Holonomy groups of Lorentzian manifolds

Thomas Leistner

Humboldt University Berlin

IVth International Meeting on Lorentzian Geometry
Santiago de Compostela
February 5–8, 2007
Outline

1 Holonomy
 - The holonomy group of a linear connection
 - Classification problem and Berger algebras
 - Holonomy and geometric structure
 - Riemannian holonomy

2 Lorentzian holonomy
 - Preliminaries
 - Classification
 - Proof of the Classification

3 Applications and Examples
 - Applications
 - Metrics realising all possible groups
 - Geometric structures
 - pp-waves and their generalisations
 - Open problems
Parallel displacement

Let \((M, \nabla)\) be an affine manifold, i.e. \(\nabla\) a linear connection.
Let \((M, \nabla)\) be an affine manifold, i.e. \(\nabla\) a linear connection.

\[\sim\] Parallel displacement along \(\gamma : [0, 1] \to M\), piecewise smooth,
Parallel displacement

Let \((M, \nabla)\) be an affine manifold, i.e. \(\nabla\) a linear connection.

\(\leadsto\) Parallel displacement along \(\gamma : [0, 1] \to M,\) piecewise smooth,

\[
\mathcal{P}_\gamma : T_{\gamma(0)}M \xrightarrow{\sim} T_{\gamma(1)}M
\]

\[
X_0 \quad \mapsto \quad X(1),
\]
Parallel displacement

Let \((M, \nabla)\) be an affine manifold, i.e. \(\nabla\) a linear connection.

\(\leadsto\) Parallel displacement along \(\gamma : [0, 1] \to M\), piecewise smooth,

\[
\mathcal{P}_\gamma : T_{\gamma(0)} M \overset{\sim}{\longrightarrow} T_{\gamma(1)} M
\]

\[
X_0 \mapsto X(1),
\]

where \(X(t)\) is the solution to the ODE

\[
\nabla_{\dot{\gamma}(t)} X(t) \equiv 0 \text{ with initial condition } X(0) = X_0.
\]
Holonomy group of a linear connection

For $p \in M^n$ we define the Holonomy group

$$\text{Hol}_p (M, \nabla) := \left\{ \mathcal{P}_\gamma | \gamma(0) = \gamma(1) = p, \mathcal{P}_\gamma \right\} \cap \text{Gl}(T_p M)$$

and its Lie algebra $\text{hol}_p (M, \nabla)$.

Example

∇ flat $\Rightarrow \text{Hol}_p (M, \nabla) = \Pi_1 (M)$ and $\text{hol}_p (M, \nabla) = \{0\}$.

Sn the round sphere: $\text{Hol}_p (S^n) = \text{SO}(n)$.

Thomas Leistner (HU Berlin) Holonomy groups of Lorentzian manifolds Santiago de Compostela 4 / 30
Holonomy group of a linear connection

For $p \in M^n$ we define the (Connected) Holonomy group

$$\text{Hol}_p^0(M, \nabla) := \left\{ P_\gamma | \gamma(0) = \gamma(1) = p, \gamma \sim \{p\} \right\} \cap \text{Gl}(T_p M)$$

and its Lie algebra $\mathfrak{hol}_p(M, \nabla)$.

Example $\nabla_{\text{flat}} \Rightarrow \text{Hol}_p^0(M, \nabla) = \Pi_1(M)$ and $\mathfrak{hol}_p(M, \nabla) = \{0\}$.

Sn the round sphere: $\text{Hol}_p^0(S^n) = \text{SO}(n)$.

Thomas Leistner (HU Berlin)
Holonomy group of a linear connection

For $p \in M^n$ we define the (Connected) Holonomy group

$$\text{Hol}_p^0(M, \nabla) := \left\{ \mathcal{P}_\gamma | \gamma(0) = \gamma(1) = p, \gamma \sim \{p\} \right\} \cap \text{Gl}(n, \mathbb{R}) \cong \text{Gl}(T_pM)$$

and its Lie algebra $\mathfrak{hol}_p(M, \nabla)$.

Example ∇ flat $\Rightarrow \text{Hol}_p^0(M, \nabla) = \pi_1(M)$ and $\text{hol}_p(M, \nabla) = \{0\}$.

S^n the round sphere: $\text{Hol}_p^0(S^n) = \text{SO}(n)$.

Thomas Leistner (HU Berlin)
Holonomy group of a linear connection

For $p \in M^n$ we define the (Connected) Holonomy group

$$\text{Hol}_p^0(M, \nabla) := \left\{ \mathcal{P}_\gamma | \gamma(0) = \gamma(1) = p, \gamma \sim \{p\} \right\}$$

holonomy representation $\cap \quad \text{Gl}(n, \mathbb{R}) \cong \text{Gl}(T_pM)$ (fixing a basis)

and its Lie algebra $\mathfrak{hol}_p(M, \nabla)$.

For $p, q \in M$:

$$\text{Hol}_p(M, \nabla) \sim \text{Hol}_q(M, \nabla)$$

conjugated in $\text{Gl}(n, \mathbb{R})$
Holonomy group of a linear connection

For $p \in M^n$ we define the (Connected) Holonomy group

$$\text{Hol}^0_p(M,\nabla) := \left\{ \gamma \in \text{GL}(M) \right\}$$

holonomy representation \downarrow

$$\text{GL}(n, \mathbb{R}) \cong \text{GL}(T_p M) \ (\text{fixing a basis})$$

and its Lie algebra $\mathfrak{hol}_p(M,\nabla)$.

For $p, q \in M$:

$$\text{Hol}_p(M,\nabla) \downarrow \text{conjugated in } \text{GL}(n, \mathbb{R}) \downarrow \text{Hol}_q(M,\nabla)$$

Example

- $\nabla \text{ flat} \Rightarrow \text{Hol}_p(M,\nabla) = \Pi_1(M)$ and $\mathfrak{hol}_p(M,\nabla) = \{0\}$.

Holonomy group of a linear connection

For \(p \in M^n \) we define the (Connected) Holonomy group

\[
\text{Hol}_p^0(M, \nabla) := \left\{ \mathcal{P}_\gamma | \gamma(0) = \gamma(1) = p, \gamma \sim \{p\} \right\}
\]

and its Lie algebra \(\mathfrak{h} \text{ol}_p(M, \nabla) \).

For \(p, q \in M \) :

\[
\text{Hol}_p(M, \nabla) \sim \text{Hol}_q(M, \nabla)
\]

Conjugated in \(\text{Gl}(n, \mathbb{R}) \)

Example

- \(\nabla \text{ flat } \Rightarrow \text{Hol}_p(M, \nabla) = \Pi_1(M) \) and \(\mathfrak{h} \text{ol}_p(M, \nabla) = \{0\} \).
- \(S^n \) the round sphere: \(\text{Hol}_p(S^n) = SO(n) \).
Classification problem

Which groups may occur as holonomy groups?
Classification problem

Which groups may occur as holonomy groups?

- Hano/Ozeki ’56: Any closed $G \subset GL(n, \mathbb{R})$. But ∇ might have torsion.
Classification problem

Which groups may occur as holonomy groups?

- **Hano/Ozeki '56**: Any closed $G \subset Gl(n, \mathbb{R})$! But ∇ might have torsion.
- Conditions on the torsion T^∇, e.g. $T^\nabla = 0$ or $T^\nabla \in \Lambda^3 TM$
Classification problem

Which groups may occur as holonomy groups?

- **Hano/Ozeki ’56**: Any closed $G \subset G\text{l}(n, \mathbb{R})$! But ∇ might have torsion.
- Conditions on the torsion T^∇, e.g. $T^\nabla = 0$ or $T^\nabla \in \Lambda^3 TM$
 \leadsto algebraic constraints on the holonomy representation.
Classification problem

Which groups may occur as holonomy groups?

- **Hano/Ozeki ’56**: Any closed $G \subset GL(n, \mathbb{R})$! But ∇ might have torsion.
- Conditions on the torsion T^∇, e.g. $T^\nabla = 0$ or $T^\nabla \in \Lambda^3 TM$
 \leadsto algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected $\implies \text{hol}(M, \nabla)$ is spanned by

\[
\left\{ P_\gamma^{-1} \circ R(X, Y) \circ P_\gamma \, | \, \gamma(0) = p \text{ and } X, Y \in T_{\gamma(1)} M \right\}
\]
Classification problem

Which groups may occur as holonomy groups?

- Hano/Ozeki '56: Any closed $G \subset \text{Gl}(n, \mathbb{R})$! But ∇ might have torsion.
- Conditions on the torsion T^∇, e.g. $T^\nabla = 0$ or $T^\nabla \in \Lambda^3 TM$
 \leadsto algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

M connected $\implies \text{hol}_p(M, \nabla)$ is spanned by

$$\left\{ \mathcal{P}_\gamma^{-1} \circ \mathcal{R}(X, Y) \circ \mathcal{P}_\gamma \bigg| \gamma(0) = p \text{ and } X, Y \in T_{\gamma(1)}M \right\}$$

satisfies Bianchi identity if $T^\nabla = 0$
Classification problem

Which groups may occur as holonomy groups?

- Hano/Ozeki ’56: Any closed \(G \subset Gl(n, \mathbb{R}) \)! But \(\nabla \) might have torsion.
- Conditions on the torsion \(T^\nabla \), e.g. \(T^\nabla = 0 \) or \(T^\nabla \in \Lambda^3 TM \)
 \(\sim \) algebraic constraints on the holonomy representation.

Theorem (Ambrose/Singer)

\(M \) connected \(\implies \) \(h\text{ol}_p(M, \nabla) \) is spanned by

\[
\left\{ P^{-1}_\gamma \circ R(X, Y) \circ P_\gamma \mid \gamma(0) = p \text{ and } X, Y \in T_{\gamma(1)}M \right\}
\]

satisfies Bianchi identity if \(T^\nabla = 0 \)

\(\implies \) \(h\text{ol}_p(M, \nabla) \) is a Berger algebra.
Berger algebras

Let $g \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra.
Berger algebras

Let $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra. The \mathfrak{g} module of formal curvature endomorphisms is defined as

$$\mathcal{K}(\mathfrak{g}) := \left\{ R \in \Lambda^2 \mathbb{R}^n \otimes \mathfrak{g} \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}$$
Berger algebras

Let $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra. The \mathfrak{g} module of formal curvature endomorphisms is defined as

$$\mathcal{K}(\mathfrak{g}) := \left\{ R \in \Lambda^2 \mathbb{R}^n^* \otimes \mathfrak{g} \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}$$

\mathfrak{g} is a Berger algebra $\iff \mathfrak{g} = \left\langle R(x, y) \mid R \in \mathcal{K}(\mathfrak{g}), x, y \in \mathbb{R}^n \right\rangle$
Berger algebras

Let $g \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra. The g module of formal curvature endomorphisms is defined as

$$\mathcal{K}(g) := \left\{ R \in \Lambda^2 \mathbb{R}^n^* \otimes g \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}$$

g is a Berger algebra \iff $g = \langle R(x, y) \mid R \in \mathcal{K}(g), x, y \in \mathbb{R}^n \rangle$

$T\nabla = 0$: Ambrose-Singer $\implies \mathfrak{ho}_p(M, \nabla)$ is a Berger algebra.
Berger algebras

Let $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra.

The \mathfrak{g} module of formal curvature endomorphisms is defined as

$$\mathcal{K}(\mathfrak{g}) := \left\{ R \in \Lambda^2 \mathbb{R}^n \otimes \mathfrak{g} \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}$$

\mathfrak{g} is a Berger algebra \iff $\mathfrak{g} = \left\langle R(x, y) \mid R \in \mathcal{K}(\mathfrak{g}), x, y \in \mathbb{R}^n \right\rangle$.

$T^\nabla = 0$: Ambrose-Singer \implies $\mathfrak{hol}(M, \nabla)$ is a Berger algebra.

Classification of Berger algebras:

~ Classification of holonomy algebras of torsion free connections.
Berger algebras

Let $g \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra. The g module of formal curvature endomorphisms is defined as

$$\mathcal{K}(g) := \{ R \in \Lambda^2 \mathbb{R}^n \otimes g \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \}$$

g is a Berger algebra $\iff g = \langle R(x, y) \mid R \in \mathcal{K}(g), x, y \in \mathbb{R}^n \rangle$

$T^\nabla = 0$: Ambrose-Singer \implies holp(M, ∇) is a Berger algebra.

Classification of irreducible Berger algebras:

- Berger ’55: $g \subset \mathfrak{so}(p, q)$,

\leadsto Classification of irreducible holonomy algebras of torsion free connections.
Berger algebras

Let $g \subset \mathfrak{gl}(n, \mathbb{R})$ be a subalgebra. The g module of formal curvature endomorphisms is defined as

$$\mathcal{K}(g) := \left\{ R \in \Lambda^2 \mathbb{R}^n \otimes g \mid R(x, y)z + R(y, z)x + R(z, x)y = 0 \right\}$$

\[g \text{ is a Berger algebra } \iff g = \left\langle R(x, y) \middle| R \in \mathcal{K}(g), x, y \in \mathbb{R}^n \right\rangle \]

$T^\nabla = 0$: Ambrose-Singer $\implies \mathfrak{hol}(M, \nabla)$ is a Berger algebra.

Classification of irreducible Berger algebras:

- Berger '55: $g \subset \mathfrak{so}(p, q)$,
- Schwachhöfer/Merkulov '99: $g \subset \mathfrak{gl}(n, \mathbb{R})$.

\leadsto Classification of irreducible holonomy algebras of torsion free connections.
Holonomy and geometric structure I

\[\otimes^r T_p M \otimes \otimes^s T^*_p M \]

//

\[
\{ F \in \otimes^r T_p M : \\
\quad \text{Hol}_p (M, \nabla) \cdot F = F \}
\]
Holonomy and geometric structure

\[\bigotimes^r T_p M \otimes \bigotimes^s T^*_p M \]

\[\{ F \in \bigotimes^r T_p M : \text{Hol}_p(M, \nabla) \cdot F = F \} \cong \{ \varphi \in \Gamma(\bigotimes^r T M) : \nabla \varphi = 0 \} \]
Holonomy and geometric structure I

$\otimes^r T_p M \otimes \otimes^s T^*_p M$

//

\[
\left\{ F \in \otimes^r T_p M : \right. \\
\left. Hol_p(M, \nabla) \cdot F = F \right\} \cong \left\{ \varphi \in \Gamma(\otimes^r T M) : \right. \\
\left. \nabla \varphi = 0 \right\}
\]

$F \mapsto \varphi := \mathcal{P}_\gamma(F)$

independent of γ with $\gamma(0) = p$
Holonomy and geometric structure I

\[\bigotimes^r T_p M \otimes \bigotimes^s T^*_p M \]

\[\{ F \in \bigotimes^r_s T_p M : \text{Hol}_p(M, \nabla) \cdot F = F \} \cong \{ \varphi \in \Gamma(\bigotimes^r_s TM) : \nabla \varphi = 0 \} \]

\[F \mapsto \varphi := P_\gamma(F) \]

independent of \(\gamma \) with \(\gamma(0) = p \)

- \(\text{Hol}_p(M, \nabla) \subset \text{SL}(n, \mathbb{R}) \iff \omega \in \Omega^n M : \nabla \omega = 0. \)
Holonomy and geometric structure

\[\otimes^r T_p M \otimes \otimes^s T^*_p M \]

\[
\begin{aligned}
\{ F \in \otimes^r T_p M : \\
\text{Hol}_p(M, \nabla) \cdot F = F \}
\end{aligned}
\]

\[
\{ \varphi \in \Gamma(\otimes^r_s T M) : \\
\nabla \varphi = 0 \}
\]

\[F \mapsto \varphi := \mathcal{P}_\gamma(F) \]

independent of \(\gamma \) with \(\gamma(0) = p \)

- \(\text{Hol}_p(M, \nabla) \subset \text{Sl}(n, \mathbb{R}) \iff \omega \in \Omega^n M : \nabla \omega = 0 \).
- \(\text{Hol}_p(M^{2k}, \nabla) \subset \text{Gl}(k, \mathbb{C}) \iff J \in \text{End}(TM) \) with \(J^2 = -\text{id} : \nabla J = 0 \).
Holonomy and geometric structure I

\[\otimes^r T_p M \otimes \otimes^s T^*_p M \]

\[\text{//} \]

\[\begin{cases} F \in \otimes^r T_p M : & \\text{Hol}_p(M, \nabla) \cdot F = F \\ \text{Hol}_p(M, \nabla) \cdot F = F \end{cases} \]

\[\cong \]

\[\begin{cases} \varphi \in \Gamma(\otimes^s T M) : & \nabla \varphi = 0 \\ \nabla \varphi = 0 \end{cases} \]

\[F \mapsto \varphi := P_\gamma(F) \]

Independent of \(\gamma \) with \(\gamma(0) = p \)

- \(\text{Hol}_p(M, \nabla) \subset \text{Sl}(n, \mathbb{R}) \Leftrightarrow \omega \in \Omega^n M : \nabla \omega = 0. \)
- \(\text{Hol}_p(M^{2k}, \nabla) \subset \text{Gl}(k, \mathbb{C}) \Leftrightarrow J \in \text{End}(TM) \text{ with } J^2 = -\text{id} : \nabla J = 0. \)
- \(\text{Hol}_p(M, \nabla) \subset \text{O}(p, q) \Leftrightarrow \text{metric } g \in \Gamma(\otimes^2 TM) : \nabla g = 0. \)
Holonomy and geometric structure

\[\otimes^r T_p M \otimes \otimes^s T^*_p M \]

\[\{ F \in \otimes^r_s T_p M \mid Hol_p(M, \nabla) \cdot F = F \} \cong \{ \varphi \in \Gamma(\otimes^r_s TM) \mid \nabla \varphi = 0 \} \]

\[F \mapsto \varphi := P_\gamma(F) \]

independent of \(\gamma \) with \(\gamma(0) = p \)

- \(Hol_p(M, \nabla) \subset Sl(n, \mathbb{R}) \iff \omega \in \Omega^n M : \nabla \omega = 0. \)
- \(Hol_p(M^{2k}, \nabla) \subset Gl(k, \mathbb{C}) \iff J \in \text{End}(TM) \text{ with } J^2 = -id : \nabla J = 0. \)
- \(Hol_p(M, \nabla) \subset O(p, q) \iff \text{metric } g \in \Gamma(\otimes^2 TM) : \nabla g = 0. \)

Assume also \(T^\nabla = 0 \), then \(\nabla = \nabla^g \) Levi-Civita connection and set

\[Hol_p(M, g) := Hol_p(M, \nabla^g) \]
Geometric structure II

\[
\left\{ V \subset T_pM : \right. \\
\left. Hol_p(M, \nabla) \cdot V \subset V \right\}
\]
Geometric structure II

\[\left\{ V \subset T_pM : Hol_p(M, \nabla) \cdot V \subset V \right\} \cong \left\{ \text{distribution } \mathcal{V} \subset TM \right\} \]

\[\mathcal{V} \mapsto \mathcal{V} := \mathcal{P}_\gamma(\mathcal{V}) \]
Geometric structure II

\[
\left\{ V \subset T_pM : \begin{array}{c} \text{hol} \times \text{V} \subset V \\ \text{Hol}_p(M, \nabla) \times \text{V} \subset V \end{array} \right\} \cong \left\{ \text{distribution} \ V \subset TM \right\} \\
V \mapsto V \mapsto V := \mathcal{P}_\gamma(V)
\]

\[\mathcal{P}_\gamma(V) \subset V \iff \nabla_X : V \to V, \text{ in particular } V \text{ is integrable.}\]
Geometric structure II

\[
\left\{ \begin{array}{l}
V \subset T_p M : \\
Hol_p(M, \nabla) \cdot V \subset V
\end{array} \right\} \cong \left\{ \begin{array}{l}
distribution V \subset TM \\
\mathcal{P}_\gamma(V) \subset V
\end{array} \right\}
\]

\[
V \mapsto V := \mathcal{P}_\gamma(V)
\]

\(\mathcal{P}_\gamma(V) \subset V \iff \nabla_X : V \to V,\) in particular \(V\) is integrable.

\(\leadsto\) Decomposition of a semi-Riemannian manifold \((M, g)\):

If \(V \subset T_p M\) hol-invariant, non-degenerate,
i.e. \(T_p M = V \oplus V^\perp\) hol-invariant, then

\[
(M, g) \overset{locally}{\cong} (N, h) \times (N^\perp, h^\perp)
\]

with \(V^{(\perp)} \cong T_p N^{(\perp)}\) as \(Hol_p(M, g)\)-module.
De Rham/Wu decomposition

Complete decomposition of T_pM into $Hol_p(M, g)$–modules:

$$T_pM = \bigoplus_{i=0}^{k} V_k,$$

with V_0 trivial and V_i indecomposable for $i > 0$
De Rham/Wu decomposition

Complete decomposition of $T_p M$ into $Hol_p(M, g)$–modules:

$$T_p M = \bigoplus_{i=0}^k V_k, \text{ with } V_0 \text{ trivial and } V_i \text{ indecomposable for } i > 0$$

non-degenerate and only degenerate invariant subspaces
De Rham/Wu decomposition

Complete decomposition of $T_p M$ into $Hol_p(M, g)$–modules:

$$T_p M = \bigoplus_{i=0}^{k} V_k,$$

with V_0 trivial and V_i indecomposable for $i > 0$ non-degenerate and only degenerate invariant subspaces

Then

$$(M, g) \cong (M_1, g_1) \times \ldots \times (M_k, g_k)$$
De Rham/Wu decomposition

Complete decomposition of $T_p M$ into $Hol_p(M, g)$–modules:

$$T_p M = \bigoplus_{i=0}^{k} V_k,$$

with V_0 trivial and V_i \underline{indecomposable} for $i > 0$

non-degenerate and only degenerate invariant subspaces

Theorem (de Rham ’52, Wu ’64)

Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a $k > 0$: $(M, g) \overset{\text{globally}}{\cong} (M_1, g_1) \times \ldots \times (M_k, g_k)$
De Rham/Wu decomposition

Complete decomposition of T_pM into $Hol_p(M, g)$–modules:

$$T_pM = \bigoplus_{i=0}^{k} V_k,$$
with V_0 trivial and V_i indecomposable for $i > 0$

non-degenerate and only degenerate invariant subspaces

Theorem (de Rham ’52, Wu ’64)

Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a $k > 0$: $(M, g) \cong (M_1, g_1) \times \ldots \times (M_k, g_k)$ with

- (M_i, g_i) complete and 1-connected,
De Rham/Wu decomposition

Complete decomposition of T_pM into $\text{Hol}_p(M, g)$–modules:

$$T_pM = \bigoplus_{i=0}^{k} V_k,$$

with V_0 trivial and V_i indecomposable for $i > 0$

non-degenerate and only degenerate invariant subspaces

Theorem (de Rham ’52, Wu ’64)

Let (M, g) be semi-Riemannian, complete and 1-connected.

Then there is a $k > 0$: $(M, g) \overset{\text{globally}}{\simeq} (M_1, g_1) \times \ldots \times (M_k, g_k)$ with

- (M_i, g_i) complete and 1-connected,
- (M_i, g_i) flat or with indecomposable holonomy representation,
De Rham/Wu decomposition

Complete decomposition of T_pM into $\text{Hol}_p(M, g)$–modules:

$$T_pM = \bigoplus_{i=0}^{k} V_i,$$

with V_0 trivial and V_i indecomposable for $i > 0$

non-degenerate and only degenerate invariant subspaces

Theorem (de Rham '52, Wu '64)

Let (M, g) be semi-Riemannian, complete and 1-connected. Then there is a $k > 0$: $(M, g) \overset{\text{globally}}{\simeq} (M_1, g_1) \times \ldots \times (M_k, g_k)$ with

- (M_i, g_i) complete and 1-connected,
- (M_i, g_i) flat or with indecomposable holonomy representation,
- $\text{Hol}_p(M, g) \simeq \text{Hol}_{p_1}(M_1, g_1) \times \ldots \times \text{Hol}_{p_k}(M_k, g_k)$.
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable = irreducible
\(\implies\) \(\text{Hol}_p(M, g) \simeq\) product of irreducible holonomy groups.
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable = irreducible
\(\implies\) \(\text{Hol}_p(M, g) \cong\) product of irreducible holonomy groups.

Berger’s list (’55)

Let \((M, g)\) be 1-connected, irreducible, non locally symmetric. Then

\[
\text{Hol}_p(M, g) \cong \begin{array}{c}
\text{SO}(n) \\
\text{U}(\frac{n}{2}) \\
\text{SU}(\frac{n}{2}) \\
\text{Sp}(\frac{n}{4}) \\
\text{Sp}(1) \cdot \text{Sp}(\frac{n}{4}) \\
G_2 \\
\text{Spin}(7)
\end{array}
\]
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable \(=\) irreducible
\(\implies\) \(\text{Hol}_p(M, g) \simeq\) product of irreducible holonomy groups.

Berger’s list (‘55)
Let \((M, g)\) be 1-connected, irreducible, non locally symmetric. Then
\[\text{Hol}_p(M, g) \overset{O(n)}{\sim}\]

<table>
<thead>
<tr>
<th>(SO(n))</th>
<th>(U(n/2))</th>
<th>(SU(n/2))</th>
<th>(Sp(n/4))</th>
<th>(Sp(1) \cdot Sp(n/4))</th>
<th>(G_2)</th>
<th>(Spin(7))</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic</td>
<td>Kähler</td>
<td>hyper Kähler</td>
<td>quat. Kähler</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable = irreducible
\(\implies\) \(\text{Hol}_p(M, g) \simeq\) product of irreducible holonomy groups.

Berger’s list (’55)

Let \((M, g)\) be 1-connected, irreducible, non locally symmetric. Then
\[
\text{Hol}_p(M, g) \overset{O(n)}{\sim}
\]

<table>
<thead>
<tr>
<th></th>
<th>(SO(n))</th>
<th>(U(n/2))</th>
<th>(SU(n/2))</th>
<th>(Sp(n/4))</th>
<th>(Sp(1) \cdot Sp(n/4))</th>
<th>(G_2)</th>
<th>(Spin(7))</th>
</tr>
</thead>
<tbody>
<tr>
<td>par. field</td>
<td>generic</td>
<td>Kähler</td>
<td>hyper Kähler</td>
<td>quat. Kähler</td>
<td>(\langle J_1, J_2, J_3 \rangle)</td>
<td>(\omega^3)</td>
<td>(\omega^4)</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>(J)</td>
<td>(J_1, J_2, J_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thomas Leistner (HU Berlin) Holonomy groups of Lorentzian manifolds Santiago de Compostela 10 / 30
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable = irreducible
\(\implies\) \(\text{Hol}_p(M, g) \simeq\) product of irreducible holonomy groups.

Berger’s list (’55)
Let \((M, g)\) be 1-connected, irreducible, non locally symmetric. Then
\(\text{Hol}_p(M, g) \overset{O(n)}{\sim}\)

\[
\begin{array}{c|c|c|c|c|c|c}
 & SO(n) & U\left(\frac{n}{2}\right) & SU\left(\frac{n}{2}\right) & Sp\left(\frac{n}{4}\right) & Sp(1) \cdot Sp\left(\frac{n}{4}\right) & G_2 & \text{Spin}(7) \\
generic & \text{Kähler} & \text{hyper Kähler} & \text{quat. Kähler} & & & & \\
par. field & --- & J & J_1, J_2, J_3 & \langle J_1, J_2, J_3 \rangle & \omega^3 & \omega^4 \\
Ric & --- & \neq 0 & 0 & 0 & c \cdot g & 0 & 0 \\
\end{array}
\]
Holonomy of Riemannian manifolds \((M, g)\)

Positive definite metric \(\implies\) indecomposable = irreducible
\(\implies\) \(\text{Hol}_p(M, g) \cong\) product of irreducible holonomy groups.

Berger’s list (’55)

Let \((M, g)\) be 1-connected, irreducible, non locally symmetric. Then
\[\text{Hol}_p(M, g) \overset{O(n)}{\sim}\]

<table>
<thead>
<tr>
<th></th>
<th>(SO(n))</th>
<th>(U(n/2))</th>
<th>(SU(n/2))</th>
<th>(Sp(n/4))</th>
<th>(Sp(1) \cdot Sp(n/4))</th>
<th>(G_2)</th>
<th>(Spin(7))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>generic</td>
<td>Kähler</td>
<td>hyper Kähler</td>
<td>quat. Kähler</td>
<td></td>
<td>(\omega^3)</td>
<td>(\omega^4)</td>
</tr>
<tr>
<td>par. field</td>
<td>—</td>
<td>(J)</td>
<td>(J_1, J_2, J_3)</td>
<td>(\langle J_1, J_2, J_3 \rangle)</td>
<td>(c \cdot g)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ric</td>
<td>—</td>
<td>(\neq 0)</td>
<td>0</td>
<td>0</td>
<td></td>
<td>(c \cdot g)</td>
<td>0</td>
</tr>
<tr>
<td>(\dim {\nabla \varphi = 0})</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(q+1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\uparrow) par. spinor</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(q+1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M, \overline{g}}) \times (N_1, g_1) \times \ldots \times (N_k, g_k)
\]

which is either

1. Riemannian, irreducible or flat

2. Lorentzian manifold which is either

 - irreducible, i.e. \(\text{Hol}_p(M, g) = \text{SO}_0(1, n)\)

 - indecomposable, non-irreducible

 Classify holonomy for these!
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M}, \overline{g}) \times (N_1, g_1) \times \ldots \times (N_k, g_k)
\]

Riemannian, irreducible or flat

\[\text{Hol}(M, g) = \text{SO}_0(1, n)\] \[\text{[Olmos/Di Scala '00]}\]
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M}, \overline{g}) \times (N_1, g_1) \times \ldots \times (N_k, g_k)
\]

\[
\uparrow
\]

Riemannian, irreducible or flat

Lorentzian manifold
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M}, \overline{g}) \times \left((N_1, g_1) \times \ldots \times (N_k, g_k) \right)
\]

\[
\uparrow \\
\text{Riemannian, irreducible or flat}
\]

Lorentzian manifold which is either

1. \((\mathbb{R}, -dt^2)\), or
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M}, \overline{g}) \times (N_1, g_1) \times \ldots \times (N_k, g_k)
\]

Riemannian, irreducible or flat

Lorentzian manifold which is either

1. \((\mathbb{R}, -dt^2)\), or
2. irreducible, i.e. \(\text{Hol}_p(\overline{M}, \overline{g}) = SO_0(1, n)\)

[Olmos/Di Scala ’00], or
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \cong (\overline{M}, \overline{g}) \times (N_1, g_1) \times \ldots \times (N_k, g_k) \\
\uparrow \\
\text{Riemannian, irreducible or flat}
\]

Lorentzian manifold which is either

1. \((\mathbb{R}, -dt^2)\), or
2. irreducible, i.e. \(\text{Hol}_p(\overline{M}, \overline{g}) = SO_0(1, n)\) \([\text{Olmos/Di Scala '00}]\), or
3. indecomposable, non-irreducible
Wu–Decomposition for a Lorentz manifold \((M, g)\)

Let \((M, g)\) be a complete, 1-connected Lorentzian manifold.

\[
(M, g) \simeq (\overline{M}, \overline{g}) \times (N_1, g_1) \times \ldots \times (N_k, g_k)
\]

\[\uparrow\]

Riemannian, irreducible or flat

Lorentzian manifold which is either

1. \((\mathbb{R}, -dt^2)\), or
2. irreducible, i.e. \(\text{Hol}_p(\overline{M}, \overline{g}) = SO_0(1, n)\) [Olmos/Di Scala ’00], or
3. indecomposable, non-irreducible

\[\uparrow\]

Classify holonomy for these!
We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2} : H \cdot V \subset V$ such that
Algebraic preliminaries

We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2} : H \cdot V \subset V$ such that

$V \cap V^\perp \neq \{0\}$
We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2} : H \cdot V \subset V$ such that $V \cap V^\perp \neq \{0\}$ is H-invariant, totally light-like,
Algebraic preliminaries

We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2}: H \cdot V \subset V$ such that

$L := V \cap V^\perp \neq \{0\}$ is H-invariant, totally light-like, $L = \mathbb{R} \cdot X$.
Algebraic preliminaries

We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2} : H \cdot V \subset V$ such that $L := V \cap V^\perp \neq \{0\}$ is H-invariant, totally light-like, $L = \mathbb{R} \cdot X$.

$\Rightarrow H \subset SO_0(1, n + 1)_L = (\mathbb{R}^+ \times SO(n)) \ltimes \mathbb{R}^n$
Algebraic preliminaries

We have to consider $H \subset SO_0(1, n + 1)$ indecomposable, non-irreducible, i.e. $\exists V \subset \mathbb{R}^{n+2} : H \cdot V \subset V$ such that $L := V \cap V^\perp \neq \{0\}$ is H-invariant, totally light-like, $L = \mathbb{R} \cdot X$.

\[\Rightarrow H \subset SO_0(1, n + 1)_L = (\mathbb{R}^+ \times SO(n)) \rtimes \mathbb{R}^n \]

i.e. $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L = \left\{ \begin{pmatrix} a & v^t & 0 \\ 0 & A & -v \\ 0 & 0^t & -a \end{pmatrix} \middle| \begin{array}{l} a \in \mathbb{R}, \\ v \in \mathbb{R}^n, \\ A \in \mathfrak{so}(n) \end{array} \right\} $
Algebraic preliminaries

We have to consider \(H \subset SO_0(1, n + 1) \) indecomposable, non-irreducible, i.e. \(\exists \ V \subset \mathbb{R}^{n+2} : H \cdot V \subset V \) such that
\(L := V \cap V^\perp \neq \{0\} \) is \(H \)-invariant, totally light-like, \(L = \mathbb{R} \cdot X \).

\[\Rightarrow \quad H \subset SO_0(1, n + 1)_L = (\mathbb{R}^+ \times SO(n)) \ltimes \mathbb{R}^n \]

i.e. \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L = \begin{cases} \begin{pmatrix} a & v^t & 0 \\ 0 & A & -v \\ 0 & 0^t & -a \end{pmatrix} & a \in \mathbb{R}, \\ v \in \mathbb{R}^n, \\ A \in \mathfrak{so}(n) \end{cases} \)

The orthogonal part is reductive:

\[\mathfrak{g} := \text{pr}_{\mathfrak{so}(n)} \mathfrak{h} = \begin{cases} \mathfrak{z} \oplus \mathfrak{g}' & (\text{Levi – decomposition}) \\ \text{centre} \end{cases} = [\mathfrak{g}, \mathfrak{g}] \text{ semisimple} \]
Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

- **Type I:** $\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \rtimes \mathbb{R}^n$.
- **Type II:** $\mathfrak{h} = \mathfrak{g} \rtimes \mathbb{R}^n$.
- **Type III:** $\exists \phi: \mathfrak{z} \twoheadrightarrow \mathbb{R}: \mathfrak{h} = \begin{cases} \begin{bmatrix} \phi(A) & v t_0 & 0 \\ 0 & 0 & 0 \\ 0 & v 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\phi(A) & 0 \\ A + B - v & 0 & 0 \end{bmatrix} & | \begin{bmatrix} A \in \mathfrak{z} \\ B \in \mathfrak{g}' \\ v \in \mathbb{R}^n \end{bmatrix} \end{cases}$
- **Type IV:** $\exists \phi: \mathfrak{z} \twoheadrightarrow \mathbb{R}^k$, for $0 < k < n$:
 $\mathfrak{h} = \begin{cases} \begin{bmatrix} 0 \psi(A) & vt & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & A + B - v & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & = \psi(A) & 0 \\ 0 & v 0 & 0 \end{bmatrix} & | \begin{bmatrix} A \in \mathfrak{z} \\ B \in \mathfrak{g}' \\ v \in \mathbb{R}^n \end{bmatrix} \end{cases}$
Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

$\mathbb{R}^n \subset \mathfrak{h}$ –

$\mathbb{R}^n \not\subset \mathfrak{h}$ –
Classification I: \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L \) indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \(\mathfrak{h} \) there are the following cases:

\(\mathbb{R}^n \subset \mathfrak{h} \) – **Type I:** \(\mathfrak{h} = (\mathbb{R} \oplus g) \ltimes \mathbb{R}^n. \)

\(\mathbb{R}^n \not\subset \mathfrak{h} \) –
Lorentzian holonomy

Classification

Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

$\mathbb{R}^n \subset \mathfrak{h} -$

Type I: \[\mathfrak{h} = (\mathbb{R} \oplus g) \ltimes \mathbb{R}^n. \]

Type II: \[\mathfrak{h} = g \ltimes \mathbb{R}^n. \]

$\mathbb{R}^n \not\subset \mathfrak{h} -$
Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

$\mathbb{R}^n \subset \mathfrak{h}$ —

Type I: $\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \ltimes \mathbb{R}^n$.

Type II: $\mathfrak{h} = \mathfrak{g} \ltimes \mathbb{R}^n$.

Type III: $\exists \varphi : \mathfrak{z} \to \mathbb{R}$.

$\mathbb{R}^n \not\subset \mathfrak{h}$ —
Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

$\mathbb{R}^n \subset \mathfrak{h}$ —

- **Type I:** $\mathfrak{h} = (\mathbb{R} \oplus g) \rtimes \mathbb{R}^n$.
- **Type II:** $\mathfrak{h} = g \rtimes \mathbb{R}^n$.

- **Type III:** $\exists \varphi: \mathbb{Z} \rightarrow \mathbb{R}$

 $h = \left\{ \begin{pmatrix} \varphi(A) & v^t & 0 \\ 0 & A + B & -v \\ 0 & 0 & -\varphi(A) \end{pmatrix} \mid A \in z, B \in g', v \in \mathbb{R}^n \right\}$

$\mathbb{R}^n \not\subset \mathfrak{h}$ —
Classification I: \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L \) indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \(\mathfrak{h} \) there are the following cases:

- **Type I:** \(\mathbb{R}^n \subset \mathfrak{h} \)

 \(\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \rtimes \mathbb{R}^n \).

- **Type II:** \(\mathfrak{h} = \mathfrak{g} \rtimes \mathbb{R}^n \).

- **Type III:** \(\exists \phi : \mathfrak{z} \rightarrow \mathbb{R} \): \(\mathfrak{h} = \left\{ \begin{pmatrix} \varphi(A) & v^t & 0 \\ 0 & A + B & -v \\ 0 & 0 & -\varphi(A) \end{pmatrix} \left| \begin{array}{c} A \in \mathfrak{z} \\ B \in \mathfrak{g}' \\ v \in \mathbb{R}^n \end{array} \right. \right\} \)

- **Type IV:** \(\mathbb{R}^n \not\subset \mathfrak{h} \)

 \(\exists \phi : \mathfrak{z} \rightarrow \mathbb{R}^k \), for \(0 < k < n \):
Classification I: \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L \) indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \(\mathfrak{h} \) there are the following cases:

- **Type I:** \(\mathbb{R}^n \subset \mathfrak{h} \)
 \[\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \rtimes \mathbb{R}^n. \]

- **Type II:** \(\mathfrak{h} = \mathfrak{g} \rtimes \mathbb{R}^n. \)

- **Type III:** \(\exists \varphi : \mathbb{R} \rightarrow \mathbb{R} : \mathfrak{h} = \begin{cases} \begin{pmatrix} \varphi(A) & 0 & 0 \\ 0 & A + B & -\varphi(A) \\ 0 & 0 & -\varphi(A) \end{pmatrix} & A \in \mathfrak{z} \\ B \in \mathfrak{g}' \end{cases} \quad \varphi \in \mathbb{R} \)

- **Type IV:** \(\mathbb{R}^n \not\subset \mathfrak{h} \)
 \(\exists \varphi : \mathbb{R} \rightarrow \mathbb{R}^k \), for \(0 < k < n \):
 \[\mathfrak{h} = \begin{cases} \begin{pmatrix} 0 & \psi(A)^t & 0 \\ 0 & 0 & 0 \\ 0 & 0 & A + B \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & A \in \mathfrak{z} \\ B \in \mathfrak{g}' \end{cases} \quad \psi(A) \end{cases} \quad \varphi \in \mathbb{R} \]

Note: Groups of uncoupled type III and IV can be non-closed, first examples in Berard-Bergery/Ikemakhen '96.
Classification I: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (Berard-Bergery/Ikemakhen '96)

For \mathfrak{h} there are the following cases:

\[\mathbb{R}^n \subset \mathfrak{h} \]

- **Type I:** $\mathfrak{h} = (\mathbb{R} \oplus \mathfrak{g}) \ltimes \mathbb{R}^n$.

- **Type II:** $\mathfrak{h} = \mathfrak{g} \ltimes \mathbb{R}^n$.

- **Type III:** $\exists \varphi : \mathfrak{z} \mapsto \mathbb{R}$: $\mathfrak{h} = \left\{ \begin{pmatrix} \varphi(A) & v^t & 0 \\ 0 & A + B & -v \\ 0 & 0 & -\varphi(A) \end{pmatrix} \mid A \in \mathfrak{z}, B \in \mathfrak{g}', v \in \mathbb{R}^n \right\}$

\[\mathbb{R}^n \not\subset \mathfrak{h} \]

- **Type IV:** $\exists \varphi : \mathfrak{z} \mapsto \mathbb{R}^k$, for $0 < k < n$:

\[\mathfrak{h} = \left\{ \begin{pmatrix} 0 & \psi(A)^t & v^t & 0 \\ 0 & 0 & 0 & -\psi(A) \\ 0 & 0 & A + B & -v \\ 0 & 0 & 0 & 0 \end{pmatrix} \mid A \in \mathfrak{z}, B \in \mathfrak{g}', v \in \mathbb{R}^{n-k} \right\} \]

Note: Groups of uncoupled type III and IV can be non-closed, first examples in Berard-Bergery/Ikemakhen '96
Classification II: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable
Classification II: \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L \) indecomposable

Theorem (— ’03)

If \(\mathfrak{h} \) is a Berger algebra (e.g. a Lorentzian holonomy algebra), then
\(g := \text{proj}_{\mathfrak{so}(n)} \mathfrak{h} \) is a Riemannian holonomy algebra.
Classification II: $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ indecomposable

Theorem (— ’03)

If \mathfrak{h} is a Berger algebra (e.g. a Lorentzian holonomy algebra), then

$$\mathfrak{g} := \text{proj}_{\mathfrak{so}(n)} \mathfrak{h}$$

is a Riemannian holonomy algebra.

Theorem (B-B/I ’96, Boubel ’00, — ’03, Galaev ’05)

If $\mathfrak{g} := \text{proj}_{\mathfrak{so}(n)} \mathfrak{h}$ is a Riemannian holonomy algebra, then there is a Lorentzian metric h with $\text{hol}_p(h) = \mathfrak{h}$.
Proof of the first Theorem — problem

Let $\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L$ be a Berger algebra, $\mathfrak{g} := \text{proj}_{\mathfrak{so}(n)}(\mathfrak{h})$.

Problem: \mathfrak{g} has “nice” algebraic properties (reductive, acts completely reducible) but is no Berger algebra, apriori.
Proof of the first Theorem — problem

Let $\mathfrak{h} \subset \mathfrak{s}\mathfrak{o}(1, n + 1)_L$ be a Berger algebra, $\mathfrak{g} := \text{proj}_{\mathfrak{s}\mathfrak{o}(n)}(\mathfrak{h})$.

- **Problem:** \mathfrak{g} has “nice” algebraic properties (reductive, acts completely reducible) but is no Berger algebra, *apriori*.

- **Idea:** Find algebraic restrictions on \mathfrak{g} based on Bianchi identity, replacing the Berger condition.
Proof of the first Theorem — problem

Let \(\mathfrak{h} \subset \mathfrak{so}(1, n + 1)_L \) be a Berger algebra, \(\mathfrak{g} := \text{proj}_{\mathfrak{so}(n)}(\mathfrak{h}) \).

- **Problem:** \(\mathfrak{g} \) has “nice” algebraic properties (reductive, acts completely reducible) but is no Berger algebra, *apriori*.

- **Idea:** Find algebraic restrictions on \(\mathfrak{g} \) based on Bianchi identity, replacing the Berger condition.

Let \(L = \mathbb{R} \cdot X \) be the invariant line, \(Z \in T_p M \) transversal to \(X^\perp \). Then

\[
T_p M = X^\perp \oplus \mathbb{R} \cdot Z = \mathbb{R} \cdot X \oplus X^\perp \cap Z^\perp \oplus \mathbb{R} \cdot Z, \]

\(E \) is non degenerate and \(\mathfrak{g} \subset \mathfrak{so}(E, g_p) = \mathfrak{so}(n) \) is reductive and completely reducible, and generated by two types of curvature endomorphisms

\[
R|_E \in \mathcal{K}(\mathfrak{g}) \quad \text{but also} \quad R(Z, .)|_E \in \text{Hom}(E, \mathfrak{g}) \quad \text{for} \ R \in \mathcal{K}(\mathfrak{h})
\]

\(\checkmark \quad \sim \) weak Berger algebras
For \(g \subset \mathfrak{so}(n) \) define weak curvature endomorphisms:

\[
\mathcal{B}(g) := \left\{ Q \in \text{Hom}(\mathbb{R}^n, g) \mid \langle Q(x)y, z \rangle + \langle Q(y)z, x \rangle + \langle Q(z)x, y \rangle = 0 \right\}.
\]
Proof of the first Theorem — weak Berger algebras

For \(g \subset \mathfrak{so}(n) \) define weak curvature endomorphisms:

\[
\mathcal{B}(g) := \left\{ Q \in \text{Hom}(\mathbb{R}^n, g) \mid \langle Q(x)y, z \rangle + \langle Q(y)z, x \rangle + \langle Q(z)x, y \rangle = 0 \right\}.
\]

\(g \) is a weak Berger algebra \(\iff g = \left\langle Q(x) \mid Q \in \mathcal{B}(g), x \in \mathbb{R}^n \right\rangle \)
Proof of the first Theorem — weak Berger algebras I

For $g \subset \mathfrak{so}(n)$ define weak curvature endomorphisms:

$$
\mathcal{B}(g) := \left\{ Q \in \text{Hom}(\mathbb{R}^n, g) \big| \langle Q(x)y, z \rangle + \langle Q(y)z, x \rangle + \langle Q(z)x, y \rangle = 0 \right\}.
$$

g is a weak Berger algebra \iff $g = \langle Q(x) | Q \in \mathcal{B}(g), x \in \mathbb{R}^n \rangle$

Note: Berger \implies weak Berger.
Proof of the first Theorem — weak Berger algebras I

For $g \subset \mathfrak{so}(n)$ define weak curvature endomorphisms:

$$\mathcal{B}(g) := \left\{ Q \in \text{Hom}(\mathbb{R}^n, g) \mid \langle Q(x)y, z \rangle + \langle Q(y)z, x \rangle + \langle Q(z)x, y \rangle = 0 \right\}.$$

g is a weak Berger algebra $\iff g = \langle Q(x) \mid Q \in \mathcal{B}(g), x \in \mathbb{R}^n \rangle$

Note: Berger \implies weak Berger.

Theorem (— ’02)

If $\mathfrak{h} \subset \mathfrak{so}(n)(1, n + 1)_L$ is an indecomposable Berger algebra, then $g := \text{proj}_{\mathfrak{so}(n)}(\mathfrak{h})$ is a weak-Berger algebra.
Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let $g \subset \mathfrak{so}(n)$ be a (weak) Berger algebra, and \mathbb{R}^n decomposed as follows:

$$\mathbb{R}^n = E_0 \oplus E_1 \oplus \ldots \oplus E_k, \quad E_0 \text{ trivial, } E_i \text{ irreducible.}$$

Then $g = g_1 \oplus \ldots \oplus g_k$, g_i ideals, such that g_i acts irreducibly on E_i and trivial on E_j, and is a (weak) Berger algebra.
Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let $\mathfrak{g} \subset \mathfrak{so}(n)$ be a (weak) Berger algebra, and \mathbb{R}^n decomposed as follows:

$$\mathbb{R}^n = E_0 \oplus E_1 \oplus \ldots \oplus E_k, \quad E_0 \text{ trivial, } E_i \text{ irreducible}.$$

Then $\mathfrak{g} = \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_k$, \mathfrak{g}_i ideals, such that \mathfrak{g}_i acts irreducibly on E_i and trivial on E_j, and is a (weak) Berger algebra.

\implies in order to classify $\mathfrak{g} = \text{pr}_{\mathfrak{so}(n)}^\mathfrak{hol}(M, h)$ we need to classify irreducible weak Berger algebras.
Let $g \subset \mathfrak{so}(n)$ be a (weak) Berger algebra, and \mathbb{R}^n decomposed as follows:

$$\mathbb{R}^n = E_0 \oplus E_1 \oplus \ldots \oplus E_k,$$

where E_0 is trivial, and E_i are irreducible.

Then $g = g_1 \oplus \ldots \oplus g_k$, where g_i are ideals, such that g_i acts irreducibly on E_i and trivial on E_j, and is a (weak) Berger algebra.

\[
\implies \quad \text{in order to classify } g = \text{pr}_{\mathfrak{so}(n)} \mathfrak{hol}(M, h) \text{ we need to classify irreducible weak Berger algebras.}
\]

Method: Representation theory for (complex) semisimple Lie algebras.
Weak Berger algebras II

Decomposition Property for (weak) Berger algebras

Let $g \subset \mathfrak{so}(n)$ be a (weak) Berger algebra, and \mathbb{R}^n decomposed as follows:

$$\mathbb{R}^n = E_0 \oplus E_1 \oplus \ldots \oplus E_k, \quad E_0 \text{ trivial, } E_i \text{ irreducible.}$$

Then

$$g = g_1 \oplus \ldots \oplus g_k, \quad g_i \text{ ideals, such that }$$

g_i acts irreducibly on E_i and trivial on E_j, and is a (weak) Berger algebra.

Corollary

Lorentzian holonomy groups of uncoupled type I and II are closed.

\implies in order to classify $g = \text{pr}_{\mathfrak{so}(n)} \mathfrak{hol}(M, h)$ we need to classify irreducible weak Berger algebras.

Method: Representation theory for (complex) semisimple Lie algebras.
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.

\[\implies \exists\ \text{causal vector field } X_\varphi \in \Gamma(TM) : \nabla X_\varphi = 0.\]
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.

\[\implies \exists \text{ causal vector field } X_\varphi \in \Gamma(TM): \nabla X_\varphi = 0.\] Two cases:

- \(g(X_\varphi, X_\varphi) < 0\) : \((M, g) = (\mathbb{R}, -dt^2)\) Riemannian mf.
- \(g(X_\varphi, X_\varphi) = 0\) : \((M, g) = (\overline{M}, \overline{g})\) with parallel spinor indecomposable with parallel spinor
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.

\(\implies\) \(\exists\) causal vector field \(X_\varphi \in \Gamma(TM) : \nabla X_\varphi = 0\). Two cases:

\[
\begin{align*}
g(X_\varphi, X_\varphi) &< 0 & : & (M, g) & = & (\mathbb{R}, -dt^2) & \text{Riemannian mf.} \\
g(X_\varphi, X_\varphi) &= 0 & : & (M, g) & = & (\overline{M}, \overline{g}) & \uparrow \text{indecomposable with parallel spinor}
\end{align*}
\]

Theorem (\(\,\!-\,\!03\))

\((M^{n+2}, g)\) indecomposable Lorentzian spin with parallel spinor. Then \(\text{Hol}_p(M, g) = G \ltimes \mathbb{R}^n\) where \(G\) is a product of the following groups:

\[
\{1\}, \quad SU(p), \quad Sp(q), \quad G_2, \quad \text{Spin}(7)
\]
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.

\[\Rightarrow \exists \text{ causal vector field } X_\varphi \in \Gamma(TM) : \nabla X_\varphi = 0. \]

Two cases:

\[g(X_\varphi, X_\varphi) < 0 : (M, g) = (\mathbb{R}, -dt^2) \]

\[g(X_\varphi, X_\varphi) = 0 : (M, g) = (\bar{M}, \bar{g}) \]

\[\text{indecomposable with parallel spinor} \]

Theorem (— ’03)

\((M^{n+2}, g)\) indecomposable Lorentzian spin with parallel spinor. Then \(\text{Hol}_p(M, g) = G \ltimes \mathbb{R}^n\) where \(G\) is a product of the following groups:

\[\{1\}, \quad SU(p), \quad Sp(q), \quad G_2, \quad Spin(7) \]

\[\text{dim}\{\nabla \varphi = 0\} : \quad 2^{[k/2]} \quad 2 \quad q + 1 \quad 1 \quad 1 \]
Parallel spinors on a Lorentzian spin manifold \((M, g)\)

Let \((\Sigma, \nabla^\Sigma)\) be the spinor bundle over \((M, g)\).

Assume: \(\exists \varphi \in \Gamma(\Sigma)\) with \(\nabla^\Sigma \varphi = 0\) a parallel spinor field.

\[\implies \exists \text{ causal vector field } X_\varphi \in \Gamma(TM): \nabla X_\varphi = 0.\]

Two cases:

1. \(g(X_\varphi, X_\varphi) < 0\) : \((M, g) = (\mathbb{R}, -dt^2)\) \(\times\) Riemannian mf.
2. \(g(X_\varphi, X_\varphi) = 0\) : \((M, g) = (\overline{M}, \overline{g})\) \(\uparrow\) indecomposable with parallel spinor

Theorem (— ’03)

\((M^{n+2}, g)\) indecomposable Lorentzian spin with parallel spinor. Then \(\text{Hol}_p(M, g) = G \times \mathbb{R}^n\) where \(G\) is a product of the following groups:

\[\{1\}, \quad \text{SU}(p), \quad \text{Sp}(q), \quad G_2, \quad \text{Spin}(7)\]

\[\text{dim}\{\nabla \varphi = 0\} : \quad 2^{[k/2]} \quad 2 \quad q + 1 \quad 1 \quad 1\]

This generalizes the result for \(n \leq 9\) in [Bryant ’99].
Lorentzian Einstein manifolds

Theorem (Galaev—’06)

The holonomy of an indecomposable non-irreducible Lorentzian Einstein manifold is uncoupled, i.e.

\[\text{Hol}^0_p(M, g) = \begin{cases} (\mathbb{R}^+ \times G) \rtimes \mathbb{R}^n, & \text{or} \\ G \rtimes \mathbb{R}^n \end{cases} \]

with a Riemannian holonomy group G. In the 2nd case the manifold is Ricci flat.
Lorentzian Einstein manifolds

Theorem (Galaev/— ’06)

The holonomy of an indecomposable non-irreducible Lorentzian Einstein manifold is uncoupled, i.e.

$$\text{Hol}^0_p(M, g) = \begin{cases} (\mathbb{R}^+ \times G) \rtimes \mathbb{R}^n, & \text{or} \\
G \rtimes \mathbb{R}^n \end{cases}$$

with a Riemannian holonomy group G. In the 2nd case the manifold is Ricci flat.

In the second case G is a product of $\{1\}, SU(p), Sp(q), G_2, Spin(7)$, or the holonomy of a non-Kählerian Riemannian symmetric space.
Lorentzian Einstein manifolds

Theorem (Galaev/— ’06)

The holonomy of an indecomposable non-irreducible Lorentzian Einstein manifold is uncoupled, i.e.

\[\text{Hol}^0_p(M, g) = \begin{cases} (\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n, & \text{or} \\ G \ltimes \mathbb{R}^n \end{cases} \]

with a Riemannian holonomy group G. In the 2nd case the manifold is Ricci flat.

In the second case G is a product of \{1\}, SU(p), Sp(q), G\textsubscript{2}, Spin(7), or the holonomy of a non-Kählerian Riemannian symmetric space.

Corollary

A Lorentzian Einstein manifold with parallel light-like vector field is Ricci-flat.
The uncoupled types $G \ltimes \mathbb{R}^n$ and $(\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n$

Construction method for the uncoupled types

Let (N^n, g) be a Riemannian manifold, $f \in C^\infty(\mathbb{R} \times N)$ sufficiently generic, and $\varphi \in C^\infty(\mathbb{R})$. Then $M = \mathbb{R} \times N \times \mathbb{R}$ with the Lorentzian metric

$$h(x,p,z) = 2dxdz + f(x, z)dz^2 + e^{2\varphi(z)} g_p$$

is indecomposable, non irreducible with

$$\text{Hol}_{(x,p,z)}(M, h) = \begin{cases}
\text{Hol}_p(N, g) \ltimes \mathbb{R}^n, & \text{if } \frac{\partial f}{\partial x} = 0, \\
(\mathbb{R}^+ \times \text{Hol}_p(N, g)) \ltimes \mathbb{R}^n, & \text{otherwise.}
\end{cases}$$
Applications and Examples

Metrics realising all possible groups

The uncoupled types $G \ltimes \mathbb{R}^n$ and $(\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n$

Construction method for the uncoupled types

Let (N^n, g) be a Riemannian manifold, $f \in C^\infty(\mathbb{R} \times N)$ sufficiently generic, and $\varphi \in C^\infty(\mathbb{R})$. Then $M = \mathbb{R} \times N \times \mathbb{R}$ with the Lorentzian metric

$$h_{(x,p,z)} = 2dxdz + f(x,z)dz^2 + e^{2\varphi(z)}gp$$

is indecomposable, non irreducible with

$$\text{Hol}_{(x,p,z)}(M, h) = \begin{cases} \text{Hol}_p(N, g) \ltimes \mathbb{R}^n, & \text{if } \frac{\partial f}{\partial x} = 0, \\ (\mathbb{R}^+ \times \text{Hol}_p(N, g)) \ltimes \mathbb{R}^n, & \text{otherwise.} \end{cases}$$

Metrics for the coupled types:

- First examples in Berard-Bergery/Ikemakhen ’96
The uncoupled types $G \ltimes \mathbb{R}^n$ and $(\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n$

Construction method for the uncoupled types

Let (N^n, g) be a Riemannian manifold, $f \in C^\infty(\mathbb{R} \times N)$ sufficiently generic, and $\varphi \in C^\infty(\mathbb{R})$. Then $M = \mathbb{R} \times N \times \mathbb{R}$ with the Lorentzian metric

\[h_{(x,p,z)} = 2dxdz + f(x,z)dz^2 + e^{2\varphi(z)}g_p \]

is indecomposable, non irreducible with

\[\text{Hol}_{(x,p,z)}(M, h) = \begin{cases} \text{Hol}_p(N, g) \ltimes \mathbb{R}^n, & \text{if } \frac{\partial f}{\partial x} = 0, \\ (\mathbb{R}^+ \times \text{Hol}_p(N, g)) \ltimes \mathbb{R}^n, & \text{otherwise.} \end{cases} \]

Metrics for the coupled types:

- First examples in Berard-Bergery/Ikemakhen ’96
- Systematic study in Boubel ’00
The uncoupled types $G \ltimes \mathbb{R}^n$ and $(\mathbb{R}^+ \times G) \ltimes \mathbb{R}^n$

Construction method for the uncoupled types

Let (N^n, g) be a Riemannian manifold, $f \in C^\infty(\mathbb{R} \times N)$ sufficiently generic, and $\varphi \in C^\infty(\mathbb{R})$. Then $M = \mathbb{R} \times N \times \mathbb{R}$ with the Lorentzian metric

$$h_{(x,p,z)} = 2dxdz + f(x,z)dz^2 + e^{2\varphi(z)}g_p$$

is indecomposable, non irreducible with

$$\text{Hol}_{(x,p,z)}(M, h) = \begin{cases}
\text{Hol}_p(N, g) \ltimes \mathbb{R}^n, & \text{if } \frac{\partial f}{\partial x} = 0, \\
(\mathbb{R}^+ \times \text{Hol}_p(N, g)) \ltimes \mathbb{R}^n, & \text{otherwise}.
\end{cases}$$

Metrics for the coupled types:

- First examples in *Berard-Bergery/Ikemakhen ’96*
- Systematic study in *Boubel ’00*
- Complete solution in *Galaev ’05*
Coupled types — Proof of Theorem [Galaev ’05]

For a Riemannian holonomy algebra \(\mathfrak{g} \), fix \(Q_1, \ldots, Q_N \), a basis of \(\mathcal{B}(\mathfrak{g}) \), and define polynomials on \(\mathbb{R}^{n+1} \):

\[
 u_i(y_1, \ldots, y_n, z) := \sum_{A=1}^{N} \sum_{k,l=1}^{n} \frac{1}{3(A-1)!} \left\langle Q_A(e_k)e_l, e_i \right\rangle y_k y_l z^A.
\]
Coupled types — Proof of Theorem [Galaev ’05]

For a Riemannian holonomy algebra \mathfrak{g}, fix Q_1, \ldots, Q_N, a basis of $\mathcal{B}(\mathfrak{g})$, and define polynomials on \mathbb{R}^{n+1}:

$$u_i(y_1, \ldots, y_n, z) := \sum_{A=1}^{N} \sum_{k,l=1}^{n} \frac{1}{3(A - 1)!} \left\langle Q_A(e_k)e_l, e_i \right\rangle y_k y_l z^A.$$

Theorem (Galaev ’05)

For any indecomposable $\mathfrak{h} \subset \mathfrak{so}(1, n+1)_L$, for which $\mathfrak{g} = \text{proj}_{\mathfrak{so}(n)}(\mathfrak{h})$ is a Riemannian holonomy algebra, exists an analytic $f \in C^\infty(\mathbb{R}^{n+2})$ such that the following Lorentzian metric has holonomy \mathfrak{h}:

$$h = 2dxdz + f dz^2 + 2 \sum_{i=1}^{n} u_i dy_i \ dz + \sum_{k=1}^{n} dy_k^2.$$
Coupled types — Proof of Theorem [Galaev ’05]

For a Riemannian holonomy algebra \(\mathfrak{g} \), fix \(Q_1, \ldots, Q_N \), a basis of \(\mathcal{B}(\mathfrak{g}) \), and define polynomials on \(\mathbb{R}^{n+1} \):

\[
u_i(y_1, \ldots, y_n, z) := \sum_{A=1}^{N} \sum_{k,l=1}^{n} \frac{1}{3(A-1)!} \left\langle Q_A(e_k) e_l, e_i \right\rangle y_k y_l z^A.
\]

Theorem (Galaev ’05)

*For any indecomposable \(\mathfrak{h} \subset \mathfrak{so}(1, n+1)_L \), for which \(\mathfrak{g} = \text{proj}_{\mathfrak{so}(n)}(\mathfrak{h}) \) is a Riemannian holonomy algebra, exists an analytic \(f \in C^{\infty}(\mathbb{R}^{n+2}) \) such that the following Lorentzian metric has holonomy \(\mathfrak{h} \):

\[
h = 2dxdz + f dz^2 + 2 \sum_{i=1}^{n} u_i dy_i \quad dz + \sum_{k=1}^{n} dy_k^2,
\]

family of 1-forms on \(\mathbb{R}^n \) flat metric
Example: Coupled type III

If \mathfrak{h} is of type III, such that \mathfrak{g} acts trivial on \mathbb{R}^{n_0}, $n_0 < n - 2$, and defined by

$$\varphi : \mathfrak{h} \to \mathbb{R} \text{ set}$$

$$\varphi_{Ai} := \frac{1}{(A - 1)!} \widetilde{\varphi}(\text{proj}_\mathfrak{h}(Q_A(e_i))),$$

for $A = 1, \ldots, N$ and $i = n_0 + 1, \ldots, n$.

Then f can be given by

$$f(x, y_1, \ldots, y_n, z) = 2x \sum_{A=1}^{N} \sum_{i=n_0+1}^{n} \varphi_{Ai} y_i z^{A-1} + \sum_{k=1}^{n_0} y_k^2.$$
Let \((M, g)\) be a Lorentzian manifold with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\). This corresponds to filtrations

\[
L \subset L^\perp \subset T_pM
\]

into holonomy invariant subspaces locally \(\leftrightarrow\) recurrent light-like vector field \(X\), i.e.

\[
\nabla X = \theta \otimes X
\]

with 1-form \(\theta\) \(\leftrightarrow\) foliation into totally geodesic light-like hypersurfaces.

If \(\text{Hol}_p^0(M, g) \subset SO(n) \rtimes \mathbb{R}^n\), i.e. \(L\) is spanned by an invariant vector, then the recurrent vector field is parallel.

Definition

A Lorentzian manifold with parallel light-like vector field is called Brinkmann wave.
Parallel distributions

Let \((M, g)\) be a Lorentzian manifolds with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\). This corresponds to filtrations

\[
\begin{align*}
L & \subset L^\perp \subset T_pM & \text{into holonomy invariant subspaces} \\
\mathcal{L} & \subset \mathcal{L}^\perp \subset TM & \text{into parallel distributions, } \mathcal{L}_p^{(\perp)} = L^{(\perp)}
\end{align*}
\]
Parallel distributions

Let \((M, g)\) be a Lorentzian manifolds with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\). This corresponds to filtrations

\[
L \subset L^\perp \subset T_pM \quad \text{into holonomy invariant subspaces}
\]

\[
\mathcal{L} \subset \mathcal{L}^\perp \subset TM \quad \text{into parallel distributions, } \mathcal{L}_p^{(\perp)} = L^{(\perp)}
\]

\(\mathcal{L}\) \(\xleftrightarrow{\text{locally}}\) recurrent light-like vector field \(X\), i.e. \(\nabla X = \theta \otimes X\) with 1-form \(\theta\)
Let \((M, g)\) be a Lorentzian manifolds with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\). This corresponds to filtrations

\[L \subset L^\perp \subset T_pM \]

into holonomy invariant subspaces

\[\mathcal{L} \subset \mathcal{L}^\perp \subset TM \]

into parallel distributions, \(\mathcal{L}^p(\perp) = L(\perp)\)

\(\mathcal{L}\) locally \(\longleftrightarrow\) recurrent light-like vector field \(X\), i.e. \(\nabla X = \theta \otimes X\) with 1-form \(\theta\)

\(\mathcal{L}^\perp\) \(\longleftrightarrow\) foliation into totally geodesic light-like hypersurfaces
Parallel distributions

Let \((M, g)\) be a Lorentzian manifolds with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\). This corresponds to filtrations

\[
L \subset L^\perp \subset T_pM \quad \text{into holonomy invariant subspaces}
\]

\[
\mathcal{L} \subset \mathcal{L}^\perp \subset TM \quad \text{into parallel distributions, } \mathcal{L}_p^{(\perp)} = L^{(\perp)}
\]

\(\mathcal{L} \xrightarrow{\text{locally}} \text{recurrent} \) light-like vector field \(X\), i.e. \(\nabla X = \theta \otimes X\) with 1-form \(\theta\)

\(\mathcal{L}^\perp \xrightarrow{\text{foliation}} \text{foliation into totally geodesic light-like hypersurfaces}\)

If \(\text{Hol}_p^0(M, g) \subset SO(n) \ltimes \mathbb{R}^n\), i.e. \(L\) is spanned by an invariant vector, then the recurrent vector field is parallel.
Applications and Examples

Geometric structures

Parallel distributions

Let \((M, g)\) be a Lorentzian manifolds with \(\text{Hol}_p(M, g) \subset SO_0(1, n + 1)_L\).
This corresponds to filtrations
\[
L \subset L^\perp \subset T_pM \quad \text{into holonomy invariant subspaces}
\]
\[
\mathcal{L} \subset \mathcal{L}^\perp \subset TM \quad \text{into parallel distributions, } \mathcal{L}_p^{(\perp)} = L^{(\perp)}
\]

\(\mathcal{L}\) \(\text{locally} \leftrightarrow \) \text{recurrent light-like vector field } X, \text{ i.e. } \nabla X = \theta \otimes X \text{ with 1-form } \theta

\(\mathcal{L}^\perp \leftrightarrow \) \text{foliation into totally geodesic light-like hypersurfaces}

If \(\text{Hol}^0_p(M, g) \subset SO(n) \ltimes \mathbb{R}^n\), i.e. \(L\) is spanned by an invariant vector, then the recurrent vector field is parallel.

Definition

A Lorentzian manifold with parallel light-like vector field is called \text{Brinkmann wave}.
The screen bundle

Definition

Let \((M, g)\) be an Lorentzian manifold with parallel light like line distribution \(\mathcal{L}\). The vector bundle

\[
\mathcal{S} = \bigcup_{p \in M} \mathcal{L}^\perp_p / \mathcal{L}_p, \quad g^S([U], [V]) := g(U, V), \quad \nabla^S_U[V] := [\nabla_U V]
\]

is called screen bundle. \(\text{Hol}_p(\mathcal{S}, \nabla^S)\) is called screen holonomy.
The screen bundle

Definition

Let \((M, g)\) be an Lorentzian manifold with parallel light like line distribution \(\mathcal{L}\). The vector bundle

\[
(\mathcal{S} = \bigcup_{p \in M} \mathcal{L}_p^\perp / \mathcal{L}_p, \quad g^S([U], [V]) := g(U, V), \quad \nabla^S_U[V] := [\nabla_U V])
\]

is called \textit{screen bundle}. \(\text{Hol}_p(\mathcal{S}, \nabla^S)\) is called \textit{screen holonomy}.

\[
\Rightarrow \quad \text{proj}_{SO(n)} \text{Hol}_p(M, g) = \text{Hol}_p(\mathcal{S}, \nabla^S) [\text{''03}].
\]
Definition

Let \((M, g)\) be an Lorentzian manifold with parallel light like line distribution \(\mathcal{L}\). The vector bundle

\[
\mathcal{S} = \bigcup_{p \in M} \mathcal{L}_p^\perp / \mathcal{L}_p, \quad g^\mathcal{S}([U], [V]) := g(U, V), \quad \nabla^\mathcal{S}_U[V] := [\nabla_U V]
\]

is called **screen bundle**. \(Hol_p(\mathcal{S}, \nabla^\mathcal{S})\) is called **screen holonomy**.

\[
\Rightarrow \quad proj_{SO(n)} Hol_p(M, g) = Hol_p(\mathcal{S}, \nabla^\mathcal{S}) \quad [\text{— '03}].
\]

Geometric structures on \(\mathcal{S}\) correspond to algebraic structures of the screen holonomy, e.g. parallel complex structure etc.
Coordinates for a Lorentzian manifold \((M, h)\) with recurrent light-like vector field \(X\)

Theorem (Brinkmann’25, Walker’49)

\[\exists \text{ coordinates } (x, y_1, \ldots, y_n, z): \frac{\partial}{\partial x} = X, \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \right\rangle = X^\perp, \text{ and} \]

\[h = 2 \, dx dz + \sum_{i=1}^{n} u_i dy_i \, dz + fdz^2 + \sum_{i,j=1}^{n} g_{ij} dy_i \, dy_j, \]

with \(\frac{\partial g_{ij}}{\partial x} = \frac{\partial u_i}{\partial x} = 0, f \in C^\infty(M), \text{ and } X \text{ parallel} \iff \frac{\partial f}{\partial x} = 0.\]
Coordinates for a Lorentzian manifold \((M, h)\) with recurrent light-like vector field \(X\)

Theorem (Brinkmann’25, Walker’49)

\[\exists \text{ coordinates } (x, y_1, \ldots, y_n, z): \frac{\partial}{\partial x} = X, \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \right\rangle = X^\perp, \text{ and } \]

- \[h = 2 \, dx \, dz + \sum_{i=1}^{n} u_i \, dy_i \, dz + fdz^2 + \sum_{i,j=1}^{n} g_{ij} \, dy_i \, dy_j, \]
 - \[= \phi_z \text{ family of 1-forms} \]
 - \[= g_z \text{ family of Riem. metrics} \]

with \(\frac{\partial g_{ij}}{\partial x} = \frac{\partial u_i}{\partial x} = 0 \), \(f \in C^\infty(M) \), and \(X \) parallel \(\iff \frac{\partial f}{\partial x} = 0 \).

- \[g = 2 \, dx \, dz + \sum_{i,j=1}^{n} g_{ij} \, dy_i \, dy_j, \text{ if } X \text{ is parallel } [\text{Schimming’78}]. \]
Coordinates for a Lorentzian manifold \((M, h)\) with recurrent light-like vector field \(X\)

Theorem (Brinkmann’25, Walker’49)

\[\exists \text{ coordinates } (x, y_1, \ldots, y_n, z): \frac{\partial}{\partial x} = X, \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_n} \right) = X^\perp, \text{ and } \]

\[h = 2 \, dx \, dz + \sum_{i=1}^{n} u_i \, dy_i \, dz + fdz^2 + \sum_{i,j=1}^{n} g_{ij} \, dy_i \, dy_j, \]

with \(\frac{\partial g_{ij}}{\partial x} = \frac{\partial u_i}{\partial x} = 0, f \in C^\infty(M), \) and \(X\) parallel \(\iff\) \(\frac{\partial f}{\partial x} = 0.\)

\[g = 2 \, dx \, dz + \sum_{i,j=1}^{n} g_{ij} \, dy_i \, dy_j, \text{ if } X \text{ is parallel } [\text{Schimming’78}]. \]

\[\implies \text{Hol}_p(g_z) \subset \text{pr}_{SO(n)}\text{Hol}_p(h), \text{ but in general } \neq \text{ (see Galaev’s examples).} \]
pp-waves

Definition

A Brinkmann wave is a **pp-wave** if

\[\operatorname{tr}_{(3,5)(4,6)}(\mathcal{R} \otimes \mathcal{R}) = 0. \]
pp-waves

Definition

A Brinkmann wave is a pp-wave: \[\iff \text{tr}_{(3,5)(4,6)}(\mathcal{R} \otimes \mathcal{R}) = 0. \]
\[\iff h = dx dz + f dz^2 + \sum_{i=1}^{n} dy_i^2 : \frac{\partial f}{\partial x} = 0. \]
Definition

A Brinkmann wave is a pp-wave:

\[\iff \quad \text{tr}_{(3,5)(4,6)}(\mathcal{R} \otimes \mathcal{R}) = 0. \]

\[\iff \quad h = dx dz + f dz^2 + \sum_{i=1}^{n} dy_i^2 : \partial f / \partial x = 0. \]

Theorem (— ’01)

Let \((M^{n+2}, h)\) be an indecomposable Lorentzian manifold. \((M^{n+2}, h)\) has Abelian holonomy \(\mathbb{R}^n \iff \) it is a pp-wave.
pp-waves

Definition
A Brinkmann wave is a \(\text{pp-wave} \) :
\[
\iff \quad \text{tr}_{(3,5)(4,6)}(\mathcal{R} \otimes \mathcal{R}) = 0.
\]
\[
\iff \quad h = dx dz + f dz^2 + \sum_{i=1}^{n} dy_i^2 : \quad \frac{\partial f}{\partial x} = 0.
\]

Theorem (— ’01)
Let \((M^{n+2}, h)\) be an indecomposable Lorentzian manifold. \((M^{n+2}, h)\) has \textit{Abelian} holonomy \(\mathbb{R}^n\) \iff it is a pp-wave.

Examples
- Symmetric spaces with solvable transvection group (Cahen-Wallach spaces) \iff \(f \) is a quadratic polynomial in the \(y_i\)’s.
pp-waves

Definition
A Brinkmann wave is a pp-wave: \(\iff \text{tr}_{(3,5)(4,6)}(\mathcal{R} \otimes \mathcal{R}) = 0. \)

\[
\iff h = dx dz + f dz^2 + \sum_{i=1}^{n} dy_i^2 : \frac{\partial f}{\partial x} = 0.
\]

Theorem (— ’01)

Let \((M^{n+2}, h)\) be an indecomposable Lorentzian manifold. \((M^{n+2}, h)\) has Abelian holonomy \(\mathbb{R}^n\) \(\iff\) it is a pp-wave.

Examples
- Symmetric spaces with solvable transvection group (Cahen-Wallach spaces) \(\iff\) \(f\) is a quadratic polynomial in the \(y_i\)'s.
- Plane waves: \(f\) is a quadratic polynomial in the \(y_i\)'s with coefficients depending on \(z\) (Important in supergravity theories. [Figueroa O’Farrill/Papadopoulos ’02])
Better description:

$$\text{pp-wave} \iff \begin{cases}
(P) & \exists \text{parallel light-like vector field, and} \\
(1) & R(U, V) : X^\perp \rightarrow \mathbb{R} \cdot X \quad \forall \ U, V \in TM
\end{cases}$$
Generalisations

Better description:

\[
\text{pp-wave} \iff \begin{cases}
(P) & \exists \text{ parallel light-like vector field, and} \\
(1) & \mathcal{R}(U, V) : X^\perp \to \mathbb{R} \cdot X \quad \forall \, U, V \in TM
\end{cases}
\]

Generalise (P) and (1):

\[
(R) \, \exists \text{ recurrent light-like vector field}
\]
Generalisations

Better description:

\[
\text{pp-wave} \iff \left\{ \begin{array}{l}
(P) \; \exists \text{ parallel light-like vector field, and} \\
(1) \; \mathcal{R}(U, V) : X^\perp \rightarrow \mathbb{R} \cdot X \; \forall \; U, V \in TM
\end{array} \right.
\]

Generalise (P) and (1):

\[
(R) \; \exists \text{ recurrent light-like vector field}
\]

\[
(2) \; \mathcal{R}(U, V) : X^\perp \rightarrow \mathbb{R} \cdot X \; \forall \; U, V \in X^\perp
\]
Better description:

\[\text{pp-wave} \iff \begin{cases} \ (P) & \exists \ \text{parallel light-like vector field, and} \\ \ (1) & \mathcal{R}(U, V) : X^\perp \to \mathbb{R} \cdot X \ \forall \ U, V \in TM \end{cases} \]

Generalise (P) and (1):

\[\ (R) & \exists \ \text{recurrent light-like vector field} \\ \ (2) & \mathcal{R}(U, V) : X^\perp \to \mathbb{R} \cdot X \ \forall \ U, V \in X^\perp \]

Obvious consequence (– ’06)

An indecomposable Lorentzian manifold has solvable holonomy \(\mathbb{R}^+ \rtimes \mathbb{R}^n \) \iff (R) but not (P), and (1).

This means: (R) and (1) \iff trivial screen holonomy.
Manifolds with light-like hypersurface curvature I

Definition

A Lorentzian mf. has light-like hypersurface curvature \iff (R) and (2).

Remark

If (P), in Schimming coordinates ($h = 2dxdz + g_z$) the g_z is a z-dependent family of flat Riemannian metrics. All of Galaev's examples have light-like hypersurface curvature, i.e. all possible holonomy groups can be realised by such metrics.
Manifolds with light-like hypersurface curvature I

Definition

A Lorentzian mf. has light-like hypersurface curvature \iff (R) and (2).

$\iff \exists$ coordinates (x, y_1, \ldots, y_n, z):

$$h = 2 \, dx \, dz + f \, dz^2 + \sum_{i=1}^{n} u_i \, dy_i \, dz + \sum_{i=1}^{n} dy_i^2,$$

$$\underbrace{\partial u_i}_{\phi_z} = 0, \ f \in C^\infty(M).$$
Manifolds with light-like hypersurface curvature I

Definition

A Lorentzian mf. has **light-like hypersurface curvature** \(\iff \) (R) and (2).

\[\iff \exists \text{ coordinates } (x, y_1, \ldots, y_n, z): \]

\[
h = 2 \, dx \, dz + f \, dz^2 + \sum_{i=1}^{n} u_i \, dy_i \, dz + \sum_{i=1}^{n} dy_i^2, \]

\[
\underbrace{\frac{\partial u_i}{\partial x}}_{= \phi_z} = 0, \quad f \in C^\infty(M). \quad \text{If (P) instead of (R), then } f \text{ does not depend on } x.\]
Manifolds with light-like hypersurface curvature I

Definition

A Lorentzian mf. has **light-like hypersurface curvature** \(\iff\) (R) and (2).

\[\exists \text{ coordinates } (x, y_1, \ldots, y_n, z):\]

\[h = 2 \, dx \, dz + f \, dz^2 + \sum_{i=1}^{n} u_i \, dy_i \, dz + \sum_{i=1}^{n} dy_i^2,\]

\[\phi_z = \partial u_i / \partial x = 0, \quad f \in C^\infty(M).\] If (P) instead of (R), then \(f\) does not depend on \(x\).

Remark

- If (P), in Schimming coordinates \((h = 2dx \, dz + g_z)\) the \(g_z\) is a \(z\)-dependent **family of flat** Riemannian metrics.
Manifolds with light-like hypersurface curvature I

Definition

A Lorentzian mf. has light-like hypersurface curvature $\iff (R)$ and (2).

$\iff \exists$ coordinates (x, y_1, \ldots, y_n, z):

$$h = 2 \, dx \, dz + f \, dz^2 + \sum_{i=1}^{n} u_i \, dy_i \, dz + \sum_{i=1}^{n} dy_i^2,$$

$$\frac{\partial u_i}{\partial x} = 0, \; f \in C^\infty(M).$$

If (P) instead of (R), then f does not depend on x.

Remark

- If (P), in Schimming coordinates ($h = 2dx \, dz + g_z$) the g_z is a z-dependent family of flat Riemannian metrics.
- All of Galaev’s examples have light-like hypersurface curvature, i.e. all possible holonomy groups can be realised by such metrics.
Manifolds with light-like hypersurface curvature II

(M, h) has light-like hypersurface curvature

\iff The curvature of the light-like hypersurfaces defined by \mathcal{L}^\perp has a light-like image.
Manifolds with light-like hypersurface curvature II

\((M, h)\) has light-like hypersurface curvature

\[\iff\] The curvature of the light-like hypersurfaces defined by \(L^\perp\) has a light-like image.

\[\iff\] The screen bundle \(S\) restricted to these hypersurfaces is flat.
Manifolds with light-like hypersurface curvature II

(M, h) has light-like hypersurface curvature

\iff The curvature of the light-like hypersurfaces defined by \mathcal{L}^\perp has a light-like image.

\iff The screen bundle S restricted to these hypersurfaces is flat.

Proposition (— ’06)

A Brinkmann wave has light-like hypersurface curvature $\iff \|R\|^2 = 0$.
(M, h) has light-like hypersurface curvature

\[\iff \text{The curvature of the light-like hypersurfaces defined by } \mathcal{L}^\perp \text{ has a light-like image.} \]
\[\iff \text{The screen bundle } S \text{ restricted to these hypersurfaces is flat.} \]

Proposition (— ’06)

A Brinkmann wave has light-like hypersurface curvature \(\iff \|\mathcal{R}\|^2 = 0. \)

Further properties for \(h = 2dxdz + fdz^2 + \phi_z + \sum_{i=1}^{n} dy_i^2 \):

1. \(h \) has trivial screen holonomy \(\iff d\phi_z = 0 \ \forall z. \)
Manifolds with light-like hypersurface curvature II

\((M, h)\) has light-like hypersurface curvature

\[\iff\] The curvature of the light-like hypersurfaces defined by \(L^\perp\) has a light-like image.

\[\iff\] The screen bundle \(S\) restricted to these hypersurfaces is flat.

Proposition (— ’06)

A Brinkmann wave has light-like hypersurface curvature \(\iff\) \(||R||^2 = 0\).

Further properties for \(h = 2dxdz + fdz^2 + \phi_z + \sum_{i=1}^{n} dy_i^2\):

1. \(h\) has trivial screen holonomy \(\iff\) \(d\phi_z = 0 \ \forall z\).
2. \(h\) is Ricci isotropic \(\iff\) \(d^*d\phi_z = 0 \ \forall z\), and Ricci flat if in addition \(\Delta f = 0\).
Open Problems

Special geometries = not products but do not have full holonomy.
Open Problems

Special geometries \Rightarrow not products but do not have full holonomy.

Riemannian \leadsto irreducible manifolds \leadsto Berger list and subsequent results [Alekseevski, Bryant, Salomon, Joyce, ...]
Open Problems

Special geometries= not products but do not have full holonomy.

Riemannian \leadsto \text{irreducible manifolds} \leadsto \text{Berger list and subsequent results} [Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible \implies \text{SO}(1,n)) \leadsto \text{indecomposable, non-irreducible manifolds: groups are known, but many questions are open:}

1. Find global examples of metrics with prescribed holonomy, which are globally hyperbolic with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller '06])
2. Describe the geometric structures corresponding to the coupled types III and IV.
3. Describe indecomposable, non-irreducible Lorentzian homogeneous spaces and their holonomy.
4. Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomy is holonomy of Riemannian symmetric space.
5. Study further spinor field equations for these manifolds.
Open Problems

Special geometries = not products but do not have full holonomy.
Riemannian \(\leadsto\) irreducible manifolds \(\leadsto\) Berger list and subsequent results [Alekseevski, Bryant, Salomon, Joyce, ...]
Lorentzian (irreducible \(\Rightarrow\) SO(1,n)) \(\leadsto\) indecomposable, non-irreducible manifolds: groups are known, but many questions are open:

1. Find global examples of metrics with prescribed holonomy, which are globally hyperbolic with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller ’06])

Describe the geometric structures corresponding to the coupled types III and IV.

Describe indecomposable, non-irreducible Lorentzian homogeneous spaces and their holonomy.

Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomy is holonomy of Riemannian symmetric space.

Study further spinor field equations for these manifolds.
Open Problems

Special geometries: not products but do not have full holonomy.

Riemannian \(\leadsto\) irreducible manifolds \(\leadsto\) Berger list and subsequent results

[Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible \(\Rightarrow\) SO(1,n)) \(\leadsto\) indecomposable, non-irreducible manifolds:
groups are known, but many questions are open:

1. Find global examples of metrics with prescribed holonomy, which are globally hyperbolic with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller '06])

2. Describe the geometric structures corresponding to the coupled types III and IV.

3. Describe indecomposable, non-irreducible Lorentzian homogeneous spaces and their holonomy.

4. Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomy is holonomy of Riemannian symmetric space.

5. Study further spinor field equations for these manifolds.
Open Problems

Special geometries = not products but do not have full holonomy.

Riemannian \leadsto irreducible manifolds \leadsto Berger list and subsequent results [Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible \Rightarrow SO(1,n)) \leadsto indecomposable, non-irreducible manifolds: groups are known, but many questions are open:

1. Find global examples of metrics with prescribed holonomy, which are **globally hyperbolic** with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller ’06])

2. Describe the geometric structures corresponding to the **coupled types III and IV**.

3. Describe indecomposable, non-irreducible **Lorentzian homogeneous spaces** and their holonomy.
Open Problems

Special geometries = not products but do not have full holonomy.

Riemannian \leadsto irreducible manifolds \leadsto Berger list and subsequent results [Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible \Rightarrow SO(1,n)) \leadsto indecomposable, non-irreducible manifolds: groups are known, but many questions are open:

1. Find global examples of metrics with prescribed holonomy, which are globally hyperbolic with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller ’06])

2. Describe the geometric structures corresponding to the coupled types III and IV.

3. Describe indecomposable, non-irreducible Lorentzian homogeneous spaces and their holonomy.

4. Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomy is holonomy of Riemannian symmetric space.
Open Problems

Special geometries: not products but do not have full holonomy.

Riemannian \leadsto irreducible manifolds \leadsto Berger list and subsequent results [Alekseevski, Bryant, Salomon, Joyce, ...]

Lorentzian (irreducible \Rightarrow $\text{SO}(1,n))$ \leadsto indecomposable, non-irreducible manifolds: groups are known, but many questions are open:

1. Find global examples of metrics with prescribed holonomy, which are globally hyperbolic with complete or compact Cauchy surface (cylinder constructions in [Baum/Müller ’06])

2. Describe the geometric structures corresponding to the coupled types III and IV.

3. Describe indecomposable, non-irreducible Lorentzian homogeneous spaces and their holonomy.

4. Find generalisations of Lorentzian symmetric spaces, e.g. screen holonomy is holonomy of Riemannian symmetric space.

5. Study further spinor field equations for these manifolds.