
Pseudo-Riemannian manifolds
modelled on symmetric spaces
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Basic definitions

I A pseudo-Riemannian manifold (M, g) is said to be curvature
homogeneous if, for any pair of points p and q in M, there
exists a linear isometry F : TpM → TqM such that
gq(R(FX ,FY )FZ ,FW ) = gp(R(X ,Y )Z ,W ) for any
X ,Y ,Z ,W ∈ TpM.

I (M, g) has the same curvature tensor as a homogeneous
manifold (M0, g

0) if, for any points p ∈ M and q ∈ M0, there
is a linear isometry F : TpM → TqM0 such that
g0
q (R(FX ,FY )FZ ,FW ) = gp(R(X ,Y )Z ,W ).

I (M, g) is said to be semi-symmetric if R(X ,Y ) · R = 0, where
the curvature operator acts by the dot as a derivation on the
tensor algebra.

I A space is semi-symmetric if, and only if, it has the same
curvature tensor as a symmetric space.



Cahen at al:

I Lorentzian manifold (M, g) with the same curvature tensor
as an irreducible Lorentzian symmetric space (M0, g

0)
has constant sectional curvature;

I a class of complete 3-dimensional Lorentzian manifolds
with the same curvature tensor as an indecomposable
(but not irreducible) Lorentzian symmetric space.

I The Ricci tensor is always of rank 1,
I the scalar curvature vanishes.

This construction can be generalized to higher dimensions.

Riemannian geometry - “generalized Sekigawa examples”

I the only irreducible Riemannian manifolds which are locally
non-homogeneous with the same curvature tensor
as a Riemannian symmetric space;

I the model space must be a direct product of a 2-dimensional
space form M2(c)(c 6= 0) and an Euclidean n-space;

I the Ricci tensor has rank 2 and the scalar curvature is nonzero.
We generalize these examples to the pseudo-Riemannian case.



Generalized Sekigawa examples

Rn+1[w , x1, . . . , xn], open set U ⊂ R2[w , x1],
f : U → R smooth non-vanishing function,

A(w) = (Ai
j(w)) . . . skew-symmetric smooth

(n × n)-matrix function of one variable

ω0 = f (w , x1)dw ,
ωi = dx i +

∑n
j=1 Ai

j(w)x jdw , i = 1, . . . , n



Metric of generalized Sekigawa example

I We define a metric gf ,A(w) as follows:

gf ,A(w) =
∑n+1

j=0 ωj ⊗ ωj on open Ũ ⊂ Rn+1.

I The components of the curvature tensor are:

R0101 = R1010 = −R1001 = −R0110 = −f −1f ′′x1x1 ,
all other components Rijkl vanish.

I gf ,A(w) is nonflat and curvature homogeneous if and only if
f −1f ′′x1x1 = λ where λ 6= 0 is a constant.



Non-flat curvature homogeneous examples

It means:

f (w , x1) = a(w) exp(
√

λx1) + b(w) exp(−
√

λx1) if λ > 0,

or

f (w , x1) = a(w) cos(
√
−λx1) + b(w) sin(

√
−λx1) if λ < 0,

I a(w) and b(w) differentiable functions
such that f (w , x1) > 0 in U,

I U can be the whole plane in the case λ < 0 and an open strip
in the plane for λ > 0.



Pseudo-Riemannian modification
of generalized Sekigawa examples

Euclidean space Rn+1, Cartesian coordinates (w , x1, . . . , xn),
signature (ε0, ε1, . . . , εn), εi = ±1.
Let A = Ai

j(w) be a smooth matrix function such that

Ai
i (w) = 0, Ai

j(w) are arbitrary for 1 ≤ j < i ≤ n,

Aj
i (w) = −εiεjA

i
j(w), 1 ≤ j < i ≤ n. (1)

We define the 1-forms

ω0 = f (w , x1)dw ,

ωi = dx i +
n∑

j=1

Ai
j(w)x jdw , i = 1, . . . , n. (2)

Pseudo-Riemannian metric g such that {ω0, . . . , ωn}
is a pseudo-orthonormal coframe with the above signature.



I We will show that the scalar curvature is τ = −2ε1f
′′
x1x1/f .

I (Rn+1, g) is curvature homogeneous iff τ = 2λ = const.

I For λ < 0, or, λ > 0, respectively, we put

f (w , x1) = a(w) exp(
√
−λx1) + b(w) exp(−

√
−λx1),

f (w , x1) = a(w) cos(
√

λx1) + b(w) sin(
√

λx1). (3)

Here a(w), b(w) are non-negative smooth functions on R
such that a(w) + b(w) > 0 and the definition domain U
is a direct product S × Rn−1, where S is an open strip
in the plane R2[w , x1] so that f (w , x1) > 0 on S.

I In the Riemannian case,
the curvature homogeneous metric associated with the first
solution has the same curvature tensor as the direct product
symmetric space H2(λ)× Rn−1 and the metric associated
with the second solution has the model S2(λ)× Rn−1.



Curvature properties

The dual vector fields Ei to 1-forms ωi are

E0 =
1

f (w , x1)

(
∂w −

n∑
i ,j=1

Ai
j(w)x j∂x i

)
,

Ei = ∂x i , i = 1, . . . , n.

For the commutators of these vector fields we obtain

[E0,Ej ] =
1

f (w , x1)

(∂f (w , x1)

∂x j
E0 +

n∑
i=1

Ai
j(w)Ei ),

[Ei ,Ej ] = 0.

Because {Ei}n
i=0 is a pseudo-orthonormal frame,

we calculate the covariant derivatives from the formula

2〈∇Ei
Ej ,Ek〉 = −〈Ei , [Ej ,Ek ]〉+ 〈Ej , [Ek ,Ei ]〉+ 〈Ek , [Ei ,Ej ]〉.



For any vector field X =
∑n

i=0 x iEi , the covariant derivatives are

∇XE0 = −ε0ε1
x0

f
f ′x1E1,

∇XE1 =
x0

f

(
f ′x1E0 +

n∑
i=1

Ai
1(w)Ei

)
,

∇XEj =
x0

f

n∑
i=1

Ai
j(w)Ei , j = 2, . . . , n. (4)

The curvature operators:

RXY Z = ∇[X ,Y ]Z − [∇X ,∇Y ]Z , X ,Y ,Z ∈ X (M).

With respect to the frame {Ei}n
i=0, the only nonzero operators are

RE0E1E0 = −ε0ε1
f ′′x1x1

f
· E1,

RE0E1E1 =
f ′′x1x1

f
· E0.



The Ricci curvature:

Ric(X ,Y ) =
n∑

i=0

εi 〈RXEi
Y ,Ei 〉, X ,Y ∈ X (M).

In the frame {Ei}n
i=0, the nonzero principal Ricci curvatures are

Ric(E0,E0) = −ε0ε1
f ′′x1x1

f
, Ric(E1,E1) = −

f ′′x1x1

f

and the scalar curvature is

τ = −2ε1
f ′′x1x1

f
.



Lemma

Let (M, g), dim(M) > 2, be a proper pseudo-Riemannian manifold
constructed according to the formulas (1) and (2).

I If ε0 = −ε1, then (M, g) has the same curvature as the direct
product L2(c)× Rn−1

k , where L2(c) is the Lorentzian manifold
with constant nonzero curvature and Rn−1

k is a flat
pseudo-Riemannian space of signature (k, n − 1− k), where k
is an integer 0 ≤ k ≤ n − 1.

I If ε0 = ε1, then (M, g) has the same curvature as the direct
product S2(c)× Rn−1

k or H2(c)× Rn−1
k , where Rn−1

k is a flat
pseudo-Riemannian space of signature (k, n − 1− k), where k
is an integer 0 ≤ k < n − 1.

In both cases, (M, g) has the same signature as the corresponding
model space (up to replacing g by −g).



Irreducibility

Irreducibility (for a special subclass of metrics):
Let εi = 1 for i = 0, . . . , p and εi = −1 for i = p + 1, . . . , n,

Ai+1
i (w) = λi (w) > 0, i = 1, . . . , n − 1,

Ai
j(w) = 0, ‖i − j‖ > 1. (5)

Clearly, Ap
p+1(w) = Ap+1

p (w) = λp(w)

and Ai
i+1(w) = −Ai+1

i (w) = −λi (w) for i 6= p.



Formulas (4) in this special situation are:

∇XE0 = −x0

f
f ′x1E1,

∇XE1 =
x0

f

(
f ′x1E0 + λ1E2

)
,

∇XEj =
x0

f

(
−λj−1Ej−1 + λjEj+1

)
, 2 < j < p + 1,

∇XEp+1 =
x0

f

(
λpEp + λp+1Ep+2

)
,

∇XEj =
x0

f

(
−λj−1Ej−1 + λjEj+1

)
, p + 1 < j < n − 1,

∇XEn = −x0

f
λn−1En−1.



Lemma

Let f ′′x1x1 6= 0, ε0 = ε1 = 1 and the matrix Ai
j(w) is of the special

form described above. Then, for any point p ∈ M, there is
a neighbourhood V such that the local distribution TM|V does
not admit any proper parallel subdistribution.

Because there is no proper parallel subdistribution H in TM|V ,
there is no proper subspace Hp in TpM invariant with respect
to the holonomy group Φ(V, p). Hence, the full holonomy group
Φ(M, p) acts irreducibly on TpM. We obtain the following:

Theorem

Pseudo-Riemannian manifolds (M, g) modelled on S2(c)× Rn−1
k

or H2(c)× Rn−1
k and given by the formulas (2), (3) and (5)

are irreducible.



Concluding remarks

By the modification of the rather long computation as in [2],
we are able to prove the following:

Theorem

Let (Mn+1, g) be locally non-homogeneous, locally irreducible,
curvature homogeneous pseudo-Riemannian manifold modelled on
S2(c)× Rn−1

k or H2(c)× Rn−1
k , with the signature (ε0, ε1, . . . , εn)

such that ε0 = ε1. Then there exists a dense open subset U of
Mn+1 such that, in a neighbourhood of each point p ∈ U , the
metric g is expressed by the formulas (1) and (2).



I In [2], a stronger result was proved for the Riemannian case,
namely that each irreducible and not locally symmetric space
with a symmetric model must be a generalized Sekigawa
example.
In the pseudo-Riemannian case, the situation is more
complicated (see examples in [3]).

I For the case ε0 = −ε1, i.e., for the pseudo-Riemannian
manifolds modelled on L2(c)× Rn−1

k ,
it is not so easy to prove the irreducibility.

I In [3], the authors proved the geodesic completeness of their
example. The equations of geodesics are very simple there.
Our equations of geodesics, are complicated.
We leave the completeness problem open.
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Curvature homogeneity (classical)

(Pseudo-)Riemannian spaces whose curvature tensor of type
(0,4) is “the same” at all points.
Trivial examples:

I connected locally homogeneous manifolds.

Curvature homogeneous spaces have been studied by many
authors, starting from the basic paper

I.M. Singer: Infinitesimally homogeneous spaces, Comm.
Pure Appl. Math. 13 (1960), 685-697.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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First non-trivial Riemannian examples were given by

K. Sekigawa: On some 3-dimensional Riemannian
manifolds, Hokkaido Math. J. 2 (1973), 259-270,

K. Sekigawa: On some 3-dimensional curvature
homogeneous spaces, Tensor 31 (1977), 87-97,

and generalized later on. We will survey some older results
(with E. Boeckx, F. Tricerri, L. Vanhecke) and some very fresh
results (with Z. Dušek and A. Vanžurová).

For example, an older result says that every irreducible
Riemannian manifold with the same curvature tensor as a
symmetric space and NOT locally homogeneous (so-called
“non-homogeneous relative of a symmetric space”) is a
“generalized Sekigawa example”.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Generalized Sekigawa examples

Rn+1[w, x1, . . . , xn], open U ⊂ R2[w, x1], f : U → R (smooth)
non-vanishing function,

A(w) = (Ai
j(w)) skew-symmetric (smooth) (n× n)-matrix

function of one variable

ω0 = f(w, x1)dw,

ωi = dxi +
∑n

j=1A
i
j(w)xjdw, i = 1, . . . , n

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Metric

We define a metric gf,A(w) as follows:

gf,A(w) =
∑n+1

j=0 ω
j ⊗ ωj on open Ũ ⊂ Rn+1

curvature:

R0101 = R1010 = −R1001 = −R0110 = −f−1f ′′x1x1 ,
all other components Rijkl vanish.

gf,A(w) is nonflat and curvature homogeneous if and only if

f−1f ′′x1x1 = k where k 6= 0 is a constant;

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Non-flat curvature homogeneous examples

it means:

f(w, x1) = a(w) exp(
√
kx1) + b(w) exp(−

√
kx1) if k > 0, or

f(w, x1) = a(w) cos(
√
−kx1) + b(w) sin(

√
−kx1) if k < 0,

a(w) and b(w) differentiable functions such that
f(w, x1) > 0 in U .

Here U can be the whole plane in the case k > 0 and an open
strip in the plane for k < 0.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Recall that this class of spaces is remarkable:

it includes all irreducible curvature homogeneous spaces which
are not locally homogeneous and whose curvature tensor R
“is the same” as that of a Riemannian symmetric space
(so-called “non-homogeneous relatives of symmetric spaces”).

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Another topic:

Introducing a new concept of a curvature-homogeneous space,
namely in the sense that not the curvature tensor of type (0,4)
is preserved from point to point but the curvature tensor of
type (1,3) is preserved from point to point, in some sense.

Each curvature-homogeneous space in the classical sense is also
curvature-homogeneous in the modified sense. The original
example by K. Sekigawa (which is curvature homogeneous just
of order zero) is curvature homogeneous up to order one in the
modified sense.

We give proper examples of the new spaces in all dimensions,
and a complete classification of such spaces in dimension 3 and
in generic case.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Notation

(M, g) a smooth Riemannian manifold with a (positive) metric
g and the Riemannian (L.-C.) connection ∇,

R the type (1,3) curvature tensor,
R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,
Rp is its value in p ∈M ,

R the type (0,4) curvature tensor
R(X,Y, Z,W ) = g(R(X,Y )Z,W ), Rp

R(X,Y, Z,W ) = g(R(X,Y )W,Z) = −R(X,Y, Z,W ), Rijkl

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Definitions

Definition 1
A smooth Riemannian manifold (M, g) is said to be curvature
homogeneous if, for any pair of points p and q in M , there exists
a linear isometry F : TpM → TqM such that F ∗(Rq) = Rp.

Definition 2
A Riemannian manifold (M, g) is said to be (1,3)-curvature
homogeneous if for any pair of points p, q there is a
curvature-preserving linear homothety f : TpM → TqM ,
f∗(Rq) = Rp.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Proposition 1

If (M, g) is curvature homogeneous then it is also
(1,3)-curvature homogeneous.

But NOT vice versa.

Examples show:

curvature homogeneous spaces of type (1,3) form a
much bigger class.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)

Curvature-homogeneous spaces of type (1,3)



Introduction (1,3)-curv. homog. examples, any dimension Main results Dimension 3 Higher order (1,3)-curvature homogeneous spaces

Proposition 2

Let (M, g) be a smooth Riemannian manifold. Then the
following two conditions are equivalent:

(i) For each q ∈M , there is a linear homothety
fq : TpM → TqM such that Rp = f∗q (Rq), i.e. (M, g) is
(1,3)-curvature homogeneous.

(ii) There is a smooth function ϕ on M such that ϕ(p) = 0 and
for each q ∈M , Rp = e2ϕ(q)F ∗q (Rq) where Fq : TpM → TqM is
a linear isometry.

R of type (0,4), R of type (1,3).

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Remarks

I The linear isometry Fq from part (i) of Proposition 2 is not
always uniquely determined, but, it is also not arbitrary, in
general. It must be just compatible with the property of
the composed map f as given in part (ii).

I Eevery (1,3)-curvature homogeneous space of dimension n
determines a uniquely determined smooth function of n
variables. The converse remains an open problem but it is
true in dimension 3.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Lemma 1

Let (M, g) be a Riemannian manifold and let 〈E1, . . . , En〉 be
an orthonormal moving frame on a domain U ⊂M . Fix a point
p ∈ U . Suppose that, with respect to this moving frame,
Rijk`(q) = φ(q)Rijk`(p) for each point q ∈ U and for all choices
of indices, where φ(q) is a smooth and positive function on U .
Then there is a smooth function ϕ(q) such that ϕ(p) = 0 and,
for each point q, Rp = e2ϕ(q)F ∗q (Rq) where Fq : TpM → TqM is
a linear isometry.

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Generalized Sekigawa’s examples:

Rn+1[w, x1, . . . , xn], open U ⊂ R2[w, x1], f : U → R (smooth)
non-vanishing function,

A(w) = (Ai
j(w)) skew-symmetric (smooth) (n× n)-matrix

function of one variable,

ω0 = f(w, x1)dw,

ωi = dxi +
∑n

j=1A
i
j(w)xjdw, i = 1, . . . , n

gf,A(w) =

n+1∑
j=0

ωj ⊗ ωj
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Construction

The space (Rn+1, g) which is (1,3)-curvature
homogeneous but not (0,4)-curvature homogeneous:

f an arbitrary smooth function on R2 s.t. at all points,
f and f−1f ′′x1x1 are nonzero and f ′′x1x1/f is never a constant in

an open domain of R2.
The corresponding metric g = gf,A(w) defined on Rn+1 has the

curvature components Rijkl calculated as above,
satisfying

Rijkl(q) = (f−1(q)f ′′x1x1(q))/(f−1(p)f ′′x1x1(p))Rijkl(p)

for any pair of points p, q ∈ Rn+1 and all indices i, j, k, l.
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Let now the point p be fixed.

The assumptions of the Lemma are satisfied, where the
corresponding function φ(q) is defined as

φ(q) = f−1(q)f ′′x1x1(q)/(f−1(p)f ′′x1x1(p))

and hence positive.

From Proposition 2 and our special assumptions we deduce that
the space (Rn+1, g) is (1,3)-curvature homogeneous but not
(0,4)-curvature homogeneous.
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The family of all such metrics depends, up to a local isometry,
on 1 arbitrary function of 2 variables and a finite number of
arbitrary functions of 1 variable. Moreover, if f(w, x1) is
defined on the whole Rn+1 and if there are two continuous
functions α(x1), β(x1) on Rn+1 such that
0 < α(x1) ≤ f(w, x1) ≤ β(x1) <∞, then the space

(Rn+1, gf,A(w))

is a complete Riemannian manifold for an arbitrary
skew-symmetric matrix function A(w).

On the other hand, if A(w) is a constant matrix, then the
inequality f(w, x1) > ε > 0 is sufficient for the completeness.
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Dimension 3

In dimension 3, a Riemannian manifold (M, g) is curvature
homogeneous if and only if the Ricci eigenvalues %1, %2, %3 are
constant at all points; the curvature tensor R is uniquely
determined by the corresponding Ricci tensor % and metric g,

Rijkl =
1

n− 2
(gik%jl − gil%jk + gjl%ik − gjk%il)

+
τ

(n− 1)(n− 2)
(gilgjk − gikgjl).

(1)

(Metrics and functions - real analytic.)
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Prescribed Ricci eigenvalues

The following results are known:

Theorem A

Any real analytic Riemannian manifold with the prescribed
constant Ricci eigenvalues %1 = %2 6= %3 depends (up to a local
isometry) on two arbitrary functions of one variable.

O. Kowalski: A classification of Riemannian 3-manifolds
with constant principal Ricci curvatures %1 = %2 6= %3.
Nagoya Math. J. 132 (1993), 1-36
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Theorem B

Any real analytic Riemannian manifold with the prescribed
distinct constant Ricci eigenvalues %1>%2>%3 depends (up to a
local isometry) on 3 arbitrary functions of 2 variables.

O. Kowalski, Z. Vlášek: Classification of Riemannian
3-manifolds with distinct constant principal Ricci
curvatures. Bulletin of the Belgian Mathematical
Society-Simon Stevin, 5 (1998), 59-68.

The spaces (M, g) with prescribed constant Ricci eigenvalues
are, with rare exceptions, not locally homogeneous.
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The classification of all triplets of distinct real numbers which
can be realized as Ricci eigenvalues on a 3-dimensional locally
homogeneous space was made in

O. Kowalski, S.Ž. Nikčević: On Ricci eigenvalues of locally
homogeneous Riemannan manifolds. Geometriae Dedicata
62 (1996), 65-72.
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Generalized Yamato examples

On an open subset of R3, the prescribed triplets of constant
Ricci eigenvalues can be realized only on spaces which are not
locally homogeneous.

Explicit examples of this kind: the authors constructed
so-called generalized Yamato examples which are explicit for
each choice of the triplet %1 > %2 > %3 of prescribed Ricci
eigenvalues, in

O. Kowalski: A classification of Riemannian 3-manifolds
with constant . . . Nagoya Math. J. 132 (1993), 1-36

O. Kowalski, F. Prüfer: On Riemannian 3-manifolds with
distinct constant Ricci eigevalues. Math. Ann. 300 (1994),
17-28.
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The original construction by K. Yamato - some restrictions are
put on the triplets %1 > %2 > %3, all constructed metrics are
complete.

K. Yamato: A characterization of locally homogeneous
Riemannian manifolds of dimension 3. Nagoya Math. J.
123 (1993), 77-99.

Theorem B was later generalized in

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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Theorem C

All Riemannian metrics defined in a domain U ⊂ R3[x, y, z]
with the prescribed distinct real analytic Ricci eigenvalues
%1(x, y, z) > %2(x, y, z) > %3(x, y, z) depend, up to a local
isometry, on three arbitrary (real analytic) functions of two
variables. Every solution of the problem is defined at least
locally, i.e. in a neighborhood U ′ ⊂ U of a fixed p ∈ U .

O. Kowalski, Z. Vlášek: On 3D-manifolds with prescribed
Ricci eigenvalues. In: Complex, Contact and Symmetric
Manifolds-In Honor of L. Vanhecke. Progress in
Mathematics, Vol. 234, Birkhäuser Boston-Basel-Berlin,
pp. 187-208 (2005).
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In a domain U ⊂ R3[x, y, z], fix a point p and choose a real
analytic function ϕ(x, y, z) on U vanishing at p. According to
Theorem C, we can construct a (local) Riemannian metric
around p such that their Ricci eigenvalues are of the form
%i = e2ϕλi, i = 1, 2, 3 where λ1 > λ2 > λ3 are nonzero constants.
Denote by g such a local metric. Choose a Ricci adapted
orthonormal moving frame 〈E1, E2, E3〉 in a neighborhood of p.
Then we get %ij = %iδij = %jδij = e2ϕλiδij = e2ϕλjδij for
i, j = 1, 2, 3, and the expression (1) for curvature components is
reduced to
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Rijkl = e2ϕ

n−2(λj(δikδjl − δilδjk) + λi(δjlδik − δjkδil)

+
e2ϕ(λ1 + λ2 + λ3)

(n− 1)(n− 2)
(δilδjk − δikδjl),

i, j, k, l = 1, 2, 3. In particular, we get

Rijkl(p) = 1
n−2(λj(δikδjl − δilδjk) + λi(δjlδik − δjkδil)

+
(λ1 + λ2 + λ3)

(n− 1)(n− 2)
(δilδjk − δikδjl),

i.e., R = exp(2ϕ)Rp.
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Now, the assumption of Lemma is satisfied and hence
Proposition 2 can be applied. Thus, the corresponding metric g
is (1,3)-curvature homogeneous and not (0,4)-curvature
homogeneous, in general.

Let us call “generic” those Riemannian manifolds for which the
Ricci eigenvalues are distinct at all points. Due to Proposition
2, we see easily that all generic 3-dimenisonal (1,3)-curvature
homogeneous Riemannian manifolds are constructed in the way
described above. Hence we get the following
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Theorem 1

In dimension 3, all generic real analytic (1,3)-curvature
homogeneous spaces are locally parametrized, up to a local
isometry, by one arbitrary real analytic function of 3 variables
and three arbitrary real analytic functions of 2 variables.
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Classical higher order curvature homogeneity (Singer)

A space (M, g) is said to be curvature homogeneous up to order
r if it satisfies

P (r): For every p, q ∈ (M, g) there exists a linear isometry
F : TpM → TqM such that F ∗((DkR)q) = (DkR)p for all
k = 0, 1, . . . , r.

All standard first order curvature homogeneous Riemannian
manifolds of dimension 3 are automatically locally
homogeneous.
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Singer, for Riemannian space

Connected locally homogeneous spaces are curvature
homogeneous of all orders.

There is always a finite number s ≤ n(n− 1)/2 (n = dimM)
such that, if (M, g) is curvature homogeneous up to order s,
then it is automatically locally homogeneous.
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New setting, higher order (1,3)-curvature homogeneous
(M, g)

Q(k): There exists a linear homothety h : TpM → TqM such
that h∗((DkR)q) = (DkR)p (p, q ∈ (M, g), k separate).

A curvature homogeneous up to order r and of type (1,3):
satisfying Q(0), . . . , Q(r)

I for different integers k, the linear homotheties above are
completely independent; otherwise, the condition would be
too restrictive.
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Proposition 3 (K. Sekigawa; O. Kowalski)

Each 3-dimensional Riem. mfd. satisfying P (1) is locally
homogeneous.

The same in dimension 4:

K. Sekigawa, H. Suga and L. Vanhecke: Four-dimensional
curvature homogeneous spaces, Comment. Math. Univ.
Carolinae 33 (1992), 261-268.

K. Sekigawa, H. Suga and L. Vanhecke: Curvature
homogeneity for four-dimensional manifolds, J. Korean
Math. Soc. 32 (1995), 93-101.
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• Up to now, a Riemannian manifold satisfying P (1) and not
locally homogeneous is not known.

• The situation is completely different in the
pseudo-Riemannian case (P. Bueken, M. Djorić, P.J. Gilkey).

Oldřich Kowalski (Charles University, Prague), joint work with Alena Vanžurová (Palacky University, Olomouc)
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An analogy of Proposition 2 for higher order:

Proposition 4

Given a smooth Riemannian mfd (M, g), the conditions are
equivalent:

(a): P (k) holds, i.e., for every p, q ∈ (M, g) there exists a linear
homothety h : TpM → TqM s. t. h∗((DkR)q) = (DkR)p.

(b): There is p ∈M and a smooth function ϕ on M s. t.
ϕ(p) = 0 and for each q ∈M , (DkR)p = e(k+2)ϕ(q)F ∗((DkR)q)
where F : TpM → TqM is a linear isometry.
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The Sekigawa’s example:

The metric g =
∑2

i=0(ω
i)2 on R3[w, x, y],

ω0 = f(x)dw, f(x) = aex + be−x, a, b positive numbers,

ω1 = dx− ydw, ω2 = dy + xdw.

The space (R3, g) is simply connected, complete, irreducible,
satisfies P (0), is semi-symmetric (R(X,Y ) ·R = 0).
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As a contrast to the above results, we show:

• a 3-dimensional manifold (M, g) of Sekigawa type satisfies
Q(0) and Q(1)
(thus it is curvature homogeneous up to order 1 and of type
(1,3))

• but Q(2) is not fulfilled,

• (M, g) is not locally homogeneous,

• does not satisfy the condition P (1).
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Proof

〈E0, E1, E2〉 - orthonormal moving frame dual to 〈ω0, ω1, ω2〉
above, standard evaluation:

R = 4ω0 ∧ ω1 ⊗ ω0 ∧ ω1, f−1f ′′ = 1.

(DE0R)(E0, E1, E2, E0) = −f−1 and all other components of
DR (up to natural permutations of the four inner arguments)
vanish. Aassume a+ b = 1,

define ϕ(q) on R3 by e3ϕ(q) = f(x) = aex + be−x where x = x(q);

the condition (b) of Proposition 3 holds for the origin
p = [0, 0, 0] in the case k = 1;

Q(1) is satisfied, as well as P (0), and hence Q(0).
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Q(2) is not satisfied:

(D2
E0E0
R)(E0, E1, E1, E0) = 2f−2,

(D2
E0E0
R)(E0, E1, E2, E0) = yf−3f ′,

the last two components are never equal.

There is no function ϕ(q) satisfying the condition (b) of
Proposition 3 for k = 2. �
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Than you for your attention
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