homogeneous scalar field with a potential
oe

Variational formulation

We look for critical points between prescribed
configurations

Problem

Given

a, ar € R",¢0, 61 € R,Ve C'(R, R),
find critical points of the functional

Fla,6) = (J, 3a()@(n) — & ()d*(1)dt) -
(Jy 28 (O V(o) at),

with positive critical value, in the space of
C? curves (a,¢) : [0,1] — R* x R such a a g
that
a(0) = a, a(1) = a1, (0) = b0, o(1) = 1. |
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Main result

Existence of solutions

Theorem (R.G, F. Giannoni, G. Magli, JMP 2006)
Under the assumptions

@3 min{ao, 61}(31 = 80)2 >
max{ao, as }(¢1 — ¢o)?

@ VeC'(R,RY),

there exists T > 0 and a a
(a(t), ¢(1)) € C3([0, T], R?) solutions, with the
boundary conditions
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Main result

Existence of solutions

Theorem (R.G, F. Giannoni, G. Magli, JMP 2006) ¢

Under the assumptions

@ 3min{ap, a1 }(ar — ap)? >
max{ao, a }(¢1 — ¢o)?

@ Ve C'(R,RY), ¢o (@
there exists T > 0 and a a
(a(t), ¢(1)) € C3([0, T], R?) solutions, with the
boundary conditions

a(0) = ap, a(T) = ar, ¢(0) = do, ¢(T) = ¢1.

Open issue (for future developments...)
How to find evolution leading to a singularity (a(T) = 0)?
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Abstract critical point theory

What is the main obstruction to develop a
variational theory in this case?

Problem
The functional is not positive definite on the velocities

Solution (Rabinowitz, 1986)
Saddle Point Theorem
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Abstract critical point theory

Rabinowitz’ Saddle Point Theorem

Palais—Smale condition
Any sequence {xp}pe C X
such that

f(xn) — ¢, and Vf(x,) — 0
has a converging
subsequence in X.

@ f satisfies (PS). at any ¢ € by, by].
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Abstract critical point theory

Rabinowitz’ Saddle Point Theorem

@ Q Hilbert manifold, Y finite dimensional affine space
@ X=QxY,feC'(¥,R)
@ Jwg € Q, e €Y, R> 0 such that, called

Br(ep) ={ecY : |le—e| < R}, itis

bp= sup f(wo, e) < by = inf f(w, eo);
ecOBg(ep) weh

@ if by = SUPecpy(ey) f(wo, €), the strip
{xe X : by <f(x) < by} C X is complete;

o f satisfies (PS). at any ¢ € [by, by].

— there exists a critical value c for f in [by, bs].
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The approximation scheme

Saddle Point Theorem cannot be applied as is...

...In our case:

Q={ae H'([0,1],]m,M]) : a(0) = a0, a(1) = a1},
Y={¢p=0+0¢.: ¢ H(0,1],R)}, where ¢.(t) = (1 — t)do + tp1.

v

Obstructions
Q dmY =+
©Q Qs not complete

© V(¢) unbounded above

<

We need to approximate both the functional and the space.
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The approximation scheme

Initial vs approximating problems

X=QxY xk =Qx Yk

Y={¢=0+¢:0€H(0,1],R)} Yo ={6=0k+0- : b € Wi}

where where

(1) = (1 — t)do + tehs. Wj=span{sin(r¢t) : t € [0,1],£ =1, .., k}

F(f, ¢) = 1 F. \(a,¢) (fo (3a+ U.(a)@ — a3¢',2dt> .
52 12

(fo 3af — & dt) ' (fo 24’ V(¢)dt) <fo 28 V)\(O)dt)

Proposition

The functional F, , satisfies Saddle Point Theorem hypotheses
on the space X, = Q x Yk.
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Convergence to a solution

Proof of the main result

@ Jcritical point (ax, ¢x) for F. » on X, = Q x Y such that
Fex(ak, k) € [b1, b2
@ by, b, are independent of k

J—o0

® (ax, ¢x;) — (@, ¢) critical point for F. \ on X
@ for e sufficiently small, U.(a) = 0 = (a, ¢) is a critical point
for the functional Fy \ on X

o for X sufficiently large, V(¢) = Vi(¢) and V'(¢) = V{(¢) =
(a, ¢) critical point for F on X.

Ol
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What we have done

@ The problem of homogeneous scalar field in spherical
symmetry has been tackled using a variational approach.

@ Since the functional is not positive definite, Rabinowitz
Saddle Point Theorem has been applied (to an
approximation of the original problem, actually)

@ Approximating solutions are shown to converge to the
solution of the original problem
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Conclusions

Summary

What we have done

@ The problem of homogeneous scalar field in spherical
symmetry has been tackled using a variational approach.

@ Since the functional is not positive definite, Rabinowitz
Saddle Point Theorem has been applied (to an
approximation of the original problem, actually)

@ Approximating solutions are shown to converge to the
solution of the original problem

Open Problems

@ How to modify this scheme for the case of singular
solutions?

@ What about non—homogeneous case?
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Rabinowitz’ Saddle Point Theorem

bo = SUPecoBa(ey) f(wo, €) < b1 = infueq f(w, €o)
b2 = SUPecpy(ey) f(wo, €)

b,
b,

by
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Initial vs approximating problems

Approx problem

Xk = Q x Yk

Ye={6=0k+¢x : o € Wi}

where

Wi=span{sin(=¢t) : t € [0,1],£ =1, ...k}
a | Fa@o)=(J;Ba+ U(a)& - 2¢2dt) -
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Initial vs approximating problems

Approx problem

%k:QXYk

Ye={¢=k+0- : b € Wi}
where
Wi=span{sin(=¢t) : t € [0,1],£ =1, ...k}

Fer(a o)=(J; (3a+ Ue(a))@ — &¢2dt) -
(Jg 228 Va(9)at)
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