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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller
integers?
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@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller
integers?

N=5 =1+1+1+1+1
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller
integers?

N=5 =14+14+1+141 =14+1+1+2
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller
integers?

N=5 =1+1+1+14+1 =1+1+1+2
=1+1+3
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller
integers?

N=5 =1+1+1+14+1 =1+1+1+2
=1+1+3 —1+44
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=1+1+3 =144
=5
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=1+1+3 =1+4
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=14+143 =1+4
=243
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?

N=5 =14+1414+1+1 =14+141+2
=14+143 =1+4
=243

N =100
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=14+143 =1+4
=243

N =100 your turn
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=1+1+3 =1+4
=243

N =100 your turn

e Hardy-Ramanujan for large N:
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Introduction

@ Partitioning problems:
How many ways are there to write an integer N as a sum of smaller

integers?
N=5 =14+1414+1+1 =14+141+2
=1+1+3 =1+4
=243

N =100 your turn

e Hardy-Ramanujan for large N:
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?

e Example: \;j = n? + nf, i,j €N, (i,j)#(0,0).
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?

e Example: \;j = n? + nf, i,j €N, (i,j)#(0,0).

n(N) ~ (...) exp {m N }
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?

e Example: \;j = n? + nf, i,j €N, (i,j)#(0,0).

n(N) ~ (...) exp {m N }

@ Relevant information contained in the spectral functions

s) = D N°
i=1
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?

e Example: \;j = n? + nf, i,j €N, (i,j)#(0,0).

n(N) ~ (...)exp{...\/ﬁ—l— LNYA }
@ Relevant information contained in the spectral functions
o0
(s) = Y N°
i=1

o0

K(t) = Y e ™t
i=1
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Introduction

@ More generally: How many ways are there to write an integer N as a
sum over integers from a given sequence A = {1, Az, A3, ...}?

e Example: \;j = n? + nf, i,j €N, (i,j)#(0,0).

n(N) ~ (...) exp {m N }

@ Relevant information contained in the spectral functions

s) = D N°

i=1

o [o.¢] .
K(t) = Ze*/\"tNZa,-nt’"

i=1 n=0

M. Coons and KK, J. Math. Phys. 50 (2009) 013517
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Introduction

Can one hear the shape of a drum?
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Can one hear the shape of a drum?

Can a gas feel the shape of its container?
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Introduction

Can one hear the shape of a drum?

Can a gas feel the shape of its container?

What does the Casimir effect know about a boundary?
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Can one hear the shape of a drum?

o Amplitude and fundamental
tones of vibrations

? 9P
<_ax2 _ ay2> ¢k(X7y) = )\kd’k(xvy)a

¢k(x¢y)|(x,y)€8M =0
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Can one hear the shape of a drum?

o Amplitude and fundamental
tones of vibrations

2 o2
<_aax2 _ ay2> ¢k(X7y) = )\kd’k(xvy)a

¢k(x¢y)|(x,y)€8M =0

@ Heat kernel
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Can one hear the shape of a drum?

o Amplitude and fundamental
tones of vibrations

? 9P
<_ax2 _ ay2> ¢k(X7y) = )\kd’k(xvy)a

¢k(x¢y)|(x,y)€8M =0

@ Heat kernel

o0

_ length/4 1
K(t) =Y et R0 2 “(1—h /2
(t) k:le yy— At +g(l=h)+0(t7)

M. Kac, Am. Math. Monthly 73 (1966) 1
H.P. Mc Kean and I.M. Singer, J. Diff. Geom. 1 (1967) 43
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Can a gas feel the shape of its container?
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Can a gas feel the shape of its container?

@ Schrodinger equation and
wave function of atoms

2 52
(_aaxz _ ay2> ok(x,y) = Atk (x,y),

D% ¥ ) (x.y)eom =0
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Can a gas feel the shape of its container?

@ Schrodinger equation and
wave function of atoms

2 52
(_aaxz _ ay2> ok(x,y) = Atk (x,y),

D% ¥ ) (x.y)eom =0

@ Partition function

09 = ~Som(i-e)
k=1

A Coruiia, December 17, 2010 2% /

Klaus Kirsten (Baylor University) Spectral functions



Can a gas feel the shape of its container?

@ Schrodinger equation and
wave function of atoms

2 52
(_aaxz _ ay2> ok(x,y) = Atk (x,y),

D% ¥ ) (x.y)eom =0

@ Partition function

09 = ~Som(i-e)
k=1

0 _ D _(D— D-1
2 BRI ¢g <2> ag + B~ (P~1/2¢q (2> ayp+ ..
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What does the Casimir effect know about a boundary?
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What does the Casimir effect know about a boundary?

@ Quantum field fluctuations

? P
(_axz _ 8}/2> d)k(xay) = )\kqbk(xa.y)a

D%, ¥ ) (xy)eom =0
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What does the Casimir effect know about a boundary?

@ Quantum field fluctuations

? P
(_axz _ ay2> d)k(xay) = )\kqbk(xa.y)a

D%, ¥ ) (xy)eom =0

o Casimir energy (formally)

oo
Ecas = Z )\1/2
k=1
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What does the Casimir effect know about a boundary?

@ Quantum field fluctuations

? P
(_axz _ ay2> d)k(xay) = )\kqbk(xa.y)a

D%, ¥ ) (xy)eom =0
o Casimir energy (formally)
Ecas = Z )\1/2
k=1

@ Associated zeta function

o0
—S
(s) = E , Ak
k=1
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What does the Casimir effect know about a boundary?

@ Quantum field fluctuations

? P
(_axz _ ay2> d)k(xay) = )\kqbk(xa.y)a

D%, ¥ ) (xy)eom =0
o Casimir energy (formally)

Ecs =Y N7 —"C(s=-1/2)"
k=1

@ Associated zeta function

o0
—S
(s) = E , Ak
k=1
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What does the Casimir effect know about a boundary?

@ In more detail
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What does the Casimir effect know about a boundary?

@ In more detail

1 1 1
¢ (—5 +€) = Eag + FP (—5) -+ O(G)
Explicit knowledge of heat kernel coefficients needed. J

Klaus Kirsten (Baylor University) Spectral functions



What does the Casimir effect know about a boundary?

@ In more detail

1 1 1
¢ (—5 +€) =_at FP ¢ (—5) + O(e)
Explicit knowledge of heat kernel coefficients needed. J

P.B. Gilkey and T.P. Branson, Commun. Part. Diff. Eq. 15 (1990) 245 (100 citations)
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What does the Casimir effect know about a boundary?

@ In more detail

1 1 1
¢ (—5 +€) =_at FP ¢ (—5) + O(e)
Explicit knowledge of heat kernel coefficients needed. J

P.B. Gilkey and T.P. Branson, Commun. Part. Diff. Eq. 15 (1990) 245 (100 citations)

P.B. Gilkey, J. Diff. Geom. 10 (1975) 601 (259 citations)
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What does the Casimir effect know about a boundary?

@ In more detail

¢ (—% +€) - %az + FP¢ (—%) +0(e)

Explicit knowledge of heat kernel coefficients needed.

P.B. Gilkey and T.P. Branson, Commun. Part. Diff. Eq. 15 (1990) 245 (100 citations)
P.B. Gilkey, J. Diff. Geom. 10 (1975) 601 (259 citations)

T. Eguchi, P.B. Gilkey and A.J. Hanson, Phys. Rep. 66 (1980) 213 (895 citations)
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@ M a smooth D-dimensional Riemannian manifold
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Introduction

@ M a smooth D-dimensional Riemannian manifold

@ P a Laplace type differential operator on M
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Introduction

@ M a smooth D-dimensional Riemannian manifold
@ P a Laplace type differential operator on M

o Eigenvalues of P

Por(x) = Adi(x), Boi(x)|xeom =0
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Introduction

@ M a smooth D-dimensional Riemannian manifold
@ P a Laplace type differential operator on M

o Eigenvalues of P

Poi(x) = Akor(x), Béw(x)|xeom =0

@ Associated heat kernel (F localizing function)

K(t, F) = Tram) (Fe—“’>
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Introduction

@ M a smooth D-dimensional Riemannian manifold
@ P a Laplace type differential operator on M

o Eigenvalues of P

Por(x) = Adi(x), Boi(x)|xeom =0

@ Associated heat kernel (F localizing function)

K(t, F) = Tram) (Fe—“’)

What is the small-t asymptotics of the heat kernel? J
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Introduction

@ M smooth compact and without boundary, F € C*°(M)

K(t,F)~t P2 3" cy(F,P)t"
n=0,1,2,...
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Introduction

@ M smooth compact and without boundary, F € C*°(M)

oo
K(t,F)~t P2 3" cy(F,P)t"
n=0,12,...

@ M smooth compact and with smooth boundary, F € C>*(M)
@ BB local and strongly elliptic

K(t,F)~ t7P2 N cy(F, P)t"+ ¢~ (P=02 " py(F, P, B)t!
n=0,1,2,... 0=0,1/2,1,...
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Introduction

@ M smooth compact and without boundary, F € C*°(M)

oo
K(t,F)~t P2 3" cy(F,P)t"
n=0,12,...

@ M smooth compact and with smooth boundary, F € C>*(M)
@ BB local and strongly elliptic

K(t,F)~ t7P2 N cy(F, P)t"+ ¢~ (P=02 " py(F, P, B)t!
n=0,1,2,... 0=0,1/2,1,...

¢n(F, P) and by(F, P,13) are the heat kernel coefficients depending
on geometric invariants and the boundary condition. J
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Introduction

o General strategy: Write down general form using independent
invariants

C,'/,'7 = 1,2,
¢; are numerical multipliers and /; are

R, RjRY, AR, ... L2, Ll ...
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o General strategy: Write down general form using independent
invariants

C,'/,', = ]_,27
¢; are numerical multipliers and /; are

R, RjRY, AR, ... L2, Ll ...

@ Determine numerical multipliers using
a.) special cases
b.) functorial properties (product formula, conformal transformations)
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Introduction

o General strategy: Write down general form using independent
invariants

C,'/,', = ]_,27
¢; are numerical multipliers and /; are

R, RjRY, AR, ... L2, Ll ...

@ Determine numerical multipliers using
a.) special cases
b.) functorial properties (product formula, conformal transformations)

o Advantages:
a.) long calculation split into pieces
b.) character of a riddle, quite enjoyable
c.) provides many crosschecks due to overlapping information
obtained by the conglomerate of methods

Klaus Kirsten (Baylor University) Spectral functions
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Boundary conditions and invariance theory

o Laplace type operator P

P=—(g'V;V;+E)
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Boundary conditions and invariance theory

o Laplace type operator P

P=—(g'V;V;+E)

@ Dirichlet boundary conditions

¢(X)|x€8M =0
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Boundary conditions and invariance theory

o Laplace type operator P

P=—(g'V;V;+E)

@ Dirichlet boundary conditions

¢(X)|x€8M =0

@ Heat trace

K(tF) = Triagm (Fe*)
~ tP2 N Ay (F,P.B) "
n=0,1/2,1,...
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Klaus Kirsten (Baylor University) Spectral functions 26



Boundary conditions and invariance theory
@ General form of the coefficients; dimensional consideration
P : length™2
e P . [t] = length?
an(F,P,B) : lengthP=2n
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Boundary conditions and invariance theory
@ General form of the coefficients; dimensional consideration
P : length™2
e P . [t] = length?
an(F,P,B) : lengthP=2n

@ Structure of the coefficients

an(F,P,B) = /dx c,,(x,F,P)—i—/dy bn(y, F,P,B)

1% om
co(x,F,P) : length™2"
ba(y,F,P,B) : lengthl=2"
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Boundary conditions and invariance theory
@ General form of the coefficients; dimensional consideration
P : length™2
e P . [t] = length?
an(F,P,B) : lengthP=2n

@ Structure of the coefficients

an(F,P,B) = /dx c,,(x,F,P)—i—/dy bn(y, F,P,B)

M oM
co(x,F,P) : length™2"
ba(y,F,P,B) : lengthl=2"

o Building blocks
E, R, Ry, Riju :length™®  L,p: length™!

and contractions, covariant derivatives thereof. , AL AR LTI TGk Y
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Boundary conditions and invariance theory

by = (4m)"PD2 5 F [om]
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Boundary conditions and invariance theory

by = (4m)"PD2 5 F [om]

by = (47) P26 [dy F L2+ diF.,y] [OM]
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Boundary conditions and invariance theory

bip = (4m) PV 6 F [om]
by = (4r) P26 [dy F L2 + ch F.p] [OM]
b3/2 _ (47T)*(D*1)/259671 |:F <60E +e1R+ eRmm + 6‘3[_2[_2

eaLapl™) + esL3Fm + e5Fymm| [OM]

bo: 19 terms
bs 2 ~ 75 terms

A Coruiia, December 17, 2010 15 /
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Special case calculation on the ball

Example with non-vanishing extrinsic curvature is very useful J

o Geometry of the ball (D = d + 1)

Lb=¢b 12=d, L,l**=d,..

a
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Special case calculation on the ball

Example with non-vanishing extrinsic curvature is very useful J

o Geometry of the ball (D = d + 1)

Lb=¢b 12=d, Ll =d,..

a

@ Localizing function

F(r)=fo+ fr* 4 for*
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Special case calculation on the ball

by = (4m)" V25 F [om]
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Special case calculation on the ball

by = (4m)" V25 F [om]

by = (4m) (0D (_%) F [oM]
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Special case calculation on the ball

by = (4m)" V25 F [om]

by = (4m) (0D (_%) F [oM]

by = (4n)7P/267 Y [dy F L2 + diF.p] [OM]
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Special case calculation on the ball

b = (4n)~(P=V2 5 F [am]

by = (4m) (0D (_%) F [oM]

by (47)~P2671 [dy F L2 + di F.pn] [OM]
bi = (4m)"P267 1 [2F d +3F'] [oM]
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Special case calculation on the ball
b = (4n)~(P=V2 5 F [am]
R CH R0

by = (47)"P2%67 dy F L2 4 diF..,] [OM]
bi = (4m)"P267 1 [2F d +3F'] [oM]

+e4LabLab) +esL3Fim+ e6F;mm] [OM]
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Special case calculation on the ball

by = (4m)"P=D2 5 F [oM]

bip = (4m) (P71 <_1> F [oM]

by = (4r) P26 [do F L3+ diF.] [OM]
by = (4m) P67 [2F d +3F'] [oM]
+e4LabLab) + esL3F.m + e6Emm] [OM]
by, = (4m)~(P~D/259671 [F(7d* — 10d) + 30dF’ + 24F"] [oM]
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Functorial properties

o Let M= My x My, OM = My x OMs, gy = gm, + 8M,, then
R(M) = R(My) + R(M).
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Functorial properties

o Let M= My x My, OM = My x OM>, gy = gm, + 8M,, then
R(M) = R(My) + R(M,).
e Furthermore let Py = Py, + P, Fv = Fumy, F,, then

e—tPM — e—tPMl e_tPM2,

Trizm) <FMe_tPM> = Tremm) (FMle_tP’V’l) Tri2(umy) (FMze_tPMz)
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Functorial properties

o Let M= My x My, OM = My x OM>, gy = gm, + 8M,, then
R(M) = R(My) + R(M).

e Furthermore let Py = Py, + P, Fv = Fumy, F,, then

e—tPM — e—tPMl e_tPM2,

Trizm) <FMe_tPM> = Tremm) (FMle_tP’V’l) Tri2(umy) (FMze_tPMz)

@ In particular,

azj2(M, P,B) = a1(My, P1) byo(Ma, P2, B)
+ao(Mi, P1) b3jo(Ma, P2, B)
— ¢ =96, c3 =16.
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Functorial properties

@ Idea: consider variations of the coefficients

Ple) = e>Fp
= —(g"(e)Vi(e)V)(e) + E(e))

where

gle)=e>Tg"
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Functorial properties

@ Idea: consider variations of the coefficients

Ple) = e>Fp
~(&"(Vil)Vj(€) + E(e))

where
—2¢F _ij

glie)=e?"g
@ Relation between the associated coefficients

% an(1, P(€), B(€)) = (D — 2n)an(F, P, B)
e=0

A Coruiia, December 17, 2010 19 /
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Functorial properties

e For n=3/2

Ge|_ baalL P(9. B(0) (D~ 3)bya(F. P.B) =0

€=
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Functorial properties

e For n=3/2

Ge|_ baalL P(9. B(0) (D~ 3)bya(F. P.B) =0

€=
@ Set the coefficient of F.,,n, equal zero

%(D —2)cg—2(D—1)cg —(D-1)cs — (D—-3)cs =0

:>C2:—8

A Coruiia, December 17, 2010 %g /
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a52(F, P, B) = F5760 ' (4m) " /> (F {g1Emm + 82EmS + &3E°
. b 2 i ikl
+84E.,% + g5 RE + 190,507 + g6 AR + g7R” + ggR;jR” + goRjjiy R”
+£10RmmE + g11RmmR + £12RS” + 2QamQ7,, + £13Rimm + 814 R’
+815 Rmmimm + 816R:mS + &17RmmS° + £185S.,” + £195.25
ab a b 2 4
+820RammbR™" + 821 RmmRmm + 822 Rammb Ry + 823ES” + 8245 }
+Fm {gzsR;m + 826 RS + g27RmmS + 8285.,” + £20E:m + g30ES + g3153}
+F.mm {g32R + &33Rmm + g34E + g3552} + 836 SF.mmm + 837 F;mmmm
ab b ab
+F {dlKE;m + HKRm + d3K™ Rammbym + daKS.p,” + ds Kyp S
5 K.pSP + drKap:2SP + dgK.pPS + doKap: 20S + dioKip KD + diy Ko, KD
a bc ab ¢ ac b b
+d12Kap:"K™ e + d13Kap:c K™7 + d1aKap:c K7 + dis K, K
ab a ,.bc be a . bc
+di6Kop, " K+ dir Ky, " K™ + digKipe K™ + dig K., " K
+g38 KSE + dao KSRmm + 839 KSR + da1 KapR**S + b K*® SR
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+8a0K E + 831 Kap K" E + ga2K* R + g43Kap K™ R + do3 K* Renm

+024 Koy K Renm + las KK R?® + dag KK Rompy + a7 Kap K2 RE
+d28KabKacRbmmc + dagKap Keg R 4 d3gKS® + dg1 K2S? + dap K,pK?PS?
+d33 K>S + daa KKy KPS + das Kap K" K2S + dagK* + dag K2 Kop K™
+3gKap K™ Keg K + dao KKyp K" K2 + dio Kop K™ Keg K }

+Fim { 844 KE + dat KR + ga5 KR + da KS®

i3 K ? + daaKyp ™ + dasKap R + dag K™ Rapmp + darKS

+dig KapK™S + dag K + dso KKy K™ + ds1 Kp K"K }

+Fomm { ds2KS + dssK? + dsa Kap K™ } + s KF mmm }OM]
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On the analysis of spectral functions

@ Example: two dimensional ball
Laplacian in polar coordinates:

10 0 1 02
l:_7a <r5) - ﬁa_wz] ¢m,n(ra (P) = )‘m,nd’m,n(ra 90)
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On the analysis of spectral functions

@ Example: two dimensional ball
Laplacian in polar coordinates:

10/ 0 1 o
{r& <ral’) B I’ZM] ¢m,n(ra QD) - )‘mvnd)’"v”(r’ 90)

@ Separation of variables:

O, ) = Jiml (VAma 1) €™, me
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On the analysis of spectral functions

@ Example: two dimensional ball
Laplacian in polar coordinates:

10/ 0 1 &
{I’al’ <ral’) B I’Zw] ¢m,n(ra QD) - )‘mvnd)’"v”(r’ 90)

@ Separation of variables:

Oma(r,9) = Il (VAma 1) ™, meZ
@ Impose boundary condition:

J ( VAma ) =0
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On the analysis of spectral functions

@ Zeta function:

«s) = D D A

m=—00 n=0

. dZ _2s 8
= Z /27” zZ" 5 InJjm(2)
m=—00 %
z—plane
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On the analysis of spectral functions

e Techniques:

« deformation of the contour ~

« Debye expansions

« commutation of summation and integration
« Mellin-Barnes integral representation
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On the analysis of spectral functions

e Techniques:

« deformation of the contour ~

« Debye expansions

« commutation of summation and integration
« Mellin-Barnes integral representation

o Results:
« heat kernel coefficients

« functional determinants
« Casimir energy
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Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the

smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

A Coruiia, December 17, 2010 26/
Klaus Kirsten (Baylor University) Spectral functions 26



Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the
smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

@ Using the contour integral approach functional determinants can be
obtained as well by purely analytical means,

A Coruiia, December 17, 2010 26/
Klaus Kirsten (Baylor University) Spectral functions 26



Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the

smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

@ Using the contour integral approach functional determinants can be
obtained as well by purely analytical means,

/ 3., 1,
(g3(0) = =5 — 5 In2— ZCR(_2) + ECR(_I)
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Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the
smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

@ Using the contour integral approach functional determinants can be
obtained as well by purely analytical means,

/ 3., 1,
(g3(0) = =5 — 5 In2— ZCR(_2) + §<R(_l)

@ so can Casimir energies with some pieces being evaluated numerically,
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Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the
smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

@ Using the contour integral approach functional determinants can be
obtained as well by purely analytical means,

3 1
. =—— — —1In2— =(p(—=2) + =Cp(~-1
(ps(0) 32 1" 4CR( )+ 2<R( )
@ so can Casimir energies with some pieces being evaluated numerically,

_ 774_ 44 +
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Conclusions

@ A combination of techniques allows for the very effective evaluation of
heat kernel coefficients for a variety of boundary conditions in the
smooth and singular setting. [Branson, Dowker, Park, Seeley, van den
Berg, Vassilevich]

@ Using the contour integral approach functional determinants can be
obtained as well by purely analytical means,

3 1
. =—— — —1In2— =(p(—=2) + =Cp(~-1
(ps(0) 32 1" 4CR( )+ 2<R( )
@ so can Casimir energies with some pieces being evaluated numerically,

_ 774_ 44 +

@ The approach is expected to work whenever the configuration allows
for a separation of variables.
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