MINIMAL VECTOR FIELDS ON RIEMANNIAN MANIFOLDS

OLGA GIL-MEDRANO Universidad de Valencia, Spain

Santiago de Compostela, 15th December, 2010 Conference Celebrating P. Gilkey's 65th Birthday

$$V: M \longrightarrow TM = \bigcup T_p M$$
$$p \qquad V(p) = V_p$$

✓ Constant Norm

Gluck and Ziller problem.

Which unit vector fields on (M,g) have less volume?

Gluck and Ziller problem.

Which unit vector fields on odd-dimensional spheres are most efficient?

Gluck and Ziller problem.

Which unit vector fields on odd-dimensional spheres are most efficient?

Stiefel manifold of R^{n+1} (orthonormal 2- frames)

$$Vol(V) := vol(V(S^n))$$

efficient^{*} = *with less volume*

Hopf vector fields

 $\pi: S^n \longrightarrow CP^m$

$$\pi^{-1}(\pi(p)) = \{e^{i\theta}p\}$$

H(p) = i p = J(p)

standard Hopf vector field

Hopf vector fields are exactly the unit Killing vector fields of spheres

Hopf vector fields

$$\pi: S^n \longrightarrow CP^m \qquad \qquad \pi^{-1} (\pi(p)) = \{ e^{i\theta} p \}$$

H(p) = i p = J(p) standard Hopf vector field

$$(H^*g^S)(H,H) = 1$$
 and $(H^*g^S) = 2g$ on H^{\perp}

 $H(S^n)$ with the induced metric is a Berger sphere

 $Vol(H) = 2^m vol(S^n)$

H. Gluck y W. Ziller, Comment. Math. Helv. 86

Theorem:

The unit vector fields of minimum volume on S^3 are precisely the Hopf vector fields, and no others.

H. Gluck y W. Ziller, Comment. Math. Helv. 86

Theorem:

The unit vector fields of minimum volume on S^3 are precisely the Hopf vector fields, and no others.

S. Pedersen, Trans. Amer. Math. Soc. 93

Theorem:

There are smooth unit vector fields on S^n (n>3) with less volume than Hopf vector fields.

S. Pedersen, *Trans. Amer. Math. Soc. 93 Theorem:*

There are smooth unit vector fields on S^n (n>3) with less volume than Hopf vector fields.

For the proof:

1) consider Pontryagin vector fields P, defined on S^n minus one point,

2) show that Vol(P) < Vol(H) and

3) show a sequence of smooth unit vector fields on S^n , P_i such that $Vol(P_i)$ tends to Vol(P).

Pontryagin vector fields

S. Pedersen, Trans. Amer. Math. Soc. 93. Theorem: There are smooth unit vector fields on S^n (n>3) with less volume than Hopf vector fields.

For the proof:

1) consider Pontryagin vector fields P, defined on S^n minus one point,

2) show that Vol(P) < Vol(H) and

3) show a sequence of smooth unit vector fields on S^n , P_k such that $Vol(P_k)$ tends to Vol(P).

A Pontryagin vector field (obtained by parallel transport of a fixed unit vector along radial geodesics) is a minimal immersion of the sphere minus one point, for any dimension.

S. Pedersen, Trans. Amer. Math. Soc. 93. Theorem: There are smooth unit vector fields on $S^n(1)$ (n>3) with less volume than Hopf vector fields.

A Pontryagin vector field (obtained by parallel transport of a fixed unit vector along radial geodesics) is a minimal immersion of the sphere S^n (1) minus one point, for any dimension.

Conjecture : The infimum of the volume of smooth unit vector fields on odd-dimensional spheres of radius 1 is Vol (P)

Critical points of the functional Vol defined on $\Gamma^{\infty}(T^{1}M)$

Vector fields such that the mean curvature vector field of the submanifold V(M) into $T^{I}M$ vanishes

Critical points of the functional Vol defined on $\Gamma^{\infty}(T^{1}M)$

Vector fields such that the mean curvature vector field of the submanifold V(M) into $T^{1}M$ vanishes

Elements with tilde correspond to the metric $V*g^S$ —, Diff. Geom. Appl. 2001 Second fundamental form:

$$\nabla_X X - \widetilde{\nabla}_X X + R(\nabla_X V, V) X$$

vertical / horizontal proj.
$$\nabla_X \nabla_X V - (\nabla V) (\widetilde{\nabla}_X X)$$

Critical points of the functional Vol defined on $\Gamma^{\infty}(T^{1}M)$

Vector fields such that the mean curvature vector field of the submanifold V(M) into $T^{1}M$ vanishes

Elements with tilde correspond to the metric V^*g^S —, Diff. Geom. Appl. 2001

$$\sum \left(\nabla_{\widetilde{E}_i} \nabla_{\widetilde{E}_i} V - (\nabla V) (\widetilde{\nabla}_{\widetilde{E}_i} \widetilde{E}_i) \right) \ col. \ V$$

Mean curvature v. $f_{.} = 0$

Critical points of the functional Vol defined on $\Gamma^{\infty}(T^{I}M)$

Vector fields such that the mean curvature vector field of the submanifold V(M) into $T^{1}M$ vanishes

— and Llinares, *Tohoku, 2002* Euler-Lagrange Equation:

det $L_V dv$.

 $\nabla^*(\sqrt{\det L_V}(\nabla V)L_V^{-1}) \ col. \ V$

— and Llinares, *Math. Ann. 01* Second variation of the Volume of unit vector fields of a Riemannian manifold, at a minimal v.f. *W*, Hessian in the direction of a v. f. *A*, orthogonal to *W*.

$$(Hess \, Vol\,)_W(A) = \int_M \left(\int dv_g \right) dv_g$$
$$||A||^2 g \left(\nabla^* (\sqrt{\det L_W} \, \nabla W \circ L_W^{-1}), W \right)$$
$$+ 2\sqrt{\det L_W} \, \sigma_2 \left(L_W^{-1} \circ (\nabla W)^t \circ \nabla A \right)$$
$$+ \sqrt{\det L_W} \, \operatorname{tr} \left(L_W^{-1} \circ (\nabla A)^t \circ \nabla A \right)$$
$$- \sqrt{\det L_W} \, \operatorname{tr} \left(L_W^{-1} \circ (\nabla A)^t \circ \nabla W \circ L_W^{-1} \circ (\nabla W)^t \circ \nabla A \right)$$

The tangent space at *W* of the space of unit vector fields is the space of v. f. that are orthogonal to *W* Minimal unit vector fields on a Riemannian manifold M (Minimal submanifolds of $T^{l}(M)$ that are "graphs")

Description of many examples obtained by several authors (—, Survey, 2005)

• H^k the unit Hopf vector field of $S^n(r)$ is minimal $(k=1/r^2)$

• The image is (up to homotheties) a Berger sphere

• The ambient manifold $T^{1}(S^{n}(r))$ has the Sasaki metric

Up to now, they are the only examples of smooth unit minimal vector fields defined on the sphere.

A critical radius $r_0(m)^2 = 1/(2m-3) = 1/(n-4)$

$$r_0(2) = 1$$
 $r_0(m) < 1$

Teorema (Borrelli and ----, Math. Ann. 2006):

For m > 1 the unit Hopf vector field of $S^n(r)$ is stable if and only if $r \le r_0(m)$.

If $r < r_0(m)$, the Hopf vector fields H^r are local minimizers of the volume (Borrelli and ----, Math. Ann. 2006):

If m > 1 there is $r_2(m)$ such that if $r \le r_2(m)$ then $Vol(H^r) < Vol(P^r)$

For $r \le r_2(m)$ no unit smooth vector field is known to have less volume than Hopf vector fields.

Twisting of a vector field

Twisting minimizers Hopf vector fields minimize the twisting

(Borrelli and ----, Math. Ann. 2006):

For any unit v. f. V of $S^n(1)$, $Tw(V) \ge Tw(H)$.

If Tw(V) > Tw(H) there is a radius such that for all smaller radii the volume of $V^r >$ the volume of H^r

$$\int_{\mathbb{S}^{2m+1}(1)} \sqrt{\sigma_{2m}(^T \nabla V \circ \nabla V)} dvol.$$

(Borrelli and ----, Math. Ann. 2006):

If m > 1 there is $r_2(m)$ such that if $r \le r_2(m)$ then $Vol(H^r) < Vol(P^r)$

For $r_2(m) < r \leq r_0(m)$ Hopf vector fields are minimal, stable but not minimizers.

Question: is it natural to extend Pedersen's Conjecture to $r > r_2(m)$? (Borrelli and ----, Math. Ann. 2006):

If m>1 there is $r_1(m)$ such that if $r > r_1(m)$ then vectors fields obtained by modifing a radial vector field have less volume than P^r

(V. Borrelli, ----- and D. Johnson, In progress)

The volume of P^r can't be the infimum of the volume of smooth unit vector fields for any r.

The case of the 2-dimensional spheres

In dimension 2, the image is a minimal surface of the (3-dimensional) unit tangent bundle.

Unit vector fields (with singularities) on the 2-dimensional spheres

Theorem (Borrelli and ----, Crelle's J. 2010) Among the unit vector fields (without boundary*) of the radius 1 round 2-sphere those of least area are Pontryagin fields and no others.

*Unit smooth vector fields defined on a dense open subset such that the closure of its image is a smooth submanifold without boundary. If such a v.f. has a finite number of singularities and the fiber at every singular point is included in the closure of its image then this submanifold is homeomorphic to the connected sum of a projective plane and a torus with holes.

Index 1

Submanifold with a fiber as boundary

Index 2

Submanifold without boundary

Radial vector field

Pontryagin vector field

2-spheres:What happens if $r \neq 1$?

 $T^{1}S^{2}(r)$ is the projective space obtained by quotient of S^{3} endowed with a Berger metric.

Theorem (Borrelli and ----, Crelle's J. 2010) The Pontryagin fields of $S^2(r)$ are minimal surfaces of $T^1S^2(r)$

The "great" spheres are minimal surfaces of the Berger sphere.

The "great" spheres provide an open book structure of the 3dimensional Berger sphere with minimal leaves and with binding a fiber of the Hopf fibration. 2-spheres:What happens if $r \neq 1$?

Proposition (Borrelli and ----, Crelle's J. 2010) The "great" spheres provide an open book structure of the 3dimensional Berger sphere with minimal leaves and with binding a fiber of the Hopf fibration.

> Used by Hardt and Rosenberg, Ann. Inst. Fourier 90, to study unicity of minimal submanifolds

Theorem (Borrelli and ----, Crelle's J. 2010) The only minimal surfaces of $T^1S^2(r)$ homeomorphic to the projective plane and arising from unit vector fields without boundary of $S^2(r)$ are Pontryagin cycles.

Thanks for your attention!