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CIEM - CONICET

Conference in Geometry and Global Analysis
Celebrating P. Gilkey’s 65th Birthday
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Metric connections

Given a pseudo-riemannian manifold (M, g) a classical problem
was to study the existence of flat connections ∇ on M such that:

1 ∇g = 0,

2 ∇ has the same geodesics as the Levi-Civita connections.

Condition 2 is equivalent to:

the torsion T of ∇ is totally skew-symmetric.

Main references are:
J. Wolf, On the geometry and classification of absolute parallelisms
I,II J. Differ. Geom. (1972).
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Theorem (J. Wolf, 1972)

Let (M, g ,∇), g a pseudo-riemannian metric and ∇ a connection
on M with trivial holonomy. If moreover the connection is required
to be complete with parallel torsion, the resulting manifolds are of
the form Γ\G where

(i) G is a simply connected Lie group and Γ a discrete subgroup
of G ,

(ii) the pseudo-Riemannian metric g is induced from a
bi-invariant metric on G ,

(iii) ∇ is induced by the affine connection corresponding to the
parallelism of left translation on G.

Moreover he also provided a complete classification of all complete
pseudo-Riemannian manifolds admitting such connections in the
reductive case.
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Complex connections

Aim: To investigate an analogue of the previous problem in the
case of almost complex manifolds instead of pseudo-Riemannian
manifolds.

Given an almost complex manifold (M, J), we will be interested in
studying complex connections ∇ on M with trivial holonomy and
such that:

1 ∇J = 0,

2 the torsion T is either of type (2, 0) or of type (1, 1) with
respect to J.

Motivation: Quotients of Lie groups Γ\G , where J is induced by
either a bi-invariant or an abelian complex structure have such
connections.
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General results

Let ∇ be an affine connection on a manifold M with torsion tensor
field T , where T (X ,Y ) = ∇X Y −∇Y X − [X ,Y ], for all X ,Y
vector fields on M.

Given an almost complex structure J on M the torsion T of a
connection ∇ on the almost complex manifold (M, J) is said to be:

of type (1, 1) if T (JX , JY ) = T (X ,Y ),

of type (2, 0) if T (JX ,Y ) = JT (X ,Y ),

of type (2, 0) + (0, 2) if T (JX , JY ) = −T (X ,Y ),

for all vector fields X ,Y on M.

One says that ∇ is a complex connection when the tensor field J is
parallel with respect to ∇ (∇J = 0).
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We denote by N the Nijenhuis tensor of J, defined by

N(X ,Y ) := [JX , JY ]− J[X , JY ]− J[JX ,Y ]− [X ,Y ].

Newlander-Nirenberg (1957): J is integrable if and only if N ≡ 0.
Recalling that (∇X J) Y = ∇X (JY )− J (∇X Y ) , we obtain the
following identity:

N(X ,Y ) = (∇JX J) Y − (∇JY J) X + (∇X J) JY − (∇Y J) JX

+ T (X ,Y )− T (JX , JY ) + J (T (JX ,Y ) + T (X , JY )) ,

for all X ,Y vector fields on M.
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Lemma

Let (M, J) be an almost complex manifold with a complex
connection ∇. Then J is integrable if and only if the torsion T of
∇ satisfies:

T (X ,Y )− T (JX , JY ) + J (T (JX ,Y ) + T (X , JY )) = 0,

for all vector fields X ,Y on M.

Corollary

Let (M, J) be an almost complex manifold.

(i) If ∇J = 0 and T is of type (1, 1) then J is integrable.

(ii) If ∇J = 0 and T is of type (2, 0), then J is integrable.

(iii) If ∇J = 0, T is of type (2, 0) + (0, 2) and J is integrable, then
T is of type (2, 0).
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Examples of connections as above are given by ∇1 and ∇2 defined
by

g
(
∇1

X Y ,Z
)

= g
(
∇g

X Y ,Z
)

+
1

4
(dω(X , JY ,Z ) + dω(X ,Y , JZ )) ,

g
(
∇2

X Y ,Z
)

= g
(
∇g

X Y ,Z
)
− 1

2
dω(JX ,Y ,Z ),

where ω(X ,Y ) := g(JX ,Y ) is the Kähler form corresponding to g
and J. These connections satisfy

∇1g = 0, ∇1J = 0, T 1 is of type (1, 1),

∇2g = 0, ∇2J = 0, T 2 is of type (2, 0),
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The connections ∇1 and ∇2 appearing above are known,
respectively, as the first and second canonical connection
associated to the Hermitian manifold (M, J, g).

The connection ∇2 is also known as the Chern connection, and it
is the unique connection on (M, J, g) satisfying

∇2g = 0, ∇2J = 0, T 2 is of type (2, 0).

In the almost Hermitian case, the Chern connection is the unique
complex metric connection whose torsion is of type (2, 0) + (0, 2),
equivalently, the (1, 1)-component of the torsion vanishes.
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Complex connections with trivial holonomy

Let M be an n-dimensional connected manifold and ∇ an affine
connection on M with trivial holonomy (hence flat). Then

the space P∇ of parallel vector fields on M is an
n-dimensional real vector space;

T (X ,Y ) = −[X ,Y ], for all X ,Y ∈ P∇;

P∇ es a Lie algebra if and only if T is parllel.

Lemma

Let (M, J), be a connected almost complex manifold with an affine
connection ∇ on M, Hol (∇) trivial. Then the following conditions
are equivalent:

(i) ∇J = 0;

(ii) the space P∇ of parallel vector fields is J-stable;

(iii) there exist parallel vector fields X1, . . . ,Xn, JX1, . . . , JXn,
linearly independent at every point of M.
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Complex parallelizable manifolds

We recall that a complex manifold (M, J) is called complex
parallelizable when there exist n holomorphic vector fields
Z1, . . . ,Zn, linearly independent at every point of M.

The following classical result, due to Wang, characterizes the
compact complex parallelizable manifolds.

Theorem

Every compact complex parallelizable manifold may be written as a
quotient space Γ\G of a complex Lie group by a discrete subgroup
Γ.

We prove next a result which relates the notion of complex
parallelizability with the existence of a flat complex connection
with torsion of type (2, 0).
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Proposition

Let M be a connected 2n-dimensional manifold with a complex
structure J. Then the following conditions are equivalent:

(i) there exist vector fields X1, . . . ,Xn, JX1, . . . , JXn, linearly
independent at every point of M, such that

[Xk ,Xl ] = −[JXk , JXl ], k < l , [JXk ,Xl ] = J[Xk ,Xl ], k ≤ l ,

(ii) there exist n holomorphic vector fields Z1, . . . ,Zn which are
linearly independent at every point of M (in other words,
(M, J) is complex parallelizable);

(iii) there exist n linearly independent holomorphic (1, 0)-forms
α1, . . . , αn on M such that dαi is a section of Λ2,0M for every
i ;

(iv) there exists a complex connection ∇ on M with trivial
holonomy whose torsion tensor field T is of type (2, 0).
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Corollary

Let (M, J) be a complex manifold. The following conditions are
equivalent:

(i) (M, J) is complex parallelizable;

(ii) there exists a Hermitian metric g on M such that the Chern
connection associated to (M, J, g) has trivial holonomy.

Definition : An affine connection ∇ on a connected complex
manifold (M, J) will be called a Chern-type connection if it
satisfies condition (iv) of the previous Proposition.

Isabel G. Dotti Abelian connections on complex manifolds



Corollary

Let (M, J) be a complex manifold. The following conditions are
equivalent:

(i) (M, J) is complex parallelizable;

(ii) there exists a Hermitian metric g on M such that the Chern
connection associated to (M, J, g) has trivial holonomy.

Definition : An affine connection ∇ on a connected complex
manifold (M, J) will be called a Chern-type connection if it
satisfies condition (iv) of the previous Proposition.

Isabel G. Dotti Abelian connections on complex manifolds



Corollary

Let (M, J) be a connected complex manifold and ∇ an affine
connection with trivial holonomy. Then ∇ is a Chern-type
connection on (M, J) if and only if the space P∇ of parallel vector
fields is J-stable and J satisfies

J[X ,Y ] = [X , JY ] for any X ,Y ∈ P∇.

Remark

Analogously to previous the Corollary, we have that the torsion T
of a complex connection ∇ with trivial holonomy is of type
(2, 0) + (0, 2) if and only if J satisfies

[JX , JY ] = −[X ,Y ] for any X ,Y ∈ P∇.
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Flat complex connections with (1, 1)-torsion

Proposition

Let M be a connected 2n-dimensional manifold with an almost
complex structure J. Then the following conditions are equivalent:

(i) there exist vector fields X1, . . . ,Xn, JX1, . . . , JXn, linearly
independent at every point of M, such that

[Xk ,Xl ] = [JXk , JXl ], [JXk ,Xl ] = −[Xk , JXl ], k < l ;

(ii) there exist n commuting vector fields Z1, . . . ,Zn which are
linearly independent sections of T 1,0M at every point of M;

(iii) there exist n linearly independent (1, 0)-forms α1, . . . , αn on
M such that dαi is a section of Λ1,1M for every i ;

(iv) there exists a complex connection ∇ on M with trivial
holonomy whose torsion tensor field T is of type (1, 1).

Moreover, any of the above conditions implies that J is integrable.
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Definition : An affine connection ∇ on a connected almost
complex manifold (M, J) will be called an abelian connection if it
satisfies condition (iv) of previous Proposition.

Corollary

Let (M, J) be a connected complex manifold and ∇ an affine
connection with trivial holonomy. Then ∇ is an abelian connection
on (M, J) if and only if the space P∇ of parallel vector fields is
J-stable and J satisfies

[JX , JY ] = [X ,Y ] for any X ,Y ∈ P∇.
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Complete complex connections with parallel torsion and
trivial holonomy

We exhibit next a large class of complex manifolds equipped with
complex connections with trivial holonomy whose torsion tensors
are of type (2, 0) or (1, 1)

We consider:

1 A connected Lie group G ,

2 a complex structure J on its Lie algebra g,

3 a g-valued bilinear form ∇ : g× g→ g,

4 a compatibility, ∇(x , Jy) = J∇(x , y).

If Γ ⊂ G is any discrete subgroup of G the induced J and ∇ on the
quotient Γ\G will be denoted J0 and ∇0 respectively.
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The left invariant affine connection ∇ on G defined by ∇X Y = 0
for all X ,Y left invariant vector fields on G is known as the
(−)-connection. This connection satisfies:

1 Its torsion T is given by T (X ,Y ) = −[X ,Y ] for all X ,Y left
invariant vector fields on G ;

2 ∇T = 0 and P∇ = g ⊂ X(G );

3 The holonomy group of ∇ is trivial, thus, ∇ is flat;

4 The geodesics of ∇ through the identity e ∈ G are Lie group
homomorphisms R→ G , therefore, ∇ is complete;

5 The parallel transport along any curve joining g ∈ G with
h ∈ G is given by the derivative of the left translation
(dLhg−1)g .
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If J is a left invariant complex structure on G , then J is parallel
with respect to the (−)-connection ∇. Hence

(Γ\G , J0) carries a complete complex connection with trivial
holonomy and parallel torsion.

In the next result we prove that the converse also holds.

Theorem

The triple (M, J,∇) where M is a connected manifold endowed
with a complex structure J and a complex connection ∇ with
trivial holonomy is equivalent to a triple (Γ\G , J0,∇0) as above if
and only if ∇ is complete and its torsion is parallel.
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Corollary

Let (M, J) be a complex manifold with a Chern-type connection
∇. If the torsion tensor field T is parallel, then:

(i) the space P∇ of parallel vector fields on M is a complex Lie
algebra and J is a bi-invariant complex structure on P∇;

(ii) if, furthermore, ∇ is complete, then (M, J,∇) is equivalent to
(Γ\G , J0,∇0), where G is a simply connected complex Lie
group and Γ ⊂ G is a discrete subgroup.

Corollary

Let (M, J, g) be a Hermitian manifold such that the associated
Chern connection ∇ is complete, has trivial holonomy and parallel
torsion. Then (M, J, g) is equivalent to a triple (Γ\G , J0, g0),
where G is a simply connected complex Lie group and g0 is
induced by a left invariant Hermitian metric on G . Furthermore,
the Chern connection on the quotient coincides with ∇0.
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Corollary

Let ∇ be an abelian connection on a connected complex manifold
(M, J) such that the torsion tensor field T is parallel. Then:

(i) the space P∇ of parallel vector fields on M is a Lie algebra
and J is an abelian complex structure on P∇;

(ii) the Lie algebra P∇ is 2-step solvable.

(iii) if, furthermore, ∇ is complete, then (M, J,∇) is equivalent to
(Γ\G , J0,∇0), where G is a simply connected 2-step solvable
Lie group equipped with a left invariant abelian complex
structure and Γ ⊂ G a discrete subgroup.

Remark

We note that a complete classification of the Lie algebras
admitting abelian complex structures is known up to dimension 6
and there are structure results for arbitrary dimensions.
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structure and Γ ⊂ G a discrete subgroup.

Remark

We note that a complete classification of the Lie algebras
admitting abelian complex structures is known up to dimension 6
and there are structure results for arbitrary dimensions.
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Examples

Example

Let N be the Heisenberg Lie group, Γ the subgroup of matrices in
N with integer entries and M the 4-dimensional compact manifold
M = (Γ\N)×S1 = (Γ×Z)\(N ×R). N ×R admits a left-invariant
abelian complex structure and therefore M inherits a complex
structure J admitting an abelian connection. On the other hand, M
is not complex parallelizable since there are only two 2-dimensional
simply connected complex Lie groups, namely C2 and Ãff(C),

where Ãff(C) is the universal cover of the group of affine motions
of C The group C2 gives rise to a torus and M would admit a
Kähler structure, which is impossible and Ãff(C) is not unimodular.
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Example

Let M = R4 with canonical coordinates (x1, x2, x3, x4) and
corresponding vector fields ∂1, . . . , ∂4. Let f (x1, x2, x3, x4) = x3x4.

Let ∇ so that

P∇ = span R{∂1, ∂2, ∂3, f ∂2 + ∂4}.

Let J

J∂1 = ∂2, J∂3 = f ∂2 + ∂4,

J∂2 = −∂1, J∂4 = f ∂1 − ∂3.

One finds that ∇ is an abelian connection on (R4, J) and T is not
parallel. Hence

(M, J,∇) is NOT equivalent to (Γ\G , J0,∇0).
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