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H = G/K homogeneous space with

G=SL(R), K= { < cos(s) Si”(5)> ‘ se ]R} = S0,

—sin(s) cos(s)
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Real hyperbolic plane (1)

» There is a unique decomposition

(2 0) = (0 S (=) ) (6 3)

> Iwasawa decomposition SLp(R) W AN

» K = 50, compact, A= R abelian, N 2 R nilpotent

» H=G/K 50 AN solvable Lie group with left-invariant
Riemannian metric



Real hyperbolic plane (111)

Orbit structures (Poincaré model)

K-orbits A-orbits N-orbits
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Generalize this to
» SL>(R) ~» G noncompact real semisimple Lie group
» SO, ~~ K maximal compact subgroup of G
» H ~» G/K Riemannian symmetric space of noncompact type

» action ~» cohomogeneity one

Joint work with Hiroshi Tamaru (Hiroshima University)
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The setup

» M = G/K connected irreducible Riemannian symmetric space
of noncompact type
G noncompact semisimple real Lie group
K maximal compact subgroup of G
o€ Mwith K-o=o0

» H connected closed subgroup of G acting on M with
cohomogeneity one
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Berndt-Tamaru 2010: Assume that H acts on M with
cohomogeneity one. Then one of the following statements holds:

1. The orbits of H form a Riemannian foliation on M;

2. There is a totally geodesic singular orbit;

3. The action of H is orbit equivalent to the canonical extension
of a cohomogeneity one action on a boundary component of
M,’

4. The action of H is orbit equivalent to one which is obtained
by the “nilpotent construction”.
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G = KAN lIwasawa decomposition

M = G/K = AN solvable Lie group with left-invariant
Riemannian metric

v

Observation: Each codimension one subgroup of AN induces
a cohomogeneity one action on M whose orbits form a
Riemannian foliation on M

v

v

There are two types of foliations arising in this way
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The case of foliations (1)

> a®n Lie algebra of AN

» ¢ C a one-dimensional subspace

v

sy = (a & /) ®n codimension one subalgebra

v

Sy acts on M with cohomogeneity one, induces foliation F;

v

All orbits of F; are isometrically congruent to each other

v

Special case: Horosphere foliations
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v

n= @aez‘*' Ja
> ai,...,q, simple roots

» ¢ C gq; one-dimensional subspace

v

s; = a® (ne () codimension one subalgebra

v

S; acts on M with cohomogeneity one, induces foliation F;

v

Fi has exactly one minimal orbit



The case of foliations (1V)

Berndt-Tamaru 2003: Let M be a connected irreducible
Riemannian symmetric space of noncompact type. Assume that H
acts on M with cohomogeneity one such that the orbits form a
Riemannian foliation F on M. Then F is congruent to one of the
foliations Fy or F;.



Totally geodesic singular orbit

Berndt-Tamaru 2004: F is a totally geodesic singular orbit of a

cohomogeneity one action on M <—

» F reflective and rank F+ =1, or

> F is one of the following totally geodesic non-reflective

submanifolds:

[ F [ M [ dimF [ dimM |
CH? G2/S0, 4 8
SL3(R)/SOs | G2/50, 5 8
G2/S04 508,/505504 | 8 12
SL3(C)/SUs GéC/Gz 8 14
G /G SO% /S0, 14 21
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v

qe = lo @ ne parabolic subalgebra; [qo, ne] C ne
(Chevalley decomposition)

v

Every parabolic subalgebra of g is conjugate to q¢ for some
subset & C A
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Parabolic subalgebras (1)

>

v

ap = Naeokera , mey = lp © agp

me reductive subalgebra, a¢ abelian subalgebra

qo = Mg @ aep @ ne (Langlands decomposition)

[de, ap ® o] C ap & ne

to =tNgo =tNmo

[’E¢,m¢] C mg, [Eq;,aq)] = {0}, [fq;,l‘lq;] C ne

By = Mg - 0 semisimple symmetric space with rank equal to

|®|, totally geodesic in M, boundary component of M w.r.t.
maximal Satake compactification

Ao - 0 = E"1®l Euclidean space, totally geodesic in M
Ly -0 = Fp = By X Er—I®l totally geodesic in M
M = By x E"~I®°l x Ny (horospherical decomposition)



Canonical extension

Basic example: Extension of S'-action on R? to S! x R-action on
R?’



Canonical extension

Basic example: Extension of S'-action on R? to S! x R-action on
R3

» He C 1°(Bp) C Mg acting on Bg with cohomogeneity one
» h=bhe @ ae @ ne subalgebra of qo



Canonical extension

Basic example: Extension of S'-action on R? to S! x R-action on
R3

» He C 1°(Bp) C Mg acting on Bg with cohomogeneity one
» h=bhe @ ae @ ne subalgebra of qo

H acts on M with cohomogeneity one



Canonical extension

Basic example: Extension of S'-action on R? to S! x R-action on
R3

» He C 1°(Bp) C Mg acting on Bg with cohomogeneity one
» h=bhe @ ae @ ne subalgebra of qo

H acts on M with cohomogeneity one

Rank reduction - Such a cohomogeneity one action can be
constructed by a CANONICAL EXTENSION OF A
COHOMOGENEITY ONE ACTION ON A BOUNDARY COMPONENT
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v

AN={a1,...,a,}, {H', ..., H"} dual basis of Ain a
(Dj =A \ {Oéj}i Put 4j = do;, Nj = No;, etcetera

v

>y = @aew\zjﬂa(m):y Ya

»n =0, njl-’ gradation generated by n}
Assume that

> v C n}; define n;, = n; © v subalgebra of n;

> o B = o 1ti s = .

NLj(n“,) 9NLj(n) acts transitively on F; = B; x E

> ijmK(n) acts transitively on the unit sphere in v if dimv > 2

Then

Hjo = ij(nj7n)Nj,U acts on M with cohomogeneity one



Nilpotent construction - An example (1)
» M = G2/SO4, dim M = 8, rank M = 2
> root system Y is of type Go:
==
aq &%)
» ¥t = {a1, a0, 01 + ap, 201 + az,3a1 + @z, 301 + 20}
» A= {Oq, Ozg}

» &1 = A\ {aa} = {az}



Nilpotent construction - An example (1)
» T = {a1, a2, 1 + 2,201 + a2, 301 + ag,3a1 + 200}
> 0 = oy D Gaygta, = R?
> 05 = goartar =R

3

~ ™2
> N = @3a1+ D 9301 +200 = R

» np =nl ®n®n}
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Nilpotent construction - An example (1)

>

>

>

s+ — {a1,az, 1 + a2, 2a1 + g, 301 + ag, 301 + 200}
0} = oy @ Gay o, = R

1% = @20+ar =R

13 = G301t D 0307420, = R?

n =ni &n? ®n3

1 =00, ® 00D ga, Zsh(R)OR

b = £y, =507

hlv“% = 0—a; P90 D Gy @ 201402 D 9301 +ar D 93a1+20

Hl,n% acts on G3/SO, with cohomogeneity one and singular
orbit Hy .1 - o with codimension 2
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M |6 [K [k EE
RH" [ S0%, | SO, SOp_1 R [ R
CH" | SUr, | U, Un_1 crticrleR
HH" | Sp1n | Sp1Spn | Sp1Spn—1 | H™! | H" ' ® R3
OH? | F,2° | Sping | Spin; ©) 0 & R?

»A={a}, =0, lo =go =t Da, ne =n=ga D g2a
> o = go b n =ty ® ad n minimal parabolic subalgebra

PROBLEM: Find all k-dimensional (k > 2) linear subspaces v of g,
for which there exists a subgroup of Ky acting transitively on the
unit sphere in v
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M |6 K [k EE
RH" | SO?,, [ SO, SOh_1 RT-T [ RAT
CH" | SUsp | U, Up_1 crt|crlaeR
HH" | Sp1n | Sp1Spn | Sp1Spn—1 | H™! | H" 1 @ R3
OH? | F; % | Sping | Spins 0) O ¢ R?

Berndt-Tamaru 2007:
» R: any linear subspace v C R"1
» C: any linear subspace v C C"~! with constant Kihler angle
» O: any linear subspace v C O of dimension k € {2,3,4,6,7}

» H: some linear subspaces v C H"~! with constant
quaternionic Kahler angle (no complete classification)
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Open problems

1. Canonical extensions from reducible boundary components.
Basic problem: Classify cohomogeneity one actions on
RH? x RH?.

2. Two cohomogeneity one actions are known which can be
constructed with the “nilpotent” method but not with any
other method: one in G2/SO4, the other one in G5 /G,. Are
there other examples?



