Actions of Cohomogeneity One on Symmetric Spaces of Noncompact Type

> Jürgen Berndt King's College London

Conference in Geometry and Global Analysis Celebrating P. Gilkey's 65th Birthday Santiago de Compostela, 13-17 December 2010

•
$$SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, \ a, b, c, d \in \mathbb{R} \right\}$$

$$\blacktriangleright SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, \ a, b, c, d \in \mathbb{R} \right\}$$

•
$$H = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$$
 upper half plane

►
$$SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, \ a, b, c, d \in \mathbb{R} \right\}$$

- ▶ $H = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$ upper half plane
- $SL_2(\mathbb{R})$ acts on H by

$$z \mapsto \frac{az+b}{cz+d}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

►
$$SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \mid \mathsf{ad} - \mathsf{bc} = 1, \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R} \right\}$$

- ▶ $H = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$ upper half plane
- $SL_2(\mathbb{R})$ acts on H by

$$z \mapsto \frac{az+b}{cz+d}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► isometric action with respect to $ds^2 = \frac{dzd\bar{z}}{\Im(z)^2} = \frac{dx^2+dy^2}{y^2}$

►
$$SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \mid \mathsf{ad} - \mathsf{bc} = 1, \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R} \right\}$$

- ▶ $H = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$ upper half plane
- $SL_2(\mathbb{R})$ acts on H by

$$z \mapsto \frac{az+b}{cz+d}$$

- isometric action with respect to $ds^2 = \frac{dzd\bar{z}}{\Im(z)^2} = \frac{dx^2 + dy^2}{y^2}$
- $(H, ds^2) =$ upper half plane model for real hyperbolic plane

►
$$SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} \mathsf{a} & b \\ \mathsf{c} & d \end{pmatrix} \mid \mathsf{ad} - \mathsf{bc} = 1, \ \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{R} \right\}$$

- ► $H = \{z \in \mathbb{C} \mid \Im(z) > 0\} \subset \mathbb{C}$ upper half plane
- $SL_2(\mathbb{R})$ acts on H by

$$z \mapsto \frac{az+b}{cz+d}$$

- ▶ isometric action with respect to $ds^2 = \frac{dzd\bar{z}}{\Im(z)^2} = \frac{dx^2+dy^2}{y^2}$
- (H, ds²) = upper half plane model for real hyperbolic plane
 H = G/K homogeneous space with

$$G = SL_2(\mathbb{R}) \ , \ K = \left\{ egin{array}{c} \cos(s) & \sin(s) \ -\sin(s) & \cos(s) \end{array}
ight| s \in \mathbb{R}
ight\} = SO_2$$

There is a unique decomposition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \exp(s) & 0 \\ 0 & \exp(-s) \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

There is a unique decomposition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \exp(s) & 0 \\ 0 & \exp(-s) \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

► Iwasawa decomposition $SL_2(\mathbb{R}) \stackrel{\text{diff}}{=} KAN$

There is a unique decomposition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \exp(s) & 0 \\ 0 & \exp(-s) \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

- Iwasawa decomposition $SL_2(\mathbb{R}) \stackrel{\text{diff}}{=} KAN$
- $K \cong SO_2$ compact, $A \cong \mathbb{R}$ abelian, $N \cong \mathbb{R}$ nilpotent

There is a unique decomposition

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \exp(s) & 0 \\ 0 & \exp(-s) \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$

- Iwasawa decomposition $SL_2(\mathbb{R}) \stackrel{\text{diff}}{=} KAN$
- $K \cong SO_2$ compact, $A \cong \mathbb{R}$ abelian, $N \cong \mathbb{R}$ nilpotent
- $H = G/K \stackrel{\text{iso}}{=} AN$ solvable Lie group with left-invariant Riemannian metric

Orbit structures (Poincaré model)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalize this to

▶ $SL_2(\mathbb{R}) \rightsquigarrow G$ noncompact real semisimple Lie group

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalize this to

• $SL_2(\mathbb{R}) \rightsquigarrow G$ noncompact real semisimple Lie group

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $SO_2 \rightsquigarrow K$ maximal compact subgroup of G

Generalize this to

- ▶ $SL_2(\mathbb{R}) \rightsquigarrow G$ noncompact real semisimple Lie group
- $SO_2 \rightsquigarrow K$ maximal compact subgroup of G
- $H \rightsquigarrow G/K$ Riemannian symmetric space of noncompact type

Generalize this to

- $SL_2(\mathbb{R}) \rightsquigarrow G$ noncompact real semisimple Lie group
- $SO_2 \rightsquigarrow K$ maximal compact subgroup of G
- $H \rightsquigarrow G/K$ Riemannian symmetric space of noncompact type

▶ action ~→ cohomogeneity one

Generalize this to

- $SL_2(\mathbb{R}) \rightsquigarrow G$ noncompact real semisimple Lie group
- $SO_2 \rightsquigarrow K$ maximal compact subgroup of G
- $H \rightsquigarrow G/K$ Riemannian symmetric space of noncompact type

▶ action ~→ cohomogeneity one

Joint work with Hiroshi Tamaru (Hiroshima University)

The setup

 M = G/K connected irreducible Riemannian symmetric space of noncompact type
 G noncompact semisimple real Lie group
 K maximal compact subgroup of G
 o ∈ M with K · o = o

The setup

 M = G/K connected irreducible Riemannian symmetric space of noncompact type
 G noncompact semisimple real Lie group
 K maximal compact subgroup of G
 o ∈ M with K · o = o

► *H* connected closed subgroup of *G* acting on *M* with cohomogeneity one

Berndt-Tamaru 2010: Assume that H acts on M with cohomogeneity one. Then one of the following statements holds: 1. The orbits of H form a Riemannian foliation on M;

Berndt-Tamaru 2010: Assume that H acts on M with cohomogeneity one. Then one of the following statements holds:

- 1. The orbits of H form a Riemannian foliation on M;
- 2. There is a totally geodesic singular orbit;

Berndt-Tamaru 2010: Assume that H acts on M with cohomogeneity one. Then one of the following statements holds:

- 1. The orbits of H form a Riemannian foliation on M;
- 2. There is a totally geodesic singular orbit;
- The action of H is orbit equivalent to the canonical extension of a cohomogeneity one action on a boundary component of M;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Berndt-Tamaru 2010: Assume that H acts on M with cohomogeneity one. Then one of the following statements holds:

- 1. The orbits of H form a Riemannian foliation on M;
- 2. There is a totally geodesic singular orbit;
- The action of H is orbit equivalent to the canonical extension of a cohomogeneity one action on a boundary component of M;
- 4. The action of H is orbit equivalent to one which is obtained by the "nilpotent construction".

The case of foliations (I)

- ► G = KAN Iwasawa decomposition
- ► M = G/K = AN solvable Lie group with left-invariant Riemannian metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The case of foliations (I)

- G = KAN Iwasawa decomposition
- ► M = G/K = AN solvable Lie group with left-invariant Riemannian metric
- Observation: Each codimension one subgroup of AN induces a cohomogeneity one action on M whose orbits form a Riemannian foliation on M

The case of foliations (I)

- G = KAN Iwasawa decomposition
- ► M = G/K = AN solvable Lie group with left-invariant Riemannian metric
- Observation: Each codimension one subgroup of AN induces a cohomogeneity one action on M whose orbits form a Riemannian foliation on M

There are two types of foliations arising in this way

The case of foliations (II)

- $\mathfrak{a} \oplus \mathfrak{n}$ Lie algebra of AN
- $\ell \subset \mathfrak{a}$ one-dimensional subspace
- $\mathfrak{s}_{\ell} = (\mathfrak{a} \ominus \ell) \oplus \mathfrak{n}$ codimension one subalgebra

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The case of foliations (II)

- $\mathfrak{a} \oplus \mathfrak{n}$ Lie algebra of AN
- $\ell \subset \mathfrak{a}$ one-dimensional subspace
- $\mathfrak{s}_\ell = (\mathfrak{a} \ominus \ell) \oplus \mathfrak{n}$ codimension one subalgebra
- S_ℓ acts on M with cohomogeneity one, induces foliation \mathcal{F}_ℓ

The case of foliations (II)

- $\mathfrak{a} \oplus \mathfrak{n}$ Lie algebra of AN
- $\ell \subset \mathfrak{a}$ one-dimensional subspace
- $\mathfrak{s}_{\ell} = (\mathfrak{a} \ominus \ell) \oplus \mathfrak{n}$ codimension one subalgebra
- S_ℓ acts on M with cohomogeneity one, induces foliation \mathcal{F}_ℓ

- ▶ All orbits of \mathcal{F}_{ℓ} are isometrically congruent to each other
- Special case: Horosphere foliations

The case of foliations (III)

- $\blacktriangleright \ \mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$
- $\alpha_1, \ldots, \alpha_r$ simple roots
- $\ell \subset \mathfrak{g}_{\alpha_i}$ one-dimensional subspace
- $\mathfrak{s}_i = \mathfrak{a} \oplus (\mathfrak{n} \ominus \ell)$ codimension one subalgebra

The case of foliations (III)

- $\blacktriangleright \ \mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$
- $\alpha_1, \ldots, \alpha_r$ simple roots
- $\ell \subset \mathfrak{g}_{\alpha_i}$ one-dimensional subspace
- ▶ $\mathfrak{s}_i = \mathfrak{a} \oplus (\mathfrak{n} \ominus \ell)$ codimension one subalgebra
- S_i acts on M with cohomogeneity one, induces foliation \mathcal{F}_i

The case of foliations (III)

- $\blacktriangleright \ \mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha}$
- $\alpha_1, \ldots, \alpha_r$ simple roots
- $\ell \subset \mathfrak{g}_{\alpha_i}$ one-dimensional subspace
- ▶ $\mathfrak{s}_i = \mathfrak{a} \oplus (\mathfrak{n} \ominus \ell)$ codimension one subalgebra
- S_i acts on M with cohomogeneity one, induces foliation \mathcal{F}_i

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• \mathcal{F}_i has exactly one minimal orbit

The case of foliations (IV)

Berndt-Tamaru 2003: Let M be a connected irreducible Riemannian symmetric space of noncompact type. Assume that Hacts on M with cohomogeneity one such that the orbits form a Riemannian foliation \mathcal{F} on M. Then \mathcal{F} is congruent to one of the foliations \mathcal{F}_{ℓ} or \mathcal{F}_{i} .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Totally geodesic singular orbit

Berndt-Tamaru 2004: *F* is a totally geodesic singular orbit of a cohomogeneity one action on $M \iff$

- *F* reflective and rank $F^{\perp} = 1$, or
- F is one of the following totally geodesic non-reflective submanifolds:

F	М	dim F	dim M
$\mathbb{C}H^2$	G_{2}^{2}/SO_{4}	4	8
$SL_3(\mathbb{R})/SO_3$	G_{2}^{2}/SO_{4}	5	8
G_2^2/SO_4	<i>SO</i> ^o _{3,4} / <i>SO</i> ₃ <i>SO</i> ₄	8	12
$SL_3(\mathbb{C})/SU_3$	$G_2^{\mathbb{C}}/G_2$	8	14
$G_2^{\mathbb{C}}/G_2$	$SO_7^{\mathbb{C}}/SO_7$	14	21

- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
- a maximal abelian subspace of p
- restricted root space decomposition

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \left(\bigoplus_{lpha \in \mathbf{\Sigma}} \mathfrak{g}_{lpha}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A set of simple roots for Σ

- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
- a maximal abelian subspace of p
- restricted root space decomposition

$$\mathfrak{g} = \mathfrak{g}_{\mathbf{0}} \oplus \left(\bigoplus_{lpha \in \mathbf{\Sigma}} \mathfrak{g}_{lpha}
ight)$$

- Λ set of simple roots for Σ
- Φ subset of Λ , $\Sigma_{\Phi} = \Sigma \cap \operatorname{span}\{\Phi\}$
- $\mathfrak{l}_{\Phi} = \mathfrak{g}_0 \oplus \left(\bigoplus_{\alpha \in \Sigma_{\Phi}} \mathfrak{g}_{\alpha}\right) , \ \mathfrak{n}_{\Phi} = \bigoplus_{\alpha \in \Sigma^+ \setminus \Sigma_{\Phi}^+} \mathfrak{g}_{\alpha}$ \mathfrak{l}_{Φ} reductive subalgebra, \mathfrak{n}_{Φ} nilpotent subalgebra

- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
- a maximal abelian subspace of p
- restricted root space decomposition

$$\mathfrak{g} = \mathfrak{g}_{\mathbf{0}} \oplus \left(\bigoplus_{lpha \in \mathbf{\Sigma}} \mathfrak{g}_{lpha}
ight)$$

- Λ set of simple roots for Σ
- Φ subset of Λ , $\Sigma_{\Phi} = \Sigma \cap \operatorname{span}\{\Phi\}$
- ► $\mathfrak{l}_{\Phi} = \mathfrak{g}_0 \oplus \left(\bigoplus_{\alpha \in \Sigma_{\Phi}} \mathfrak{g}_{\alpha}\right) , \ \mathfrak{n}_{\Phi} = \bigoplus_{\alpha \in \Sigma^+ \setminus \Sigma_{\Phi}^+} \mathfrak{g}_{\alpha}$ \mathfrak{l}_{Φ} reductive subalgebra, \mathfrak{n}_{Φ} nilpotent subalgebra
- q_Φ = l_Φ ⊕ n_Φ parabolic subalgebra; [q_Φ, n_Φ] ⊂ n_Φ (Chevalley decomposition)

- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ Cartan decomposition
- a maximal abelian subspace of p
- restricted root space decomposition

$$\mathfrak{g} = \mathfrak{g}_{\mathbf{0}} \oplus \left(\bigoplus_{lpha \in \mathbf{\Sigma}} \mathfrak{g}_{lpha}
ight)$$

- Λ set of simple roots for Σ
- Φ subset of Λ , $\Sigma_{\Phi} = \Sigma \cap \operatorname{span}\{\Phi\}$
- ► $\mathfrak{l}_{\Phi} = \mathfrak{g}_0 \oplus \left(\bigoplus_{\alpha \in \Sigma_{\Phi}} \mathfrak{g}_{\alpha}\right) , \ \mathfrak{n}_{\Phi} = \bigoplus_{\alpha \in \Sigma^+ \setminus \Sigma_{\Phi}^+} \mathfrak{g}_{\alpha}$ \mathfrak{l}_{Φ} reductive subalgebra, \mathfrak{n}_{Φ} nilpotent subalgebra
- q_Φ = l_Φ ⊕ n_Φ parabolic subalgebra; [q_Φ, n_Φ] ⊂ n_Φ (Chevalley decomposition)
- \blacktriangleright Every parabolic subalgebra of ${\mathfrak g}$ is conjugate to ${\mathfrak q}_\Phi$ for some subset $\Phi\subset\Lambda$

- $\mathfrak{a}_{\Phi} = \cap_{\alpha \in \Phi} \ker \alpha$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$ \mathfrak{m}_{Φ} reductive subalgebra, \mathfrak{a}_{Φ} abelian subalgebra
- $\begin{array}{l} \bullet \ \mathfrak{q}_{\Phi} = \mathfrak{m}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi} \ \textbf{(Langlands decomposition)} \\ [\mathfrak{q}_{\Phi}, \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}] \subset \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi} \end{array}$

- $\mathfrak{a}_{\Phi} = \cap_{\alpha \in \Phi} \ker \alpha$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$ \mathfrak{m}_{Φ} reductive subalgebra, \mathfrak{a}_{Φ} abelian subalgebra
- ► $q_{\Phi} = \mathfrak{m}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ (Langlands decomposition) $[q_{\Phi}, \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}] \subset \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$

 $\begin{array}{l} \blacktriangleright \hspace{0.1cm} \mathfrak{k}_{\Phi} = \mathfrak{k} \cap \mathfrak{q}_{\Phi} = \mathfrak{k} \cap \mathfrak{m}_{\Phi} \\ [\mathfrak{k}_{\Phi}, \mathfrak{m}_{\Phi}] \subset \mathfrak{m}_{\Phi}, \ [\mathfrak{k}_{\Phi}, \mathfrak{a}_{\Phi}] = \{0\}, \ [\mathfrak{k}_{\Phi}, \mathfrak{n}_{\Phi}] \subset \mathfrak{n}_{\Phi} \end{array}$

- $\mathfrak{a}_{\Phi} = \cap_{\alpha \in \Phi} \ker \alpha$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$ \mathfrak{m}_{Φ} reductive subalgebra, \mathfrak{a}_{Φ} abelian subalgebra
- ▶ $q_{\Phi} = \mathfrak{m}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ (Langlands decomposition) $[q_{\Phi}, \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}] \subset \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$
- $\begin{array}{l} \bullet \hspace{0.1cm} \mathfrak{k}_{\Phi} = \mathfrak{k} \cap \mathfrak{q}_{\Phi} = \mathfrak{k} \cap \mathfrak{m}_{\Phi} \\ [\mathfrak{k}_{\Phi}, \mathfrak{m}_{\Phi}] \subset \mathfrak{m}_{\Phi}, \hspace{0.1cm} [\mathfrak{k}_{\Phi}, \mathfrak{a}_{\Phi}] = \{0\}, \hspace{0.1cm} [\mathfrak{k}_{\Phi}, \mathfrak{n}_{\Phi}] \subset \mathfrak{n}_{\Phi} \end{array}$
- B_Φ = M_Φ · o semisimple symmetric space with rank equal to |Φ|, totally geodesic in M, boundary component of M w.r.t. maximal Satake compactification

(日) (同) (三) (三) (三) (○) (○)

- $A_{\Phi} \cdot o = \mathbb{E}^{r-|\Phi|}$ Euclidean space, totally geodesic in M
- $L_{\Phi} \cdot o = F_{\Phi} = B_{\Phi} \times \mathbb{E}^{r-|\Phi|}$ totally geodesic in M

- $\mathfrak{a}_{\Phi} = \cap_{\alpha \in \Phi} \ker \alpha$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$ \mathfrak{m}_{Φ} reductive subalgebra, \mathfrak{a}_{Φ} abelian subalgebra
- ▶ $q_{\Phi} = \mathfrak{m}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ (Langlands decomposition) $[q_{\Phi}, \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}] \subset \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$
- $\begin{array}{l} \bullet \hspace{0.1cm} \mathfrak{k}_{\Phi} = \mathfrak{k} \cap \mathfrak{q}_{\Phi} = \mathfrak{k} \cap \mathfrak{m}_{\Phi} \\ [\mathfrak{k}_{\Phi}, \mathfrak{m}_{\Phi}] \subset \mathfrak{m}_{\Phi}, \hspace{0.1cm} [\mathfrak{k}_{\Phi}, \mathfrak{a}_{\Phi}] = \{0\}, \hspace{0.1cm} [\mathfrak{k}_{\Phi}, \mathfrak{n}_{\Phi}] \subset \mathfrak{n}_{\Phi} \end{array}$
- B_Φ = M_Φ · o semisimple symmetric space with rank equal to |Φ|, totally geodesic in M, boundary component of M w.r.t. maximal Satake compactification
- $A_{\Phi} \cdot o = \mathbb{E}^{r |\Phi|}$ Euclidean space, totally geodesic in M
- $L_{\Phi} \cdot o = F_{\Phi} = B_{\Phi} \times \mathbb{E}^{r-|\Phi|}$ totally geodesic in M
- $M = B_{\Phi} \times \mathbb{E}^{r-|\Phi|} \times N_{\Phi}$ (horospherical decomposition)

Basic example: Extension of $S^1\text{-}action$ on \mathbb{R}^2 to $S^1\times\mathbb{R}\text{-}action$ on \mathbb{R}^3

Basic example: Extension of $S^1\text{-}action$ on \mathbb{R}^2 to $S^1\times\mathbb{R}\text{-}action$ on \mathbb{R}^3

▶ $H_{\Phi} \subset I^{o}(B_{\Phi}) \subset M_{\Phi}$ acting on B_{Φ} with cohomogeneity one

• $\mathfrak{h} = \mathfrak{h}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ subalgebra of \mathfrak{q}_{Φ}

Basic example: Extension of $S^1\text{-}action$ on \mathbb{R}^2 to $S^1\times\mathbb{R}\text{-}action$ on \mathbb{R}^3

- ▶ $H_{\Phi} \subset I^{o}(B_{\Phi}) \subset M_{\Phi}$ acting on B_{Φ} with cohomogeneity one
- $\blacktriangleright \ \mathfrak{h} = \mathfrak{h}_\Phi \oplus \mathfrak{a}_\Phi \oplus \mathfrak{n}_\Phi \text{ subalgebra of } \mathfrak{q}_\Phi$

H acts on M with cohomogeneity one

Basic example: Extension of S^1 -action on \mathbb{R}^2 to $S^1 imes \mathbb{R}$ -action on \mathbb{R}^3

- $H_{\Phi} \subset I^{o}(B_{\Phi}) \subset M_{\Phi}$ acting on B_{Φ} with cohomogeneity one
- $\mathfrak{h} = \mathfrak{h}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ subalgebra of \mathfrak{q}_{Φ}

H acts on M with cohomogeneity one

Rank reduction - Such a cohomogeneity one action can be constructed by a CANONICAL EXTENSION OF A COHOMOGENEITY ONE ACTION ON A BOUNDARY COMPONENT

Nilpotent construction

Nilpotent construction

•
$$\Lambda = \{\alpha_1, \dots, \alpha_r\}, \{H^1, \dots, H^r\}$$
 dual basis of Λ in \mathfrak{a}
• $\Phi_j = \Lambda \setminus \{\alpha_j\}$: Put $\mathfrak{q}_j = \mathfrak{q}_{\Phi_j}, \mathfrak{n}_j = \mathfrak{n}_{\Phi_j}$, etcetera
• $\mathfrak{n}_j^{\nu} = \bigoplus_{\alpha \in \Sigma^+ \setminus \Sigma_j^+, \alpha(H^j) = \nu} \mathfrak{g}_{\alpha}$
• $\mathfrak{n}_j = \bigoplus_{\nu > 0} \mathfrak{n}_j^{\nu}$ gradation generated by \mathfrak{n}_j^1

Assume that

▶
$$\mathfrak{v} \subset \mathfrak{n}_j^1$$
; define $\mathfrak{n}_{j,\mathfrak{v}} = \mathfrak{n}_j \ominus \mathfrak{v}$ subalgebra of \mathfrak{n}_j

•
$$N^o_{L_j}(\mathfrak{n}_{j,\mathfrak{v}}) = \theta N^o_{L_j}(\mathfrak{v})$$
 acts transitively on $F_j = B_j imes \mathbb{E}$

► $N^o_{L_j \cap K}(v)$ acts transitively on the unit sphere in v if dim $v \ge 2$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Nilpotent construction

•
$$\Lambda = \{\alpha_1, \dots, \alpha_r\}, \{H^1, \dots, H^r\}$$
 dual basis of Λ in \mathfrak{a}
• $\Phi_j = \Lambda \setminus \{\alpha_j\}$: Put $\mathfrak{q}_j = \mathfrak{q}_{\Phi_j}, \mathfrak{n}_j = \mathfrak{n}_{\Phi_j}$, etcetera
• $\mathfrak{n}_j^{\nu} = \bigoplus_{\alpha \in \Sigma^+ \setminus \Sigma_j^+, \alpha(H^j) = \nu} \mathfrak{g}_{\alpha}$
• $\mathfrak{n}_j = \bigoplus_{\nu > 0} \mathfrak{n}_j^{\nu}$ gradation generated by \mathfrak{n}_j^1

Assume that

▶
$$\mathfrak{v} \subset \mathfrak{n}_j^1$$
; define $\mathfrak{n}_{j,\mathfrak{v}} = \mathfrak{n}_j \ominus \mathfrak{v}$ subalgebra of \mathfrak{n}_j

•
$$N^o_{L_j}(\mathfrak{n}_{j,\mathfrak{v}}) = \theta N^o_{L_j}(\mathfrak{v})$$
 acts transitively on $F_j = B_j imes \mathbb{E}$

▶ $N^o_{L_j \cap K}(v)$ acts transitively on the unit sphere in v if dim $v \ge 2$ Then

$$H_{j,\mathfrak{v}} = N^o_{L_j}(\mathfrak{n}_{j,\mathfrak{v}}) N_{j,\mathfrak{v}}$$
 acts on M with cohomogeneity one

•
$$M = G_2^2 / SO_4$$
, dim $M = 8$, rank $M = 2$

• root system Σ is of type G_2 :

~____

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\begin{split} \mathbf{\Sigma}^+ &= \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2\} \\ \mathbf{D} & \mathfrak{n}_1^1 = \mathfrak{g}_{\alpha_1} \oplus \mathfrak{g}_{\alpha_1 + \alpha_2} \cong \mathbb{R}^2 \\ \mathbf{D} & \mathfrak{n}_1^2 = \mathfrak{g}_{2\alpha_1 + \alpha_2} \cong \mathbb{R} \\ \mathbf{D} & \mathfrak{n}_1^3 = \mathfrak{g}_{3\alpha_1 + \alpha_2} \oplus \mathfrak{g}_{3\alpha_1 + 2\alpha_2} \cong \mathbb{R}^2 \\ \mathbf{D} & \mathfrak{n}_1 = \mathfrak{n}_1^1 \oplus \mathfrak{n}_1^2 \oplus \mathfrak{n}_1^3 \end{split}$$

$$\Sigma^{+} = \{ \alpha_{1}, \alpha_{2}, \alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2} \}$$

$$\mathfrak{n}_{1}^{1} = \mathfrak{g}_{\alpha_{1}} \oplus \mathfrak{g}_{\alpha_{1} + \alpha_{2}} \cong \mathbb{R}^{2}$$

$$\mathfrak{n}_{1}^{2} = \mathfrak{g}_{2\alpha_{1} + \alpha_{2}} \cong \mathbb{R}$$

$$\mathfrak{n}_{1}^{3} = \mathfrak{g}_{3\alpha_{1} + \alpha_{2}} \oplus \mathfrak{g}_{3\alpha_{1} + 2\alpha_{2}} \cong \mathbb{R}^{2}$$

$$\mathfrak{n}_{1} = \mathfrak{n}_{1}^{1} \oplus \mathfrak{n}_{1}^{2} \oplus \mathfrak{n}_{1}^{3}$$

$$\mathfrak{l}_{1} = \mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{\alpha_{2}} \cong \mathfrak{sl}_{2}(\mathbb{R}) \oplus \mathbb{R}$$

$$\mathfrak{k}_{1} = \mathfrak{k}_{\alpha_{2}} \cong \mathfrak{so}_{2}$$

$$\begin{split} \mathbf{\Sigma}^{+} &= \{\alpha_{1}, \alpha_{2}, \alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}\} \\ \mathbf{D} & \mathfrak{n}_{1}^{1} = \mathfrak{g}_{\alpha_{1}} \oplus \mathfrak{g}_{\alpha_{1} + \alpha_{2}} \cong \mathbb{R}^{2} \\ \mathbf{D} & \mathfrak{n}_{1}^{2} = \mathfrak{g}_{2\alpha_{1} + \alpha_{2}} \cong \mathbb{R} \\ \mathbf{D} & \mathfrak{n}_{1}^{3} = \mathfrak{g}_{3\alpha_{1} + \alpha_{2}} \oplus \mathfrak{g}_{3\alpha_{1} + 2\alpha_{2}} \cong \mathbb{R}^{2} \\ \mathbf{D} & \mathfrak{n}_{1} = \mathfrak{n}_{1}^{1} \oplus \mathfrak{n}_{1}^{2} \oplus \mathfrak{n}_{1}^{3} \\ \mathbf{D} & \mathfrak{l}_{1} = \mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{\alpha_{2}} \cong \mathfrak{sl}_{2}(\mathbb{R}) \oplus \mathbb{R} \\ \mathbf{D} & \mathfrak{k}_{1} = \mathfrak{k}_{\alpha_{2}} \cong \mathfrak{so}_{2} \\ \mathbf{D} & \mathfrak{h}_{1,\mathfrak{n}_{1}^{1}} = \mathfrak{g}_{-\alpha_{2}} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{\alpha_{2}} \oplus \mathfrak{g}_{2\alpha_{1} + \alpha_{2}} \oplus \mathfrak{g}_{3\alpha_{1} + \alpha_{2}} \oplus \mathfrak{g}_{3\alpha_{1} + 2\alpha_{2}} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

М	G	K	<i>K</i> ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO_{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	$Sp_{1,n}$	Sp ₁ Sp _n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_4^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

М	G	K	<i>K</i> ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO_{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	$Sp_{1,n}$	Sp_1Sp_n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_4^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

▶
$$\Lambda = \{\alpha\}, \ \Phi = \emptyset, \ \mathfrak{l}_{\Phi} = \mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}, \ \mathfrak{n}_{\Phi} = \mathfrak{n} = \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$$

▶ $\mathfrak{q}_{\Phi} = \mathfrak{g}_0 \oplus \mathfrak{n} = \mathfrak{k}_0 \oplus \mathfrak{a} \oplus \mathfrak{n}$ minimal parabolic subalgebra

М	G	K	<i>K</i> ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO_{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	Sp _{1,n}	Sp_1Sp_n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_4^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

<u>PROBLEM</u>: Find all *k*-dimensional ($k \ge 2$) linear subspaces v of g_{α} for which there exists a subgroup of K_0 acting transitively on the unit sphere in v

М	G	K	K ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO_{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	<i>Sp</i> _{1,<i>n</i>}	Sp ₁ Sp _n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_4^{-20}	Spin ₉	Spin ₇	\square	$\mathbb{O}\oplus\mathbb{R}^7$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Berndt-Tamaru 2007:

• \mathbb{R} : any linear subspace $\mathfrak{v} \subset \mathbb{R}^{n-1}$

М	G	K	K ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO _{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	$Sp_{1,n}$	Sp_1Sp_n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_{4}^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

Berndt-Tamaru 2007:

- \mathbb{R} : any linear subspace $\mathfrak{v} \subset \mathbb{R}^{n-1}$
- \mathbb{C} : any linear subspace $\mathfrak{v} \subset \mathbb{C}^{n-1}$ with constant Kähler angle

М	G	K	K ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO _{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^n$	$Sp_{1,n}$	Sp_1Sp_n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_{4}^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

Berndt-Tamaru 2007:

- \mathbb{R} : any linear subspace $\mathfrak{v} \subset \mathbb{R}^{n-1}$
- \mathbb{C} : any linear subspace $\mathfrak{v} \subset \mathbb{C}^{n-1}$ with constant Kähler angle
- \mathbb{O} : any linear subspace $v \subset \mathbb{O}$ of dimension $k \in \{2, 3, 4, 6, 7\}$

М	G	K	K ₀	\mathfrak{g}_{lpha}	n
$\mathbb{R}H^n$	$SO_{1,n}^o$	SOn	SO_{n-1}	\mathbb{R}^{n-1}	\mathbb{R}^{n-1}
$\mathbb{C}H^n$	$SU_{1,n}$	Un	U_{n-1}	\mathbb{C}^{n-1}	$\mathbb{C}^{n-1}\oplus\mathbb{R}$
$\mathbb{H}H^{n}$	$Sp_{1,n}$	Sp_1Sp_n	Sp_1Sp_{n-1}	\mathbb{H}^{n-1}	$\mathbb{H}^{n-1}\oplus\mathbb{R}^3$
$\mathbb{O}H^2$	F_{4}^{-20}	Spin ₉	Spin ₇	\mathbb{O}	$\mathbb{O}\oplus\mathbb{R}^7$

Berndt-Tamaru 2007:

- \mathbb{R} : any linear subspace $\mathfrak{v} \subset \mathbb{R}^{n-1}$
- \mathbb{C} : any linear subspace $\mathfrak{v} \subset \mathbb{C}^{n-1}$ with constant Kähler angle
- \mathbb{O} : any linear subspace $v \subset \mathbb{O}$ of dimension $k \in \{2, 3, 4, 6, 7\}$
- ▶ II: some linear subspaces v ⊂ IIⁿ⁻¹ with constant quaternionic Kähler angle (no complete classification)

Open problems

1. Canonical extensions from reducible boundary components. Basic problem: Classify cohomogeneity one actions on $\mathbb{R}H^2 \times \mathbb{R}H^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Open problems

- 1. Canonical extensions from reducible boundary components. Basic problem: Classify cohomogeneity one actions on $\mathbb{R}H^2 \times \mathbb{R}H^2$.
- 2. Two cohomogeneity one actions are known which can be constructed with the "nilpotent" method but not with any other method: one in G_2^2/SO_4 , the other one in $G_2^{\mathbb{C}}/G_2$. Are there other examples?

- ロ ト - 4 回 ト - 4 □ - 4