Abelian connections on complex manifolds

Isabel G. Dotti

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Conference in Geometry and Global Analysis Celebrating P. Gilkey's 65th Birthday Facultad de Matemática-Universidad de Santiago de Compostela Dec 13-17 2010

Joint work with A. Andrada and M. L. Barberis

Outline

- Metric connections.
- Complex connections.
- General results.
- Complex connections with trivial holonomy.
- Complex parallelizable manifolds.
- Flat complex connections with (1, 1)-torsion.
- Complete complex connections with parallel torsion and trivial holonomy.
- Examples.

Given a pseudo-riemannian manifold (M, g) a classical problem was to study the existence of flat connections ∇ on M such that:

- $\nabla g = 0$,
- $\textcircled{O} \ \nabla \text{ has the same geodesics as the Levi-Civita connections.}$

Condition 2 is equivalent to:

• the torsion T of ∇ is totally skew-symmetric.

Main references are:

J. Wolf, *On the geometry and classification of absolute parallelisms* I,II J. Differ. Geom. (1972).

Given a pseudo-riemannian manifold (M, g) a classical problem was to study the existence of flat connections ∇ on M such that:

- $\nabla g = 0$,
- **2** ∇ has the same geodesics as the Levi-Civita connections.

Condition 2 is equivalent to:

• the torsion T of ∇ is totally skew-symmetric.

Main references are:

J. Wolf, *On the geometry and classification of absolute parallelisms* I,II J. Differ. Geom. (1972).

Theorem (J. Wolf, 1972)

Let (M, g, ∇) , g a pseudo-riemannian metric and ∇ a connection on M with trivial holonomy. If moreover the connection is required to be complete with parallel torsion, the resulting manifolds are of the form $\Gamma \setminus G$ where

- (i) G is a simply connected Lie group and Γ a discrete subgroup of G,
- (ii) the pseudo-Riemannian metric g is induced from a bi-invariant metric on G,
- (iii) ∇ is induced by the affine connection corresponding to the parallelism of left translation on *G*.

Moreover he also provided a complete classification of all complete pseudo-Riemannian manifolds admitting such connections in the reductive case.

Theorem (J. Wolf, 1972)

Let (M, g, ∇) , g a pseudo-riemannian metric and ∇ a connection on M with trivial holonomy. If moreover the connection is required to be complete with parallel torsion, the resulting manifolds are of the form $\Gamma \setminus G$ where

- (i) G is a simply connected Lie group and Γ a discrete subgroup of G,
- (ii) the pseudo-Riemannian metric g is induced from a bi-invariant metric on G,
- (iii) ∇ is induced by the affine connection corresponding to the parallelism of left translation on *G*.

Moreover he also provided a complete classification of all complete pseudo-Riemannian manifolds admitting such connections in the reductive case.

Aim: To investigate an analogue of the previous problem in the case of almost complex manifolds instead of pseudo-Riemannian manifolds.

Given an almost complex manifold (M, J), we will be interested in studying complex connections ∇ on M with trivial holonomy and such that:

- e the torsion T is either of type (2,0) or of type (1,1) with respect to J.

Motivation: Quotients of Lie groups $\Gamma \setminus G$, where J is induced by either a bi-invariant or an abelian complex structure have such connections.

Aim: To investigate an analogue of the previous problem in the case of almost complex manifolds instead of pseudo-Riemannian manifolds.

Given an almost complex manifold (M, J), we will be interested in studying complex connections ∇ on M with trivial holonomy and such that:

2 the torsion T is either of type (2,0) or of type (1,1) with respect to J.

Motivation: Quotients of Lie groups $\Gamma \setminus G$, where *J* is induced by either a bi-invariant or an abelian complex structure have such connections.

Aim: To investigate an analogue of the previous problem in the case of almost complex manifolds instead of pseudo-Riemannian manifolds.

Given an almost complex manifold (M, J), we will be interested in studying complex connections ∇ on M with trivial holonomy and such that:

- $\nabla J = 0$,
- **2** the torsion T is either of type (2,0) or of type (1,1) with respect to J.

Motivation: Quotients of Lie groups $\Gamma \setminus G$, where J is induced by either a bi-invariant or an abelian complex structure have such connections.

Let ∇ be an affine connection on a manifold M with torsion tensor field T, where $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$, for all X, Y vector fields on M.

Given an almost complex structure J on M the torsion T of a connection ∇ on the almost complex manifold (M, J) is said to be:

• of type (1,1) if T(JX, JY) = T(X, Y),

- of type (2,0) if T(JX, Y) = JT(X, Y),
- of type (2,0) + (0,2) if T(JX, JY) = -T(X, Y),

for all vector fields X, Y on M.

One says that ∇ is a complex connection when the tensor field J is parallel with respect to ∇ ($\nabla J = 0$).

Let ∇ be an affine connection on a manifold M with torsion tensor field T, where $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$, for all X, Y vector fields on M.

Given an almost complex structure J on M the torsion T of a connection ∇ on the almost complex manifold (M, J) is said to be:

- of type (1, 1) if T(JX, JY) = T(X, Y),
- of type (2,0) if T(JX, Y) = JT(X, Y),
- of type (2,0) + (0,2) if T(JX, JY) = -T(X, Y),

for all vector fields X, Y on M.

One says that ∇ is a complex connection when the tensor field J is parallel with respect to ∇ ($\nabla J = 0$).

Let ∇ be an affine connection on a manifold M with torsion tensor field T, where $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$, for all X, Y vector fields on M.

Given an almost complex structure J on M the torsion T of a connection ∇ on the almost complex manifold (M, J) is said to be:

- of type (1, 1) if T(JX, JY) = T(X, Y),
- of type (2,0) if T(JX, Y) = JT(X, Y),
- of type (2,0) + (0,2) if T(JX, JY) = -T(X, Y),

for all vector fields X, Y on M.

One says that ∇ is a complex connection when the tensor field J is parallel with respect to ∇ ($\nabla J = 0$).

We denote by N the Nijenhuis tensor of J, defined by

$$N(X, Y) := [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y].$$

Newlander-Nirenberg (1957): *J* is integrable if and only if $N \equiv 0$. Recalling that $(\nabla_X J) Y = \nabla_X (JY) - J (\nabla_X Y)$, we obtain the following identity:

$$N(X, Y) = (\nabla_{JX}J) Y - (\nabla_{JY}J) X + (\nabla_XJ) JY - (\nabla_YJ) JX + T(X, Y) - T(JX, JY) + J(T(JX, Y) + T(X, JY)),$$

for all X, Y vector fields on M.

We denote by N the Nijenhuis tensor of J, defined by

$$N(X, Y) := [JX, JY] - J[X, JY] - J[JX, Y] - [X, Y].$$

Newlander-Nirenberg (1957): *J* is integrable if and only if $N \equiv 0$. Recalling that $(\nabla_X J) Y = \nabla_X (JY) - J (\nabla_X Y)$, we obtain the following identity:

$$N(X, Y) = (\nabla_{JX}J) Y - (\nabla_{JY}J) X + (\nabla_X J) JY - (\nabla_Y J) JX + T(X, Y) - T(JX, JY) + J(T(JX, Y) + T(X, JY)),$$

for all X, Y vector fields on M.

Lemma

Let (M, J) be an almost complex manifold with a complex connection ∇ . Then J is integrable if and only if the torsion T of ∇ satisfies:

T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)) = 0,

for all vector fields X, Y on M.

Corollary

Let (M, J) be an almost complex manifold.
(i) If ∇J = 0 and T is of type (1,1) then J is integrable.
(ii) If ∇J = 0 and T is of type (2,0), then J is integrable.
(iii) If ∇J = 0, T is of type (2,0) + (0,2) and J is integrable, then T is of type (2,0).

Lemma

Let (M, J) be an almost complex manifold with a complex connection ∇ . Then J is integrable if and only if the torsion T of ∇ satisfies:

T(X,Y) - T(JX,JY) + J(T(JX,Y) + T(X,JY)) = 0,

for all vector fields X, Y on M.

Corollary

Let (M, J) be an almost complex manifold.
(i) If ∇J = 0 and T is of type (1,1) then J is integrable.
(ii) If ∇J = 0 and T is of type (2,0), then J is integrable.
(iii) If ∇J = 0, T is of type (2,0) + (0,2) and J is integrable, then T is of type (2,0).

A (1) > (1) = (1)

Examples of connections as above are given by ∇^1 and ∇^2 defined by

$$g\left(\nabla_X^1 Y, Z\right) = g\left(\nabla_X^g Y, Z\right) + \frac{1}{4} \left(d\omega(X, JY, Z) + d\omega(X, Y, JZ)\right),$$

$$g\left(\nabla_X^2 Y, Z\right) = g\left(\nabla_X^g Y, Z\right) - \frac{1}{2} d\omega(JX, Y, Z),$$

where $\omega(X, Y) := g(JX, Y)$ is the Kähler form corresponding to g and J. These connections satisfy

$$abla^1 g = 0, \quad
abla^1 J = 0, \quad T^1 \text{ is of type (1,1)},$$

 $abla^2 g = 0, \quad
abla^2 J = 0, \quad T^2 \text{ is of type (2,0)},$

The connections ∇^1 and ∇^2 appearing above are known, respectively, as the first and second canonical connection associated to the Hermitian manifold (M, J, g).

The connection $abla^2$ is also known as the *Chern* connection, and it is the unique connection on (M, J, g) satisfying

$$abla^2 g = 0, \quad
abla^2 J = 0, \quad T^2 ext{ is of type } (2,0).$$

In the almost Hermitian case, the Chern connection is the unique complex metric connection whose torsion is of type (2,0) + (0,2), equivalently, the (1,1)-component of the torsion vanishes.

The connections ∇^1 and ∇^2 appearing above are known, respectively, as the first and second canonical connection associated to the Hermitian manifold (M, J, g).

The connection ∇^2 is also known as the *Chern* connection, and it is the unique connection on (M, J, g) satisfying

$$abla^2 g = 0, \quad
abla^2 J = 0, \quad T^2 \text{ is of type } (2,0).$$

In the almost Hermitian case, the Chern connection is the unique complex metric connection whose torsion is of type (2,0) + (0,2), equivalently, the (1,1)-component of the torsion vanishes.

The connections ∇^1 and ∇^2 appearing above are known, respectively, as the first and second canonical connection associated to the Hermitian manifold (M, J, g).

The connection ∇^2 is also known as the *Chern* connection, and it is the unique connection on (M, J, g) satisfying

$$abla^2 g = 0, \quad
abla^2 J = 0, \quad T^2 \text{ is of type } (2,0).$$

In the almost Hermitian case, the Chern connection is the unique complex metric connection whose torsion is of type (2,0) + (0,2), equivalently, the (1,1)-component of the torsion vanishes.

Complex connections with trivial holonomy

Let M be an *n*-dimensional connected manifold and ∇ an affine connection on M with trivial holonomy (hence flat). Then

- the space P[∇] of parallel vector fields on M is an n-dimensional real vector space;
- T(X, Y) = -[X, Y], for all $X, Y \in \mathcal{P}^{\nabla}$;
- \mathcal{P}^{∇} es a Lie algebra if and only if T is parllel.

_emma

Let (M, J), be a connected almost complex manifold with an affine connection ∇ on M, Hol (∇) trivial. Then the following conditions are equivalent:

(i) $\nabla J = 0;$

(ii) the space \mathcal{P}^{∇} of parallel vector fields is J-stable;

(iii) there exist parallel vector fields $X_1, \ldots, X_n, JX_1, \ldots, JX_n$, linearly independent at every point of M.

Complex connections with trivial holonomy

Let M be an *n*-dimensional connected manifold and ∇ an affine connection on M with trivial holonomy (hence flat). Then

- the space P[∇] of parallel vector fields on M is an n-dimensional real vector space;
- T(X, Y) = -[X, Y], for all $X, Y \in \mathcal{P}^{\nabla}$;
- \mathcal{P}^{∇} es a Lie algebra if and only if \mathcal{T} is parllel.

Lemma

Let (M, J), be a connected almost complex manifold with an affine connection ∇ on M, Hol (∇) trivial. Then the following conditions are equivalent:

(i)
$$\nabla J = 0;$$

- (ii) the space \mathcal{P}^{∇} of parallel vector fields is J-stable;
- (iii) there exist parallel vector fields $X_1, \ldots, X_n, JX_1, \ldots, JX_n$, linearly independent at every point of M.

Complex parallelizable manifolds

We recall that a complex manifold (M, J) is called *complex* parallelizable when there exist *n* holomorphic vector fields Z_1, \ldots, Z_n , linearly independent at every point of *M*.

The following classical result, due to Wang, characterizes the compact complex parallelizable manifolds.

Theorem

Every compact complex parallelizable manifold may be written as a quotient space $\Gamma \setminus G$ of a complex Lie group by a discrete subgroup Γ .

We prove next a result which relates the notion of complex parallelizability with the existence of a flat complex connection with torsion of type (2,0). We recall that a complex manifold (M, J) is called *complex* parallelizable when there exist *n* holomorphic vector fields Z_1, \ldots, Z_n , linearly independent at every point of *M*.

The following classical result, due to Wang, characterizes the compact complex parallelizable manifolds.

Theorem

Every compact complex parallelizable manifold may be written as a quotient space $\Gamma \setminus G$ of a complex Lie group by a discrete subgroup Γ .

We prove next a result which relates the notion of complex parallelizability with the existence of a flat complex connection with torsion of type (2,0). We recall that a complex manifold (M, J) is called *complex* parallelizable when there exist *n* holomorphic vector fields Z_1, \ldots, Z_n , linearly independent at every point of *M*.

The following classical result, due to Wang, characterizes the compact complex parallelizable manifolds.

Theorem

Every compact complex parallelizable manifold may be written as a quotient space $\Gamma \setminus G$ of a complex Lie group by a discrete subgroup Γ .

We prove next a result which relates the notion of complex parallelizability with the existence of a flat complex connection with torsion of type (2,0).

Proposition

Let M be a connected 2n-dimensional manifold with a complex structure J. Then the following conditions are equivalent:

 (i) there exist vector fields X₁,..., X_n, JX₁,..., JX_n, linearly independent at every point of M, such that

 $[X_k, X_l] = -[JX_k, JX_l], \ k < l, \ [JX_k, X_l] = J[X_k, X_l], \ k \le l,$

- (ii) there exist n holomorphic vector fields Z₁,..., Z_n which are linearly independent at every point of M (in other words, (M, J) is complex parallelizable);
- (iii) there exist n linearly independent holomorphic (1,0)-forms $\alpha_1, \ldots, \alpha_n$ on M such that $d\alpha_i$ is a section of $\Lambda^{2,0}M$ for every *i*;
- (iv) there exists a complex connection ∇ on M with trivial holonomy whose torsion tensor field T is of type (2,0).

Let (M, J) be a complex manifold. The following conditions are equivalent:

- (i) (M, J) is complex parallelizable;
- (ii) there exists a Hermitian metric g on M such that the Chern connection associated to (M, J, g) has trivial holonomy.

Definition : An affine connection ∇ on a connected complex manifold (M, J) will be called a *Chern-type* connection if it satisfies condition (iv) of the previous Proposition.

Let (M, J) be a complex manifold. The following conditions are equivalent:

- (i) (M, J) is complex parallelizable;
- (ii) there exists a Hermitian metric g on M such that the Chern connection associated to (M, J, g) has trivial holonomy.

Definition : An affine connection ∇ on a connected complex manifold (M, J) will be called a *Chern-type* connection if it satisfies condition (iv) of the previous Proposition.

Let (M, J) be a connected complex manifold and ∇ an affine connection with trivial holonomy. Then ∇ is a Chern-type connection on (M, J) if and only if the space \mathcal{P}^{∇} of parallel vector fields is J-stable and J satisfies

J[X, Y] = [X, JY] for any $X, Y \in \mathcal{P}^{\nabla}$.

Remark

Analogously to previous the Corollary, we have that the torsion T of a complex connection ∇ with trivial holonomy is of type (2,0) + (0,2) if and only if J satisfies

[JX, JY] = -[X, Y] for any $X, Y \in \mathcal{P}^{\nabla}$.

Let (M, J) be a connected complex manifold and ∇ an affine connection with trivial holonomy. Then ∇ is a Chern-type connection on (M, J) if and only if the space \mathcal{P}^{∇} of parallel vector fields is J-stable and J satisfies

$$J[X,Y] = [X,JY]$$
 for any $X,Y \in \mathcal{P}^
abla.$

Remark

Analogously to previous the Corollary, we have that the torsion T of a complex connection ∇ with trivial holonomy is of type (2,0) + (0,2) if and only if J satisfies

$$[JX, JY] = -[X, Y]$$
 for any $X, Y \in \mathcal{P}^{\nabla}$.

Proposition

Let M be a connected 2n-dimensional manifold with an almost complex structure J. Then the following conditions are equivalent:

 (i) there exist vector fields X₁,..., X_n, JX₁,..., JX_n, linearly independent at every point of M, such that

$$[X_k, X_l] = [JX_k, JX_l], \qquad [JX_k, X_l] = -[X_k, JX_l], \qquad k < l;$$

- (ii) there exist n commuting vector fields Z_1, \ldots, Z_n which are linearly independent sections of $T^{1,0}M$ at every point of M;
- (iii) there exist n linearly independent (1,0)-forms $\alpha_1, \ldots, \alpha_n$ on M such that $d\alpha_i$ is a section of $\Lambda^{1,1}M$ for every i;
- (iv) there exists a complex connection ∇ on M with trivial holonomy whose torsion tensor field T is of type (1,1).

Moreover, any of the above conditions implies that J is integrable.

- 4 同 2 4 日 2 4 日 2 4

Definition : An affine connection ∇ on a connected almost complex manifold (M, J) will be called an *abelian* connection if it satisfies condition (iv) of previous Proposition.

Corollary

Let (M, J) be a connected complex manifold and ∇ an affine connection with trivial holonomy. Then ∇ is an abelian connection on (M, J) if and only if the space \mathcal{P}^{∇} of parallel vector fields is J-stable and J satisfies

[JX, JY] = [X, Y] for any $X, Y \in \mathcal{P}^{\nabla}$.

Definition : An affine connection ∇ on a connected almost complex manifold (M, J) will be called an *abelian* connection if it satisfies condition (iv) of previous Proposition.

Corollary

Let (M, J) be a connected complex manifold and ∇ an affine connection with trivial holonomy. Then ∇ is an abelian connection on (M, J) if and only if the space \mathcal{P}^{∇} of parallel vector fields is *J*-stable and *J* satisfies

$$[JX, JY] = [X, Y]$$
 for any $X, Y \in \mathcal{P}^{\nabla}$.

We exhibit next a large class of complex manifolds equipped with complex connections with trivial holonomy whose torsion tensors are of type (2,0) or (1,1)

We consider:

- A connected Lie group G,
- a complex structure J on its Lie algebra g,
- ${f 0}$ a ${rak g}$ -valued bilinear form abla : ${rak g} imes{rak g} o{rak g},$
- a compatibility, $\nabla(x, Jy) = J\nabla(x, y)$.

If $\Gamma \subset G$ is any discrete subgroup of G the induced J and ∇ on the quotient $\Gamma \setminus G$ will be denoted J_0 and ∇_0 respectively.

We exhibit next a large class of complex manifolds equipped with complex connections with trivial holonomy whose torsion tensors are of type (2,0) or (1,1)

We consider:

- A connected Lie group G,
- 2 a complex structure J on its Lie algebra \mathfrak{g} ,
- $\textcircled{0} a \mathfrak{g}\text{-valued bilinear form } \nabla: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g},$
- a compatibility, $\nabla(x, Jy) = J\nabla(x, y)$.

If $\Gamma \subset G$ is any discrete subgroup of G the induced J and ∇ on the quotient $\Gamma \setminus G$ will be denoted J_0 and ∇_0 respectively.

We exhibit next a large class of complex manifolds equipped with complex connections with trivial holonomy whose torsion tensors are of type (2,0) or (1,1)

We consider:

- A connected Lie group G,
- 2 a complex structure J on its Lie algebra \mathfrak{g} ,
- $\textcircled{0} a \mathfrak{g}\text{-valued bilinear form } \nabla: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g},$
- a compatibility, $\nabla(x, Jy) = J\nabla(x, y)$.

If $\Gamma \subset G$ is any discrete subgroup of G the induced J and ∇ on the quotient $\Gamma \setminus G$ will be denoted J_0 and ∇_0 respectively.

The left invariant affine connection ∇ on G defined by $\nabla_X Y = 0$ for all X, Y left invariant vector fields on G is known as the (–)-connection. This connection satisfies:

Its torsion T is given by T(X, Y) = -[X, Y] for all X, Y left invariant vector fields on G;

2)
$$\nabla T = 0$$
 and $\mathcal{P}^{
abla} = \mathfrak{g} \subset \mathfrak{X}(G);$

- **③** The holonomy group of ∇ is trivial, thus, ∇ is flat;
- The geodesics of ∇ through the identity e ∈ G are Lie group homomorphisms ℝ → G, therefore, ∇ is complete;
- The parallel transport along any curve joining g ∈ G with h ∈ G is given by the derivative of the left translation (dL_{hg⁻¹})_g.

If J is a left invariant complex structure on G, then J is parallel with respect to the (-)-connection ∇ . Hence

 $(\Gamma \setminus G, J_0)$ carries a complete complex connection with trivial holonomy and parallel torsion.

In the next result we prove that the converse also holds.

Theorem

The triple (M, J, ∇) where M is a connected manifold endowed with a complex structure J and a complex connection ∇ with trivial holonomy is equivalent to a triple $(\Gamma \setminus G, J_0, \nabla^0)$ as above if and only if ∇ is complete and its torsion is parallel. If J is a left invariant complex structure on G, then J is parallel with respect to the (-)-connection ∇ . Hence

$(\Gamma \setminus G, J_0)$ carries a complete complex connection with trivial holonomy and parallel torsion.

In the next result we prove that the converse also holds.

Theorem

The triple (M, J, ∇) where M is a connected manifold endowed with a complex structure J and a complex connection ∇ with trivial holonomy is equivalent to a triple $(\Gamma \setminus G, J_0, \nabla^0)$ as above if and only if ∇ is complete and its torsion is parallel. If J is a left invariant complex structure on G, then J is parallel with respect to the (-)-connection ∇ . Hence

 $(\Gamma \setminus G, J_0)$ carries a complete complex connection with trivial holonomy and parallel torsion.

In the next result we prove that the converse also holds.

Theorem

The triple (M, J, ∇) where M is a connected manifold endowed with a complex structure J and a complex connection ∇ with trivial holonomy is equivalent to a triple $(\Gamma \setminus G, J_0, \nabla^0)$ as above if and only if ∇ is complete and its torsion is parallel.

Let (M, J) be a complex manifold with a Chern-type connection ∇ . If the torsion tensor field T is parallel, then:

- (i) the space \mathcal{P}^{∇} of parallel vector fields on M is a complex Lie algebra and J is a bi-invariant complex structure on \mathcal{P}^{∇} ;
- (ii) if, furthermore, ∇ is complete, then (M, J, ∇) is equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$, where G is a simply connected complex Lie group and $\Gamma \subset G$ is a discrete subgroup.

Corollary

Let (M, J, g) be a Hermitian manifold such that the associated Chern connection ∇ is complete, has trivial holonomy and parallel torsion. Then (M, J, g) is equivalent to a triple $(\Gamma \setminus G, J_0, g_0)$, where G is a simply connected complex Lie group and g_0 is induced by a left invariant Hermitian metric on G. Furthermore, the Chern connection on the quotient coincides with ∇^0 .

Let (M, J) be a complex manifold with a Chern-type connection ∇ . If the torsion tensor field T is parallel, then:

- (i) the space \mathcal{P}^{∇} of parallel vector fields on M is a complex Lie algebra and J is a bi-invariant complex structure on \mathcal{P}^{∇} ;
- (ii) if, furthermore, ∇ is complete, then (M, J, ∇) is equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$, where G is a simply connected complex Lie group and $\Gamma \subset G$ is a discrete subgroup.

Corollary

Let (M, J, g) be a Hermitian manifold such that the associated Chern connection ∇ is complete, has trivial holonomy and parallel torsion. Then (M, J, g) is equivalent to a triple $(\Gamma \setminus G, J_0, g_0)$, where G is a simply connected complex Lie group and g_0 is induced by a left invariant Hermitian metric on G. Furthermore, the Chern connection on the quotient coincides with ∇^0 .

Let ∇ be an abelian connection on a connected complex manifold (M, J) such that the torsion tensor field T is parallel. Then:

- (i) the space P[∇] of parallel vector fields on M is a Lie algebra and J is an abelian complex structure on P[∇];
- (ii) the Lie algebra \mathcal{P}^{∇} is 2-step solvable.
- (iii) if, furthermore, ∇ is complete, then (M, J, ∇) is equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$, where G is a simply connected 2-step solvable Lie group equipped with a left invariant abelian complex structure and $\Gamma \subset G$ a discrete subgroup.

Remark

We note that a complete classification of the Lie algebras admitting abelian complex structures is known up to dimension 6 and there are structure results for arbitrary dimensions.

Let ∇ be an abelian connection on a connected complex manifold (M, J) such that the torsion tensor field T is parallel. Then:

- (i) the space P[∇] of parallel vector fields on M is a Lie algebra and J is an abelian complex structure on P[∇];
- (ii) the Lie algebra \mathcal{P}^{∇} is 2-step solvable.
- (iii) if, furthermore, ∇ is complete, then (M, J, ∇) is equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$, where G is a simply connected 2-step solvable Lie group equipped with a left invariant abelian complex structure and $\Gamma \subset G$ a discrete subgroup.

Remark

We note that a complete classification of the Lie algebras admitting abelian complex structures is known up to dimension 6 and there are structure results for arbitrary dimensions.

.

Let N be the Heisenberg Lie group, Γ the subgroup of matrices in N with integer entries and M the 4-dimensional compact manifold $M = (\Gamma \setminus N) \times S^1 = (\Gamma \times \mathbb{Z}) \setminus (N \times \mathbb{R})$. $N \times \mathbb{R}$ admits a left-invariant abelian complex structure and therefore M inherits a complex structure J admitting an abelian connection. On the other hand, M is not complex parallelizable since there are only two 2-dimensional simply connected complex Lie groups, namely \mathbb{C}^2 and $\widetilde{Aff}(\mathbb{C})$, where $\widetilde{Aff}(\mathbb{C})$ is the universal cover of the group of affine motions of \mathbb{C} The group \mathbb{C}^2 gives rise to a torus and M would admit a Kähler structure, which is impossible and $\widetilde{Aff}(\mathbb{C})$ is not unimodular.

Let $M = \mathbb{R}^4$ with canonical coordinates (x_1, x_2, x_3, x_4) and corresponding vector fields $\partial_1, \ldots, \partial_4$. Let $f(x_1, x_2, x_3, x_4) = x_3x_4$.

• Let ∇ so that

$$\mathcal{P}^{\nabla} = \operatorname{span}_{\mathbb{R}} \{ \partial_1, \partial_2, \partial_3, f \partial_2 + \partial_4 \}.$$

Let J

$$\begin{aligned} J\partial_1 &= & \partial_2, & J\partial_3 = f\partial_2 + \partial_4, \\ J\partial_2 &= & -\partial_1, & J\partial_4 = f\partial_1 - \partial_3. \end{aligned}$$

One finds that ∇ is an abelian connection on (\mathbb{R}^4, J) and T is not parallel. Hence

 (M, J, ∇) is NOT equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$.

Let $M = \mathbb{R}^4$ with canonical coordinates (x_1, x_2, x_3, x_4) and corresponding vector fields $\partial_1, \ldots, \partial_4$. Let $f(x_1, x_2, x_3, x_4) = x_3x_4$.

• Let ∇ so that

$$\mathcal{P}^{\nabla} = \operatorname{span}_{\mathbb{R}} \{ \partial_1, \partial_2, \partial_3, f \partial_2 + \partial_4 \}.$$

Let J

$$\begin{aligned} J\partial_1 &= & \partial_2, & J\partial_3 = f \partial_2 + \partial_4, \\ J\partial_2 &= & -\partial_1, & J\partial_4 = f \partial_1 - \partial_3. \end{aligned}$$

One finds that ∇ is an abelian connection on (\mathbb{R}^4, J) and T is not parallel. Hence

 (M, J, ∇) is NOT equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$

Let $M = \mathbb{R}^4$ with canonical coordinates (x_1, x_2, x_3, x_4) and corresponding vector fields $\partial_1, \ldots, \partial_4$. Let $f(x_1, x_2, x_3, x_4) = x_3x_4$.

• Let ∇ so that

$$\mathcal{P}^{\nabla} = \operatorname{span}_{\mathbb{R}} \{ \partial_1, \partial_2, \partial_3, f \partial_2 + \partial_4 \}.$$

Let J

$$\begin{aligned} J\partial_1 &= & \partial_2, & J\partial_3 = f\partial_2 + \partial_4, \\ J\partial_2 &= & -\partial_1, & J\partial_4 = f\partial_1 - \partial_3. \end{aligned}$$

One finds that ∇ is an abelian connection on (\mathbb{R}^4, J) and T is not parallel. Hence

 (M, J, ∇) is NOT equivalent to $(\Gamma \setminus G, J_0, \nabla^0)$.