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Example of a Riemannian-Lorentzian manifold:

The extended projective disc P2.

Equip the unit disc centered at the origin of

coordinates in R2 with the distance function

ds2 =

(
1− y2

)
dx2 + 2xydxdy+

(
1− x2

)
dy2(

1− x2 − y2
)2 .

Riemannian inside the disc, Lorentzian outside

the disc, singular on the unit circle.

The unit circle is the curve at projective infin-

ity, so the Lorentzian points are ideal: beyond

the absolute.
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Harmonic fields: Solutions of the Hodge equa-

tions

dα = δα = 0.

On extended P2 the Hodge equations are no

longer uniformly elliptic; they are

elliptic on ordinary points inside the unit disc

hyperbolic on ideal points

parabolic on the unit circle
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Why study such a peculiar system?

i) to learn what the geometry of the extended

projective disc reveals about elliptic-hyperbolic

PDEs, and

ii) to learn what elliptic-hyperbolic PDEs on

the extended projective disc reveal about the

geometry of space-time.
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i) What the geometry of the extended projec-

tive disc tells us about elliptic-hyperbolic pde’s:

There is no canonical way to decide what con-

stitutes a natural boundary-value problem for

an equation that changes from elliptic to hy-

perbolic type on a smooth curve. Historically,

physical analogies have been the main tool,

chiefly analogies to the physics of compressible

flow. However, it is also possible to approach

the problem using a geometric analogy.
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Traditional classification (linear, second-order,

dimension 2):

Lu = α (x, y)uxx + 2β(x, y)uxy + γ(x, y)uyy,

A class of equations on one domain. Char-

acterize the type of the equations by the sign

of

∆(x, y) = αγ − β2

positive → elliptic

negative → hyperbolic

zero → parabolic

changes sign on a smooth curve → mixed type
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Alternative approach:

Lgu =
1√
|g|

∂

∂xi

(
gij
√
|g|

∂u

∂xj

)

One equation on a class of domains. Char-
acterize the domain by the signature of the
metric tensor:

Riemannian → elliptic

Lorentzian → hyperbolic

Changes signature on a smooth curve→ elliptic-
hyperbolic

According to this point of view, in order to
decide which boundary-value problems are nat-
ural for a second-order linear elliptic-hyperbolic
equations on R2, one should study the geome-
try of the underlying pseudo-Riemannian met-
ric.
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Example: Lavrent’ev-Bitsadze equation

sgn(y)uxx + uyy = 0,

an elliptic-hyperbolic equation on R2;

also, the Laplace-Beltrami operator on a met-

ric which is Euclidean above the x-axis and

Minkowskian below the x-axis.
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ii) What elliptic-hyperbolic PDEs on the ex-
tended projective disc reveal about the geom-
etry of space-time:

Area functional for a smooth surface Σ in M2,1

having graph z = f (x, y) :

A =
∫ ∫

Σ

√∣∣∣1− f2
x − f2

y

∣∣∣ dxdy.
Σ is time-like ← f2

x + f2
y > 1

Σ is space-like ← f2
x + f2

y < 1

Lagrange’s notation:

p = fx, q = fy,

Boundary between the space-like and time-like
surfaces:

p2 + q2 = 1.
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Necessary condition for Σ to be extremal on

M2,1 : Its graph f (x, y) must satisfy

(
1− p2

)
qy + 2pqpy +

(
1− q2

)
px = 0,

a quasilinear partial differential equation, ellip-

tic for space-like surfaces and hyperbolic for

time-like surfaces.

Linearize by Legendre transformation

z = px+ qy − ϕ (p, q) , x = ϕp, y = ϕq.

Obtain the linear equation (C-H. Gu, LNM

1255)

(
1− p2

)
ϕpp − 2pqϕpq +

(
1− q2

)
ϕqq = 0.
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In homogeneous coordinates: (u, v, w) for w 6=
0 :

[(
1− p2

)
ψp
]
p
− 2pqψpq +

[(
1− q2

)
ψq
]
q
= 0,

where p = −u/w and q = −v/w (C-H. Gu, Acta

Math. Sinica n.s. 1)

This is the Laplace-Beltrami equation on ex-

tended P2

Now we consider a space-like surface Σ asso-

ciated to a multi-valued 0-form f defined over

a multi-connected domain of M2,1.
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Variational equations of the area functional:

[(
1− ω2

2

)
ω1

]
x
+

ω1ω2(ω1y + ω2x) +
[
(1− ω1)

2 ω2

]
y
= 0,

ω2x − ω1y = 0,

for

Q = δ`mg
ij∂f

`

∂xi
∂fm

∂xj
.

This is an equation for a multi-connected ex-

tremal surface which is space-like in some re-

gions of M2,1 and time-like in others. However,

the resulting system, and the surface that it

describes, are singular on the circle Q = 1.
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If the Gaussian curvature

G =
ω1xω2y − |ω1y|2[
1−

(
ω2
1 + ω2

2

)]2
is nonvanishing, apply a Legendre transforma-

tion to obtain

[(
1− x2

)
u1

]
x
−

(xyu1)y − (xyu2)x +
[(

1− y2
)
u2

]
y
= 0,

u1y − u2x = 0

This system has a geometric interpretation as

the Hodge equations on the extended projec-

tive disc P2.
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From this point of view, doing Hodge theory

on P2 is a way to approach generalized Plateau

problems in Minkowski space. The first step

in such a program would be a local existence

theorem for the Dirichlet problem.

Problems with this approach:

1. The Legendre transformation may itself in-

troduce singularities. It is known that, in the

elliptic region, such singularities can only occur

on at most a point set. However, higher-order

singularities in the parabolic and hyperbolic re-

gions of the equations are possible.

2. Although the Legendre transformation makes

the equation simpler, it makes boundary condi-

tions more complicated, so the interpretation

of results for harmonic 1-forms on extended P2

in terms of extremal hypersurfaces in M2,1 is

not always straightforward.
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Nevertheless, the Dirichlet problem for a qua-

silinear elliptic-hyperbolic system, having a line

singularity on the parabolic curve, is sufficiently

formidable that the approach via linearization

remains the one with the most apparent promise.
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Boundary-value problems for harmonic fields

on extended P2 :

1. Let Ω be the domain formed by the polar

lines of a chord of the unit disc in extended

P2. Then there exists a weak solution on Ω

with boundary values prescribed on the non-

characteristic part of the boundary. In fact, we

can deform the chord in such a way that there

is also a non-characteristic hyperbolic bound-

ary on which data are prescribed, providing a

mild monotonicity condition is met. Solutions

lie in a weighted function space. The weak so-

lution is strong (and thus unique) if we round

off the sharp points on the boundary and im-

pose an arbitrarily small perturbation on the

lower-order terms.
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2. Weak solutions to the Dirichlet problem −
and to mixed Dirichlet-Neumann problems − in

which data are prescribed on the entire bound-

ary exist under a list of technical conditions on

Ω which are roughly equivalent to the require-

ment that the boundary of Ω be star-like with

respect to the flow of an appropriately defined

vector field.

3. The existence of a strong solution to a

boundary-value problem in an annulus about

the unit circle can be proven under an arbitrar-

ily small perturbation of the lower-order terms.

4. The closed Dirichlet problem for classical

solutions is over-determined on the hyperbolic

boundary.
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Other mixed Riemannian-Lorentzian manifolds:

1. Special relativity : The wave equation on
Minkowski spacetime, in a reference frame ro-
tating with constant angular velocity ω with
respect to another reference frame, is express-
ible in cylindrical coordinates (ρ, ϕ, z) as the
elliptic-hyperbolic equation

1

ρ
(ρuρ)ρ +

(
1

ρ2
− ω2

)
uϕϕ + uzz = 0.

(M Schönberg, Phys. Rev. 69)

2. Quantum cosmology : These examples arise
from the (controversial) Hartle-Hawking hy-
pothesis, that the universe might have origi-
nated as a manifold having Euclidean signature
and subsequently undergone a transition to a
model having Lorentzian signature across a hy-
persurface which was space-like as seen from
the Lorentzian side.
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Some 2-dimensional variants (J. M. Stewart,
Class. Quant. Grav. 18):

i) continuous change of signature:

ds2 = −tdt2 + dz2;

ii) discontinuous change of signature:

ds2 = −z−1dt2 + dz2;

iii) continuous change of signature with a cur-
vature singularity:

ds2 = −zdt2 + dz2;

3. Binary black hole spacetimes with a helical
killing vector, a generalization of example 1 (C.
Klein, Phys. Rev. D 70).
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Elliptic-hyperbolic differential operators of real

principal type: the major analytic properties of

the operator depend only on the Hamiltonian

system associated to the principal symbol −
they do not depend on the form of the lower-

order terms.

The physical examples tend to be of real prin-

cipal type. The geometric examples tend not

to be (exception: isometric embedding of Rie-

mannian surfaces in R3, C-S. Lin, CPAM 39)

As a result, what can or cannot be said about

solutions in the geometric examples tends to

depend delicately on the precise form of the

lower-order terms. In particular, this depen-

dence prevents the derivation of uniqueness

theorems by the expected arguments.
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