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Abstract

A central area of study in differential geometry is the examination
of the relationship between purely algebraic properties of the
curvature tensor and the underlying geometric properties of the
manifold.

Many authors have worked in this area in recent years.

Nevertheless, many fundamental questions remain unanswered.
When dealing with a geometric problem, it is frequently convenient
to work first purely algebraically and pass later to the geometric
setting.

For this reason, many questions in differential geometry are often
phrased as problems involving the geometric realization of
curvature.



We suppose given a vector space V and a family of tensors
{T1, ..., Tk} on V . The structure (V, T1, ..., Tk) is said to be
geometrically realizable if there exists a manifold M , if there exists
a point P of M , and if there exists an isomorphism φ : V → TPM
such that φ∗Li(P ) = Ti where {L1, ..., Lk} is a corresponding
geometric family of tensor fields on M .

Thus, for example, if k = 1 and if T1 = 〈·, ·〉 is a non-degenerate
inner product on V , then a geometric realization of (V, 〈·, ·〉) is a
pseudo-Riemannian manifold (M, g), a point P of M , and an
isomorphism φ : V → TPM so that φ∗gP = 〈·, ·〉; this is of course,
a trivial problem.



Many people have worked in this area or in a closely related area
including:

D. Alekseevsky, N. Blažić, M. Brozos-Vázquez, E. Calvino-Louzao,
L. Cordero, A. Derdzinski, C. Dunn, I. Dotti, E. Garćıa-Ŕıo,
P. Gilkey, T. Hervella, H. Kang, O. Kowalski, M. Fernandez,
Y. Matushita, Y. Nikolayevsky, B. Opzoda, JH. Park, K. Sekigawa,
I. Stavrov, S. Nikčević, U. Simon, E. Vázquez-Abel,
R. Vázquez-Lorenzo, L. Vanhecke, V. Videv, D. Westerman,
and G. Weingart; it is not possible to mention everyone working in
this field!



Geometric realizations of:

1. Riemannian algebraic curvature tensors by
pseudo-Riemannian manifolds.

2. Affine curvature tensors by affine manifolds.

3. Weyl curvature tensors by Weyl manifolds.

4. Kähler affine curvature tensors by affine Kähler manifolds.

5. Kähler Riemannian curvature tensors by Kähler manifolds.

6. Hermitian Riemannian curvature tensors by Hermitian
manifolds.

7. Covariant derivative Kähler tensors by almost
pseudo-Hermitian manifolds.



In each instance, curvature decompositions of the appropriate
space of tensors under a suitable structure group play a crucial role.

And it is important to write down the appropriate symmetries of
the curvature tensors involved; for example the Gray identity plays
an important role in the study of Hermitian geometry.

Furthermore, some problems are not geometrically realizable; for
example, a Ricci-antisymmetric projectively flat affine curvature
tensor R is geometrically realizable by a Ricci-antisymmetric
projectively flat affine connection if and only if R = 0.

We discuss not only the positive definite setting but also higher
signature geometry and para-complex geometry.



Affine Structures

An affine manifold is a pair (M,∇) where M is a smooth manifold
and where ∇ is a torsion free connection on the tangent bundle
TM . We refer to [Gilkey, Nikčević, and Simon (2009); Simon,
Schwenk-Schellschmidt, and Viesel (1991)] for further information
concerning affine geometry.
The associated curvature operator R ∈ ⊗2T ∗M ⊗ End(TM) is
defined by setting:

R(x, y) := ∇x∇y −∇y∇x −∇[x,y] .

This tensor satisfies the following identities:

R(x, y) = −R(y, x),

R(x, y)z +R(y, z)x+R(z, x)y = 0 .
(1)



A (1, 3) tensor A ∈ ⊗2V ∗ ⊗ End(V ) satisfying the symmetries
given in the Equation 1 is called an affine algebraic curvature
operator; let A = A(V ) be the subspace of all such operators.
We summarize below the fundamental decomposition of the space
of affine curvature operators under the action of the general linear
group [Strichartz (1988)]:

Theorem
If m ≥ 3, then A ≈ {A ∩ ker(ρ)} ⊕ Λ2 ⊕ S2 as a GL module
where {A ∩ ker ρ,Λ2, S2} are inequivalent irreducible GL modules.

Theorem

dim{A} = 1
3m

2(m2 − 1) dim{S2} = 1
2m(m+ 1)

dim{Λ2} = 1
2m(m− 1) dim ker(ρ) ∩ A = 1

3m
2(m2 − 4)



An affine curvature operator A ∈ A is said to be geometrically
realizable if there exists an affine manifold (M,∇), if there exists a
point P of M (which is called the point of realization), and if
there exists an isomorphism φ : V → TPM so that φ∗RP = A.

The decomposition of A as a GL module has 3 components so
there are 8 natural geometric realization questions which are GL
equivariant.

The following result [Gilkey and Nikčević (2008), Gilkey, Nikčević,
and Westerman (2009)] which shows, in particular, that the
symmetries of Equation 1 generate the universal symmetries of the
curvature operator of a torsion free connection:



Theorem

1. Any affine algebraic curvature operator is geometrically
realizable by an affine manifold.

2. Any Ricci symmetric affine algebraic curvature operator is
geometrically realizable by a Ricci symmetric affine manifold.

3. Any Ricci anti-symmetric affine algebraic curvature operator is
geometrically realizable by a Ricci anti-symmetric affine
manifold.

4. Any Ricci flat affine algebraic curvature operator is
geometrically realizable by a Ricci flat affine manifold.



Theorem

5. Any projectively flat affine algebraic curvature operator is
geometrically realizable by a projectively flat affine manifold.

6. Any projectively flat Ricci symmetric affine algebraic curvature
operator is geometrically realizable by a projectively flat Ricci
symmetric affine manifold.

7. A projectively flat Ricci anti-symmetric affine algebraic
curvature operator which is not flat is not geometrically
realizable by a projectively flat Ricci anti-symmetric affine
manifold.

8. If A is flat, then A is geometrically realizable by a flat affine
manifold.



ker(ρ) S2 Λ2 ker(ρ) S2 Λ2

? ? ? yes 0 ? ? yes

? ? 0 yes 0 ? 0 yes

? 0 ? yes 0 0 ? no

? 0 0 yes 0 0 0 yes

In fact, a bit more is true. Given A, we will construct the germ
of a torsion free connection ∇ at 0 in V so that the matrix of
the Ricci tensor is constant relative to the coordinate frame, i.e.
one has that ρ(R)(∂xi , ∂xj ) = ρ(A)(ei, ej); this settles other
associated realization questions.



Let ∇R(x, y; z)w be the covariant derivative of the curvature
operator:

∇R(x, y; z)w := ∇zR(x, y)w −R(∇zx, y)w

−R(x,∇zy)w −R(x, y)∇zw .

This has the symmetries:

Rijk
l
;n = −Rjikl;n,

Rijk
l
;n +Rjki

l
;n +Rkij

l
;n = 0, (2)

Rijk
l
;n +Rjnk

l
;i +Rnik

l
;j = 0 .

Let A1 ⊂ ⊗3V ∗ ⊗ End(V ) be the subspace of all tensors (4,1)
satisfying these relations. We will establish the following result:



Theorem

Let A ∈ A and let A1 ∈ A1. Define a torsion free connection ∇ on
TV by setting

Γuv
l := 1

3(Awuv
l +Awvu

l)xw +
5
24(A1

wuv
l
;n +A1

wvu
l
;n)xwxn +

1
24(A1

wun
l
;v +A1

wvn
l
;u)xwxn .

Then Rijkl(0) = Aijk
l∂xl and Rijkl;n(0) = A1

ijk
l
;n.



Mixed Structures

We now study an affine structure and a pseudo-Riemannian metric
where the given affine connection is not necessarily the Levi-Civita
connection of the pseudo-Riemannian metric; thus the two
structures are decoupled. Let A ∈ A. We use the metric to lower
the final index and define A ∈ ⊗4V ∗ by setting:

A(x, y, z, w) := 〈A(x, y)z, w〉 .

The symmetries of Equation 1 then become:

A(x, y, z, w) = −A(y, x, z, w),

A(x, y, z, w) +A(y, z, x, w) +A(z, x, y, w) = 0 .



Again, a curvature decomposition plays a central role. Set
WO6 := {A ∈ A ∩ ker(ρ) : Aijkl = −Aijlk},

WO7 := {A ∈ A ∩ ker(ρ) : Aijkl = Aijlk},

WO8 := {A ∈ ⊗4V ∗ ∩ ker(ρ) : Aijkl = −Ajikl = −Aklij}.

Note that WO6 and WO7 are submodules of A whereas WO8 6⊂ A.
We will establish the following result [Bokan (1990]:

Theorem
Let m ≥ 4. The O module decomposition of A into irreducible and
inequivalent O modules takes the form:

A ≈ R⊕ 2 · S2
0 ⊕ 2 · Λ2 ⊕WO6 ⊕WO7 ⊕WO8 .



If m = 3, we set WO6 = WO8 = 0. If m = 2, then
A = R⊕ S2

0 ⊕ Λ2.

Theorem

dim{R} = 1
12m

2(m2 − 1) dim{A} = 1
3m

2(m2 − 1)

dim{R} = 1 dim{S2
0} = 1

2m(m+ 1)− 1

dim{Λ2} = 1
2m(m− 1) dim{WO6 } = m(m+1)(m−3)(m+2)

12

dim{WO7 } = (m−1)(m−2)(m+1)(m+4)
8 dim{WO8 } = m(m−1)(m−3)(m+2)

8



Let τ be the scalar curvature and let ρ0 be the trace free Ricci
tensor. One has several geometric realization questions which are
natural with respect to the structure group O and which can all be
solved in the real analytic category. As our considerations are local,
we take M = V and P = 0. We establish the following result
[Gilkey, Nikčević, and Westerman (2009)]:

Theorem
Let g be the germ at 0 ∈ V of a real analytic pseudo-Riemannian
metric. Let A ∈ A. There exists a the germ of a torsion free real
analytic connection ∇ at 0 ∈ V so that:

1. R0 = A.

2. ∇ has constant scalar curvature.

3. If A is Ricci symmetric, then ∇ is Ricci symmetric.

4. If A is Ricci anti-symmetric, then ∇ is Ricci anti-symmetric.

5. If A is Ricci traceless, then ∇ is Ricci traceless.

We note there are corresponding results in the Ck category.



Notational Conventions

Definition
Let (V, 〈·, ·〉) be an inner product space.

1. We say that J− ∈ GL is a complex structure on V if
J2
− = −Id; if in addition J∗−〈·, ·〉 = 〈·, ·〉, then J− is said to be

a pseudo-Hermitian complex structure and the triple
(V, 〈·, ·〉, J−) is said to be a pseudo-Hermitian vector space.
Such structures exist if and only if (V, 〈·, ·〉) has signature
(p, q) where both p and q are even. The associated Kähler
form is given by setting Ω−(x, y) := 〈x, J−y〉. We shall often
let Ω = Ω− when the context is clear.



Definition

2. We say that J+ ∈ GL is a para-complex structure if J2
+ = Id

and if Tr(J+) = 0. This latter condition is automatic in the
complex setting, but must be imposed in the para-complex
setting. If J∗+〈·, ·〉 = −〈·, ·〉, then J+ is said to be a
para-Hermitian complex structure and the triple (V, 〈·, ·〉, J+)
is said to be a para-Hermitian vector space. Such structures
exist only in the neutral setting p = q. The associated
para-Kähler form is given by setting Ω+(x, y) := 〈x, J+y〉.
Again, we shall often set Ω = Ω+.



Representation Theory
We introduce the associated structure groups which will play an
essential role throughout our work. Let (V, 〈·, ·〉, J±) be a
para/pseudo-Hermitian vector space. Let

GL± := {T ∈ GL : TJ± = J±T},
GL?± := {T ∈ GL : TJ± = J±T or TJ± = −J±T},
U± := {T ∈ O : TJ± = J±T},
U?± := {T ∈ O : TJ± = J±T or TJ± = −J±T} .

(3)

The group GL± is the (para)-complex general group and the
group U± is the (para)-unitary group. The groups GL?± and U?±
are Z2 extensions of GL± and U±, respectively.



Theorem
Let G ∈ {O,U−,U?±}. Then G acts naturally on the tensor algebra
⊗kV ∗ via pull-back.

1. No non-trivial G-invariant subspace of ⊗kV ∗ is totally
isotropic.

2. We may decompose any non-trivial G-submodule of ⊗kV ∗ as
the orthogonal direct sum of irreducibles G-submodules
ξ =

∑
i niξi where the multiplicities ni are independent of the

particular decomposition chosen.

3. If ξ1 = (V1, σ1) and ξ2 = (V2, σ2) are any two inequivalent
irreducible G-submodules of ⊗kV ∗, then V1 ⊥ V2.



Definition
Let (V, 〈·, ·〉) be an inner product space.

1. Let S2
0 := {θ ∈ S2 : εijθij = 0} = {θ ∈ S2 : θ ⊥ 〈·, ·〉}; S2

0 is
a O module.

2. Let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian vector space.
Define U?± modules:

S
2,U±
+ := {θ ∈ S2 : J∗±θ = +θ}, Λ

2,U±
+ := {θ ∈ Λ2 : J∗±θ = +θ},

S
2,U±
− := {θ ∈ S2 : J∗±θ = −θ}, Λ

2,U±
− := {θ ∈ Λ2 : J∗±θ = −θ}.



Definition
There is no linkage between the two sets of signs in the above
equation. We now link the signs and define

S
2,U±
0,∓ := {θ ∈ S2,U±

∓ : θ ⊥ 〈·, ·〉},

Λ
2,U±
0,∓ := {θ ∈ Λ

2,U±
∓ : θ ⊥ Ω±} .

3. If T ∈ U?± or if T ∈ GL?±, then TJ± = χ(T )J±T where χ
defines a non-trivial representation of U?± and of GL?± into Z2.



Lemma

1. S2
0 and Λ2 are irreducible inequivalent O modules.

2. {S2,U−
0,+ , S

2,U−
− , Λ

2,U−
− } are irreducible inequivalent U−

modules.

3. Λ
2,U−
0,+ is isomorphic to S

2,U−
0,+ as a U− module.

4. {S2,U±
0,∓ , S

2,U±
± ,Λ

2,U±
0,∓ ,Λ

2,U±
± } are irreducible inequivalent U?±

modules.

5. Λ
2,U±
0,∓ is isomorphic to S

2,U±
0,∓ ⊗ χ as a U?± module.

We are primarily concerned with local theory. Let Pi be points of
metric spaces Xi. We say that f is the germ of a map from
(X1, P1) to (X2, P2) if f is a continuous map from some
neighborhood of P1 in X1 to X2 with f(P1) = P2. We agree to
identify two such maps if they agree on some (possibly) smaller
neighborhood of P1. In a similar fashion, we can talk about the
germ of a pseudo-Riemannian manifold, the germ on a connection.



Affine Kähler Structures

The results in the complex setting they arise from work of
[Brozos-Vázquez (2010),Brozos-Vázquez,Gilkey, and
Nikčević(2010)] whereas in the para-complex setting, they are new.
Let J± be a (para)-complex structure on V . Set:

KA
± := {A ∈ A : A(v1, v2)J± = J±A(v1, v2) ∀ v1, v2},

KA
±;+ := {A ∈ KA

± : A(J±v1, J±v2) = +A(v1, v2) ∀ v1, v2},
KA
±;− := {A ∈ KA

± : A(J±v1, J±v2) = −A(v1, v2) ∀ v1, v2} .



We may decompose

KA
± = KA

±;+ ⊕ KA
±;− .

Suppose given an auxiliary pseudo-Hermitian inner product 〈·, ·〉,
not necessarily positive definite, which we use to lower indices and
regard KA

±, KA
±;+, and KA

±;− as subspaces of ⊗4V ∗. We may now
express

KA
± := {A ∈ A : A(v1, v2, v3, v4) = ∓A(v1, v2, J±v1, J±v2)}, (4)

KA
±;+ := {A ∈ KA

± : A(J±v1, J±v2, v3, v4) = A(v1, v2, v3, v4)},
KA
±;− := {A ∈ KA

± : A(J±v1, J±v2, v3, v4) = −A(v1, v2, v3, v4)} .



The following decomposition [Brozos-Vázquez (2010)] generalizes
Theorem to this setting.

Theorem
If m ≥ 4, then we have the following isomorphisms decomposing
KU±;δA as the direct sum of irreducible and inequivalent GL±
modules for δ = + and for δ = −:

KA
±;δ ≈ {KA

±;δ ∩ ker ρ} ⊕ Λ
2,U±
δ ⊕ S2,U±

δ . (5)



The decomposition of these spaces as U− modules in the Hermitian
setting is given by [Matzeu and Nikčević (1991), Nikčević (1989)]
There are 4 submodules of KA

± which do not correspond to
generalized Ricci tensors and which we must consider.

Definition
Let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian vector space. Let

1. WA
±,9 := {A ∈ KA

±;∓ : A(x, y, z, w) = −A(x, y, w, z)}∩ker(ρ).

2. WA
±,10 := {A ∈ KA

±;∓ : A(x, y, z, w) = A(x, y, w, z)} ∩ ker(ρ).

3. WA
±,11 := KA

±,∓ ∩ (WA
±,9)⊥ ∩ (WA

±,10)⊥ ∩ ker(ρ13) ∩ ker(ρ).

4. WA
±,12 := KA

±;∓ ∩ ker(ρ).

5. τA± := εilεjkA(ei, J±ej , ek, el).



We may also express:

WA
±,9 = KA

±;∓ ∩WO6 , WA
±,10 = KA

±;∓ ∩WO7 .

We will extend the curvature decomposition from positive definite
signatures to more general signatures and also to the
para-Hermitian setting to show:



Theorem

1. We have the following isomorphisms decomposing KA
− as the

direct sum of irreducible and inequivalent U− modules:

1.1 If dim(V ) = 4,

KA
− = 2 · R⊕ 4 · S2,U−

0,+ ⊕ Λ
2,U−
− ⊕ S2,U−

− ⊕ 2 ·WA
−,9.

1.2 If dim(V ) ≥ 6,

KA
− = 2 · R⊕ 4 · S2,U−

0,+ ⊕ Λ
2,U−
− ⊕ S2,U−

− ⊕ 2 ·WA
−,9

⊕WA
−,11 ⊕WA

−,12.

2. We have the following isomorphisms decomposing KA
± as the

direct sum of irreducible and inequivalent U?± modules:

2.1 If m = 4,
KA
± ≈ Rτ ⊕ RτA± ⊕ 2 · S2,U±

0,∓ ⊕ 2 · Λ2,U±
0,∓ ⊕ Λ

2,U±
± ⊕ S2,U±

±
⊕WA

±,9 ⊕WA
±,10.

2.2 If m ≥ 6,
KA
± ≈ Rτ ⊕ RτA± ⊕ 2 · S2,U±

0,∓ ⊕ 2 · Λ2,U±
0,∓ ⊕ Λ

2,U±
± ⊕ S2,U±

−
⊕WA

±,9 ⊕WA
±,10 ⊕WA

±,11 ⊕WA
±,12.



We say that (V, J±,A) is a (para)-Kähler affine curvature model if
J± is a (para)-complex structure on V and if A ∈ KA

±. Similarly
(M,J±,∇) is said to be a (para)-Kähler affine manifold if J± is a
(para)-complex structure on M , if ∇ is a torsion free connection
on M , and if ∇(J±) = 0. We say that a (para)-Kähler curvature
model (V, J±, A) is geometrically realizable if there exists a
(para)-Kähler manifold (M,J±,∇), a point P in M , and an
isomorphism Ξ : V → TPM so Ξ∗R = A and Ξ∗J±,P = J±. One
then has:

Theorem
Every (para)-Kähler affine curvature model is geometrically
realizable by a (para)-Kähler affine manifold. If A ∈ KA

±;±, the
para/pseudo-Kähler manifold M can be chosen so that the
curvature belongs to KA

±;± at every point.



The dimension of these modules is computed [Matzeu and Nikčević
(1991), Nikčević (1989)] in the positive definite setting; the
dimensions are the same in the para/pseudo-Hermitian settings.

Theorem
Let m ≥ 6. Then:

dim{KA
±} = 2

3m̄
2(m̄+ 1)(5m̄− 2) dim{R} = 1

dim{WA
±,9} = 1

4m̄
2(m̄− 1)(m̄+ 3) dim{S2,U±

0,∓ } = m̄2 − 1

dim{WA
±,10} = 1

4m̄
2(m̄− 1)(m̄+ 3) dim(Λ

2,U±
0,∓ } = m̄2 − 1

dim{WA
±,11} = 1

2(m̄− 1)(m̄+ 1)(m̄− 2)(m̄+ 2) dim{S2,U±
± } = m̄2 + m̄

dim{WA
±,12} = 2

3m̄
2(m̄− 2)(m̄+ 2) dim{Λ2,U±

± } = m̄2 − m̄



Riemannian Structures

One says that A ∈ ⊗4V ∗ is a Riemannian algebraic curvature
tensor on V if A satisfies the symmetries of the Riemann curvature
tensor:

A(x, y, z, w) = −A(y, x, z, w) = A(z, w, x, y),
A(x, y, z, w) +A(y, z, x, w) +A(z, x, y, w) = 0 .

Let R = R(V ) be the space of all such 4 tensors. We have that
R is invariant under the action of O. Thus 〈·, ·〉 is a
non-degenerate inner product on R. We say that (V, 〈·, ·〉, A) is a
curvature model if A ∈ R.



Definition

1. Let φ ∈ S2 be a symmetric bilinear form. Set

Aφ(x, y, z, w) := φ(x,w)φ(y, z)− φ(x, z)φ(y, w) .

These tensors arise in the study of hypersurface theory; if
φ is the second fundamental form of a hypersurface in flat
space, then the curvature tensor of the hypersurface is
given by Aφ.

2. Let ψ ∈ Λ2 be an anti-symmetric bilinear form. Set

Aψ(x, y, z, w) := ψ(x,w)ψ(y, z)−ψ(x, z)ψ(y, w)−2ψ(x, y)ψ(z, w) .

The study of the tensors Aψ arose in the original instance
from the Osserman conjecture and related matters
[Garciá-Ŕıo, Kupeli,and Vázquez-Lorenzo (2002), Gilkey
(2001)]



A result of [Fiedler (2003)] giving generators for R and determine
dim{R}:

Theorem

1. R = Spanφ∈S2{Aφ} = Spanψ∈Λ2{Aψ}.

2. dim{R} = 1
12m

2(m2 − 1).

We note that WO6 = ker(ρ) ∩R. The decomposition [Singer and
Thorpe (1969]] of R as an O module:

Theorem
Let dim(V ) ≥ 4. The decomposition R = WO6 ⊕ S2

0 ⊕ R is an O
module decomposition of R into irreducible and inequivalent O
modules.



If m = 2, then R = R and if m = 3, then R = S2
0 ⊕ R.

Suppose given A ∈ R. We say that the curvature model
(V, 〈·, ·〉, A) is geometrically realizable if there exists a
pseudo-Riemannian manifold (M, g), if there exists a point P of
M , and if there exists an isomorphism φ : V → TPM so that
φ∗gP = 〈·, ·〉 and φ∗RP = A.



The Weyl conformal curvature tensor W is the projection of A on
ker(ρ); we say a curvature model or a pseudo-Riemannian manifold
is conformally flat if and only if W = 0. We establish results
[Brozos-Váquez, Gilkey, Kang,and Nikčević (2009)] dealing with
geometric realizations by pseudo-Riemannian manifolds with
constant scalar curvature:

Theorem

1. Any curvature model is geometrically realizable by a
pseudo-Riemannian manifold of constant scalar curvature.

2. Any conformally flat curvature model is geometrically
realizable by a conformally flat pseudo-Riemannian manifold
of constant scalar curvature.



Weyl Geometry

Again, we consider a mixed structure. Consider a triple
W := (M, g,∇) where g is a pseudo-Riemannian metric on a
smooth m dimensional manifold M and where ∇ is a torsion free
connection on TM . We say that W is a Weyl manifold if the
following identity is satisfied:

∇g = −2φ⊗ g for some φ ∈ C∞(T ∗M) . (6)

This notion is conformally invariant. If W = (M, g,∇) is a Weyl
manifold and if f ∈ C∞(M), then W̃ := (M, e2fg,∇) is again a
Weyl manifold where φ̃ := φ− df . Let ∇g be the Levi-Civita
connection determined by the metric g. There exists a conformally
equivalent metric g̃ locally so that ∇ = ∇g̃ if and only if dφ = 0; if
dφ = 0, such a conformally equivalent metric exists globally if and
only if [φ] = 0 in de Rham cohomology.



Weyl geometry fits in between affine and Riemannian geometry.
Let (M, g) be a pseudo-Riemannian manifold. Since ∇g is torsion
free and ∇g = 0, the triple (M, g,∇g) is a Weyl manifold. There
are, however, examples with dφ 6= 0 so Weyl geometry is more
general than Riemannian geometry or even conformal Riemannian
geometry. Every Weyl manifold gives rise to an underlying affine
and an underlying Riemannian manifold.
If (M, g,∇) is a Weyl manifold, there is an extra curvature
symmetry we shall establish in Theorem:

Theorem
If (N, g,∇) is a Weyl manifold, then

R(x, y, z, w) +R(x, y, w, z) = 2
m{ρ(R)(y, x)−ρ(R)(x, y)}g(z, w) .



The decomposition of M as an O module is given by [Higa (1993,
1994)]:

Theorem
If m ≥ 4, then W ≈ R⊕ Λ2 as O modules.

We say that a tensor A ∈W is geometrically realizable by a Weyl
manifold W = (M, g,∇) if there exists a point P ∈M and an
isomorphism φ : V → TPM so that φ∗gP = 〈·, ·〉 and φ∗RP = A.

Theorem
Every A ∈W is geometrically realizable by a Weyl manifold with
constant scalar curvature.



The following is an interesting illustration of the extent to which
the geometric category is determined by the algebraic setting. The
following useful result characterizes trivial Weyl manifolds:

Theorem
Let W = (M, g,∇) be a Weyl manifold with H1(M ;R) = 0. The
following assertions are equivalent and if any is satisfied, we say
that W is trivial.

1. dφ = 0.

2. ∇ = ∇g̃ for some g̃ in the conformal class defined by g.

3. ∇ = ∇g̃ for some pseudo-Riemannian metric g̃.

4. RP (∇) ∈ R for every P ∈M .

5. ∇ is Ricci symmetric.



Remark 1.4. If (N, g,∇) geometrically realizes A at a point
P ∈ N , by considering a suitable conformal deformation
(N, e2fg,∇), we can use the Cauchy-Kovalevskaya Theorem to
construct a Weyl manifold where f = O(|x− P |3) which has
constant scalar curvature and which realizes A at P . The
argument is essentially the same as that we used to establish a
similar fact in the pseudo-Riemannian setting.

M. Brozos-Vázquez, P. Gilkey, H. Kang, S. Nikčević, and G.
Weingart, Geometric realizations of curvature models by manifolds
with constant scalar curvature, Differential Geometry and its
Applications 27 (2009), 696–701.



Almost Pseudo-Hermitian Geometry

We now discuss the decomposition of R as a U− and as a U?±
module. This result was given by [Tricerri and Vanhecke (1981)] in
the positive definite setting; we will extend the decomposition to
the remaining geometries.

ρJ±(x, y) := ∓εilA(ei, x, J±y, J±el),
τJ± := ∓εilεjkA(ei, ej , J±ek, J±el) .

(7)

We consider the following modules:



Definition
Let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian vector space.

1. R
U±
+ := {A ∈ R : A(J±x, J±y, J±z, J±w) = A(x, y, z, w)}.

2. R
U±
− := {A ∈ R : A(J±x, J±y, J±z, J±w) = −A(x, y, z, w)}.

3. G± := {A ∈ R : 0 = A(x, y, z, w) +A(J±x, J±y, J±z, J±w)

±A(J±x, J±y, z, w)±A(x, y, J±z, J±w)±A(J±x, y, J±z, w)

±A(x, J±y, z, J±w)±A(J±x, y, z, J±w)±A(x, J±y, J±z, w)}.

4. KR
± := {A ∈ R : A(x, y, z, w) = ∓A(J±x, J±y, z, w) ∀

x, y, z, w}.



Definition

5. WR
±,3 := KR

± ∩ ker{ρ}.

6. WR
±,6 := {KR

±}⊥ ∩G± ∩ ker{ρ⊕ ρJ±}.

7. W
R±
7 := {A ∈ R : A(J±x, y, z, w) = A(x, y, J±z, w) ∀

x, y, z, w}.

8. WR
±,10 := R

U±
− ∩ ker{ρ⊕ ρJ±}.



Theorem
Let dim(V ) ≥ 8. Let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian
vector space. We have an orthogonal direct sum decomposition
R = WR

±,1 ⊕ · · · ⊕WR
±,10 into irreducible U− and U?± modules

where

WR
±,1 ≈WR

±,4 ≈ R, WR
±,2 ≈WR

±,5 ≈ S
2,U±
0,+ , WR

±,8 ≈ S
2,U±
± , WR

±,9 ≈ Λ
2,U±
± .

Except for the isomorphisms WR
±,1 ≈WR

±,4 and WR
±,2 ≈WR

±,5,
these are inequivalent U− and U?± modules.



One says that (V, 〈·, ·〉, J±, A) is an almost para/pseudo-Hermitian
curvature model if A ∈ R, and if (V, 〈·, ·〉, J±) is a
para/pseudo-Hermitian vector space. The notion of geometric
realizability in these contexts is defined similarly. We focus our
attention on the scalar curvature.

Theorem
Let m ≥ 4. Any almost para/pseudo-Hermitian curvature model is
geometrically realizable by an almost para/pseudo-Hermitian
manifold with τ and τJ± constant.



The Gray Identity
The curvature tensor of a para/pseudo-Hermitian manifold has an
additional symmetry. It is quite striking that a geometric
integrability condition imposes an additional algebraic symmetry on
the curvature tensor.
We first extend a result in the positive definite case to more
general signatures and to the para-Hermitian setting:

Theorem
If the model C := (V, 〈·, ·〉, J±, A) is geometrically realizable by a
para/pseudo-Hermitian manifold then A ∈ G±, i. e.

0 = A(x, y, z, w) +A(J±x, J±y, J±z, J±w) (8)

±A(J±x, J±y, z, w)±A(x, y, J±z, J±w)±A(J±x, y, J±z, w)

±A(x, J±y, z, J±w)±A(J±x, y, z, J±w)±A(x, J±y, J±z, w)} .



We say that a curvature model (V, 〈·, ·〉, J±, A) is a
para/pseudo-Hermitian curvature model if A ∈ G±.

Theorem
Any para/pseudo-Hermitian curvature model is goemetrically
realizable by a para/pseudo-Hermitiann manifold with τ and τJ±
constant.

The relations of Equation (8) are called the (para)-Gray identity.
The universal symmetries of the curvature tensor of a
para/pseudo-Hermitian manifold are generated by the (para)-Gray
identity and the usual curvature symmetries . This result
emphasizes the difference between almost para/pseudo-Hermitian
and para/pseudo-Hermitian manifolds.



The para/pseudo-Hermitian geometric realization in Theorem can
be chosen so that dΩ±(P ) = 0. Thus imposing the (para)-Kähler
identity dΩ±(P ) = 0 at a single point imposes no additional
curvature restrictions. If dΩ− = 0 globally, then the manifold is
said to be almost Kähler. This is a very rigid structure and there
are additional curvature restrictions, also emphasizes the difference
between dΩ± vanishing at a single point and dΩ± vanishing
globally.



Riemannian Kähler Geometry

We will report on work of [Brozos-Vázquez, Gilkey, and Merino
(2009)]. We begin with a well known result.

Theorem
Let (M, g, J±) be an almost para/pseudo-Hermitian manifold.

1. The following assertions are equivalent and if either is
satisfied, then (M, g, J±) is said to be a (para-)Kähler
manifold.

1.1 ∇(J±) = 0.
1.2 J± is integrable and dΩ = 0.

2. If ∇Ω = 0, then

2.1 dΩ = 0 and δΩ = 0.
2.2 J±R(x, y) = R(x, y)J± ∀ x, y.
2.3 R(J±x, J±y, z, w) = ∓R(x, y, z, w) ∀ x, y, z, w.



We say that (V, 〈·, ·〉, J±, A) is a (para)-Kähler model if
(V, 〈·, ·〉, J±) is a para/pseudo-Hermitian vector space and if
A ∈ KR

±. The (para)-Gray identity is then necessarily satisfied. We
have the following associated geometric realization theorem; note
that τ = τJ± in the Kähler setting.

Theorem
Any (para)-Kähler curvature model is geometrically realizable by a
(para)-Kähler manifold of constant scalar curvature.

Theorems provide necessary and sufficient linear identities for a
curvature model to be geometrically realizable by a Kähler
manifold and for a curvature model to be geometrically realizable
by a para-Kähler manifold. There are examples where one has
relations rather than identities. For example, an almost Kähler
manifold satisfies τJ− − τ = 1

2 |∇J−|
2 and thus the curvature lies in

the half-space defined by the relation τJ− ≥ τ if the metric in
question is positive definite.



Curvature Kähler Weyl geometry
The results described here arise from work of [Gilkey, Nikčević, and
Simon (2011)]. We suppose the dimension m ≥ 6 as the 4
dimensional setting is very different. We say that the (N, g,∇, J±)
is a (para)-complex Weyl manifold if (N, g,∇) is a Weyl manifold
and if J± is an almost para/pseudo Hermitian almost complex
structure on (N, g). If ∇(J±) = 0, the structure is said to be a
(para)-Kähler Weyl manifold. Necessarily J± is integrable .
Pedersen, Poon, and Swann (1993) used work of Vaisman (1982,
1983) to establish the following result in the Riemannian setting;
the extension to the higher signature setting and to the
para-Kähler setting is immediate.

Theorem
Let H1(M ;R) = 0 and let m ≥ 6. Any (para)-Kähler Weyl
structure on M is trivial.



If (N, g,∇, J±) is a (para)-Kähler Weyl manifold, then one has an
additional curvature symmetry

R(x, y)J± = J±R(x, y) ∀ x, y,
R(x, y, z, w) = ∓R(x, y, J±z, J±w) ∀ x, y, z, w .

(9)

We say (N, g,∇, J±) is a (para)-Kähler curvature Weyl manifold
if (N, g,∇) is a Weyl manifold, if (N, g, J±) is an almost
para/pseudo-Hermitian manifold, and Equation 8 is satisfied; we
will show that there exist (para)-Kähler curvature Weyl manifolds
which are not (para)-Kähler Weyl manifolds.



The following result gives a curvature condition in the complex and
para-complex settings which ensures that the Weyl structure is
trivial.

Theorem
Let H1(M ;R) = 0 and let m ≥ 6.

1. Any curvature Kähler Weyl structure on M is trivial.

2. Any curvature para-Kähler Weyl structure on M is trivial.

Theorem
Let n ≥ 6, let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian vector
space, and let A ∈W. If A satisfies the (para)-Kähler identity ,
then A ∈ A.



We remark that the previous result fails if n = 4 [Calderbank and
Pedersen (2000)].
The proof of Theorem relies on curvature decompositions.
W ≈ R⊕ Λ2 as an O module. There is an orthogonal direct sum
decomposition into inequivalent irreducibles

Λ2 ≈

{
R · Ω− ⊕ Λ2

0,+ ⊕ Λ2
− as U− and U?− modules

R · Ω+ ⊕ Λ
2,U+
0,− ⊕ Λ

2,U+
+ as an U?+ module

}
.

The following decompositions are then an immediate consequence
of previous results.



Theorem
Let (V, 〈·, ·〉, J±) be a para/pseudo-Hermitian vector space of
dimension n ≥ 8. We have the following isomorphism decomposing
W as the direct sum of irreducible U− and U?± modules:

W = WR
±,1 ⊕ · · · ⊕WR

±,10 ⊕WW
±,11 ⊕WW

±,12 ⊕WW
±,13, where

WW
±,11 ≈ Ω± · R, WW

±,12 ≈ Λ
2,U±
0,∓ , WW

±,13 ≈ Λ
2,U±
± .

Except for the isomorphisms WR
±,1 ≈WR

±,4, WR
±,2 ≈WR

±,5,

WR
±,9 ≈WW

±,13, these are inequivalent U?− modules. As U−
modules, we also have

WR
−,1 ≈WR

−,4 ≈WW
−,11, WR

−,2 ≈WR
−,5 ≈WW

−,12 .

If m = 4, we set WR
±,5 = WR

6,± = WR
±,10 = {0} to obtain the

corresponding decompositions. If m = 6, we set WR
±,6 = {0} to

derive the corresponding decompositions.



The Covariant Derivative of the Kähler Form

Let ∇Ω± be the covariant derivative of the Kähler form of
(M, g, J±). The following symmetries are satisfied:

∇Ω±(x, y; z) = −∇Ω±(y, x; z) = ±∇Ω±(J±x, J±y; z) .

We therefore define: H± := Λ
2,U−
± ⊗ V ∗. We will establish the

following geometric realization result:

Theorem
Let H± ∈ H±. There exists (M, g, J±), a point P of M , and an
isomorphism φ : V → TPM so that φ∗gP = 〈·, ·〉, so that
φ∗J± = J0

±, and so that φ∗∇Ω±(P ) = H±.



We will prove this result by giving a decomposition of H± as a U?±
module. The corresponding decomposition of H± as a U± module
is:

Definition

1. If H ∈ ⊗3V ∗, define τ1(H) ∈ V ∗ by contracting the 2nd and
3rd indices:

(τ1H)(x) := εijH(x, ei, ej).

2. If κ ∈ GL and if φ ∈ V ∗, define σκ(φ) ∈ ⊗3V ∗ by setting:

σκ(φ)(x, y; z) :=
φ(κx)〈y, z〉 − φ(κy)〈x, z〉+ φ(x)〈κy, z〉 − φ(y)〈κx, z〉.



Definition

3. WH
1,± := {H ∈ H± : H(x, y; z) +H(x, z; y) = 0 ∀

x, y, z ∈ V }.

4. WH
2,± := {H ∈ H± : H(x, y; z) +H(y, z;x) +H(z, x; y) =

0∀x, y, z ∈ V }.

5. UH
3,± := {H ∈ H± : H(x, y; z)±H(x, J±y; J±z) = 0 ∀

x, y, z ∈ V }.

6. WH
3,± := U3,± ∩ ker(τ1).

7. WH
4,± := Range(σJ±).


