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Flow lines

V: M               TM  = ∪ TpM
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c’(t) = V(c(t))
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The energy of the curve at p is proportional
to the norm of the aceleration

V: M               TM  = ∪ TpM
p                V(p) = Vp

If M has a metric      



For all p,
(∇ V)p vanish

V is parallel

Endomorphism of TpM determined by
(∇ V)p (w) = ∇wV

 Constant Norm

 Flow by geodesics



Gluck and Ziller problem.

Which unit vector fields on 
(M,g) have less volume?

V(M) ⊂ (T1 M , gS ) Sasaki metric

Vol (V) = vol(M, V*gS )



Gluck and Ziller problem.

Which unit vector fields on 
odd-dimensional spheres 
are most efficient?

V(Sn) ⊂ (T1 Sn , gS ) Sasaki metric

Vol (V) = vol(Sn , V*gS )



Gluck and Ziller problem.
Which unit vector fields on 
odd-dimensional spheres are 
most efficient?

V: Sn              T1 Sn            n=2m+1

Vol (V):= vol ( V(Sn) )

V2,n+1

O(n+1)/O(n-1)

Stiefel manifold of Rn+1

(orthonormal 2- frames)

efficient* = with less volume



Hopf vector fields

Hopf  vector fields are 
exactly the unit Killing 
vector fields of spheres

H(p) = i p = J(p) standard Hopf vector field

π: Sn CP m π -1 (π (p)) = {e iθ p}



Hopf vector fields

H(Sn) with the induced metric is a Berger sphere 

Vol (H) = 2m vol (Sn)

H(p) = i p = J(p) standard Hopf vector field

π: Sn CPm π -1 (π (p)) = {e iθ p}

(H*gS)(H,H) = 1 and  (H*gS) =2g on  H⊥



H. Gluck y W. Ziller, Comment. Math. Helv. 86

Theorem: 
The unit vector fields of minimum volume on S3 are precisely the 
Hopf vector fields, and no others.



H. Gluck y W. Ziller, Comment. Math. Helv. 86

Theorem: 
The unit vector fields of minimum volume on S3 are precisely the 
Hopf vector fields, and no others.

S. Pedersen, Trans. Amer. Math. Soc. 93

Theorem: 
There are smooth unit vector fields on Sn ( n>3 ) with less volume 
than Hopf vector fields.



S. Pedersen, Trans. Amer. Math. Soc. 93
Theorem: 
There are smooth unit vector fields on Sn ( n>3 ) with less volume 
than Hopf vector fields.

For the proof: 
1) consider Pontryagin vector fields P, defined on Sn minus one 
point,
2) show that Vol(P) < Vol(H) and
3) show  a sequence of smooth unit vector fields on Sn, Pi such 
that Vol(Pi ) tends to Vol(P).

Pontryagin vector fields



S. Pedersen, Trans. Amer. Math. Soc. 93. Theorem: There are 
smooth unit vector fields on Sn ( n>3 ) with less volume than Hopf 
vector fields.
For the proof: 
1) consider Pontryagin vector fields P, defined on Sn minus one 
point,
2) show that Vol(P) < Vol(H) and
3) show  a sequence of smooth unit vector fields on Sn, Pk such 
that Vol(Pk ) tends to Vol(P).

A Pontryagin vector field
(obtained by parallel transport of a 
fixed unit vector along radial 
geodesics) is a minimal immersion 
of the sphere minus one point, for 
any dimension. 



A Pontryagin vector field (obtained by parallel transport of a 
fixed unit vector along radial geodesics) is a minimal 
immersion of the sphere Sn (1) minus one point, for any 
dimension. 

Conjecture : The infimum of the volume of smooth unit vector 
fields on odd-dimensional spheres of radius 1 is Vol (P)

S. Pedersen, Trans. Amer. Math. Soc. 93. Theorem: There are 
smooth unit vector fields on Sn (1) ( n>3 ) with less volume than 
Hopf vector fields.



Minimal unit vector fields

Critical points of the 
functional Vol 
defined on Γ ∞(T1M)

Vector fields such that the
mean curvature vector 
field of the submanifold 
V( M ) into T1M vanishes



Minimal unit vector fields

Critical points of the 
functional Vol 
defined on Γ∞(T1M)

Vector fields such that the
mean curvature vector 
field of the submanifold 
V( M ) into T1M vanishes

––, Diff. Geom. Appl. 2001
Second fundamental form:

vertical / horizontal proj.

Elements 
with tilde 
correspond 
to the 
metric
V*gS



Minimal unit vector fields

Critical points of the 
functional Vol 
defined on Γ∞(T1M)

Vector fields such that the
mean curvature vector 
field of the submanifold 
V( M ) into T1M vanishes

––, Diff. Geom. Appl. 2001

Mean curvature v. f. = 0 

Elements 
with tilde 
correspond 
to the 
metric
V*gS



Minimal unit vector fields

Critical points of the 
functional Vol 
defined on Γ∞(T1M)

Vector fields such that the
mean curvature vector 
field of the submanifold 
V( M ) into T1M vanishes

–– and Llinares, Tohoku, 2002
Euler-Lagrange Equation:



–– and Llinares, Math. Ann. 01
Second variation of the Volume of unit vector fields of a 
Riemannian manifold, at a minimal v.f. W , Hessian in the 
direction of a v. f. A, orthogonal to W.

The tangent 
space at W of 
the space of unit 
vector fields is 
the space of v. f. 
that are 
orthogonal to W



Minimal unit vector fields on a Riemannian manifold M
(Minimal submanifolds of T1(M) that are “graphs”)

Description of many examples obtained by several authors 
( ––, Survey, 2005)

–– and Llinares, 2002

V unit Killing
V minimal

M constant curvature k

Vol (V) = (1+k) (n-1)/2 vol(M)



• Hk the unit Hopf vector field of Sn(r) is minimal  (k= 1/r2)

• The image is (up to homotheties) a Berger sphere

• The ambient manifold T1(Sn (r)) has the Sasaki metric

Up to now, they are the only examples of smooth unit minimal 
vector fields defined on the sphere.



A critical radius         r0(m) 2 = 1/(2m-3) = 1/(n-4)

r0(2) =1     r0(m)<1 

Teorema (Borrelli and ----, Math. Ann. 2006):

For m>1 the unit Hopf vector field of Sn(r) is stable if and 
only if   r ≤ r0(m).

If  r < r0(m), the Hopf  vector fields Hr 

are local minimizers of the volume



(Borrelli and ----, Math. Ann. 2006):

If m>1 there is r2(m) such that if  r ≤ r2(m) then Vol(Hr)<Vol(Pr)

For r ≤ r2(m) no unit smooth vector field is known to have 
less volume than Hopf vector fields.



Twisting of a vector field

Def:   
Twisting of V



Twisting minimizers
Hopf vector fields  minimize the twisting

Twisting of a unit
v. f. V of  Sn(1)

(Borrelli and ----, Math. Ann. 2006):

For any unit v. f. V of  Sn(1), Tw(V) ≥ Tw(H) .

If Tw(V) > Tw(H) there is a radius such that for all smaller radii the 
volume of  Vr > the volume of Hr



(Borrelli and ----, Math. Ann. 2006):

If m>1 there is r2(m) such that if  r ≤ r2(m) then Vol(Hr)<Vol(Pr)

For r2(m) < r ≤ r0(m) Hopf vector fields are minimal, stable 
but not minimizers.

Question: 
is it natural to extend  Pedersen’s Conjecture to r > r2(m) ?



(Borrelli and ----, Math. Ann. 2006):

If m>1 there is r1(m) such that if  r > r1(m) then vectors fields 
obtained by modifing a radial vector field have less volume than Pr

(V. Borrelli, -------- and D. Johnson, In progress)

The volume of Pr can’t be the infimum of the volume of smooth unit 
vector fields for any r. 



In dimension 2, the image is 
a minimal surface of the 
(3-dimensional) unit tangent 
bundle.

The case of the 2-dimensional spheres



Unit vector fields (with singularities) on the 2-dimensional spheres

T1S2 = RP3

Klingenber and Sasaki
1975  

Berger and Fomenko
1972

The closure of the image of the 
Pontryagin field is

a totally geodesic RP2



Unit vector fields (with singularities) on the 2-dimensional spheres

Theorem (Borrelli and ----, Crelle’s J. 2010)
Among the unit vector fields (without boundary*) of the radius 1 
round 2-sphere those of  least area are Pontryagin fields and no 
others.

*Unit smooth vector fields defined on a dense open subset such that the closure of 
its  image is a smooth submanifold without boundary. If such a v.f. has a finite 
number of singularities and the fiber at every singular point is included in the 
closure of its image then this submanifold is homeomorphic to the connected sum 
of a projective plane and a torus with holes.



Index 1 Submanifold with a fiber as
boundary 

CW-complexSubmanifold without 
boundary

Index  2

Index 2

Radial vector field

Pontryagin vector field



2-spheres:What happens if r≠ 1 ?

T1S2(r) is the projective space obtained by quotient of  of S3 

endowed with a Berger metric. 

Theorem (Borrelli and ----, Crelle’s J. 2010)
The Pontryagin fields of  S2(r) are minimal surfaces of T1S2(r) 

The “great” spheres are minimal surfaces of the Berger sphere.

The “great” spheres provide an open book structure of the 3-
dimensional Berger sphere with minimal leaves and with binding a 
fiber of the Hopf fibration.



2-spheres:What happens if r≠ 1 ?

Theorem (Borrelli and ----, Crelle’s J. 2010)
The only minimal surfaces of  T1S2(r) homeomorphic to the 
projective plane and arising from unit vector fields without 
boundary of S2(r) are Pontryagin cycles.

Proposition (Borrelli and ----, Crelle’s J. 2010)
The “great” spheres provide an open book structure of the 3-
dimensional Berger sphere with minimal leaves and with binding a 
fiber of the Hopf fibration.

Used by Hardt and Rosenberg, Ann. 

Inst. Fourier 90, to study unicity 
of minimal submanifolds



Thanks for your attention!
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