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Contact metric manifold

Definition

(M̄2n+1, η) : contact manifold
if ∃ a global 1-form η s.t. η ∧ (dη)n 6= 0 everywhere on M̄

Definition

For given contact form η,
∃! ξ : characteristic vector field s.t. η(ξ) = 1, dη(ξ, X̄ ) = 0
∃ ḡ : Riemannian metric and φ : (1,1)-tensor field s.t.

η(X̄ ) = ḡ(X̄ , ξ), dη(X̄ , Ȳ ) = ḡ(X̄ , φȲ ), φ2X̄ = −X̄ + η(X̄ )ξ

⇒ (M̄; η, ḡ , φ, ξ) : contact metric manifold
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Harmonic vector field

A unit vector field V on Riemannian manifold (M, g) determines a map

V : (M, g)→ (T1M, g ′) ⊂ TM

Here, T1M = {(x , u) ∈ TM||u| = 1}.
If M is compact and orientable, the energy of V (called total bending

of V ) is defined as:

E (V ) =
1

2

∫
M
|dV |2dvg =

n

2
vol(M, g) +

1

2

∫
M
|∇V |2dvg .

V is said to be a harmonic vector field if it is a critical point for the energy

functional E in the set of all unit vector fields of M.

Definition

A contact metric manifold whose characteristic vector field ξ is a harmonic
vector field is called an H-contact manifold.
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V : critical point for E (V ) ⇐⇒ 4̄V //V (4̄V is collinear to V .)

G. Wiegmink, Total bending of vector fileds on Riemannian manifolds, Math. Ann.
303 (1995) 325–344.

The rough Laplacian 4̄ of a vector field V ∈ X(M) is defined by

4̄V = −tr∇2V .

If {ei} is any local orthonormal frame field on M, we get

4̄V =
n∑

i=1

{∇∇ei
ei

V −∇ei∇ei V }.
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Theorem

Let M = (M, g , φ, ξ, η) be a (2n + 1)-dimensional contact metric

manifold. Then

4̄ξ = 4nξ − Q̄ξ.

Theorem

A contact metric manifold is an H-contact manifold if and only if the

characteristic vector field ξ is an eigenvector of the Ricci operator Q̄.

D. Perrone, Contact metric manifolds whose characteristic vector field is a
harmonic vector field, Differential Geom. Appl., 20 (2004), 367–378.

Examples
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Examples

K-contact manifolds

ξ : Killing vector field ⇒ Q̄ξ = 2nξ. (dimM = 2n + 1)
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Theorem

Let M = (M, g , φ, ξ, η) be a (2n + 1)-dimensional contact metric

manifold. Then

4̄ξ = 4nξ − Q̄ξ.

Theorem

A contact metric manifold is an H-contact manifold if and only if the

characteristic vector field ξ is an eigenvector of the Ricci operator Q̄.

D. Perrone, Contact metric manifolds whose characteristic vector field is a
harmonic vector field, Differential Geom. Appl., 20 (2004), 367–378.

Examples

η-Einstein manifolds[6]

ρ̄ = αḡ + βη ⊗ η ⇒ Q̄ξ = (α + β)ξ

J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 6 / 56



Tanno [2] showed (T1Sn(1), ḡ , φ, ξ, η) : η-Einstein with

ρ̄ = 2(2n − 3)ḡ + 2(2− n)η ⊗ η.

By setting

η∗ =
a

2
η,

ξ∗ =
2

a
ξ,

g∗ = aḡ +
a(a− 1)

4
η ⊗ η,

φ∗ = φ, a =
2n − 4

n + 1

Then (T1Sn(1), g∗, φ∗, ξ∗, η∗) : Einstein with ρ∗ = 2(n − 1)g∗ [1].

P. Boyer, K. Galicki and M. Krzysztof, On Eta Einstein Sasakian

geometry, Commun. Math. Phys., 262 (2006), 177–208.

S. Tanno, Geodesic flows on CL-manifolds and Einstein metrics on

S3 × S2, in: Minimal Submanifolds and Geodesics, North-Holland,

Amsterdam-New York, 1979, pp.283–292.J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 7 / 56



Problem

The study of the relationship between the geometric properties of a

Riemannian manifold and those of its unit tangent sphere bundle has been

studied for decades by many authors and is still an active research area.

Problem. Determine the base manifold of the unit tangent sphere bundle
whose characteristic vector field is harmonic.
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Main Theorem

An n-dimensional Einstein manifold M = (M, g) is said to be 2-stein if M
satisfies the following condition

n∑
i,j=1

(Ruiuj)
2 = µ(p)|u|4 for all u ∈ TpM, p ∈ M,

where µ is a real valued function on M.

Theorem

Let M = (M, g) be an n(≥ 3)-dimensional Einstein manifold. Then the

unit tangent sphere bundle T1M equipped with the standard contact

metric structure (ḡ , φ, ξ, η) is H-contact if and only if M is 2-stein.

S. H. Chun, J. H. Park, and K. Sekigawa, H-contact unit tangent sphere bundles
of Einstein manifolds, to appear in Quart. J. Math. Oxford.
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Motivation

Theorem

The unit tangent sphere bundle T1M is Einstein (ρ̄ = αḡ ) if and only if M
is a surface of constant curvature 0 or 1.

E. Boeckx and L. Vanhecke, Unit tangent sphere bundles with constant scalar
curvature, Czechoslovak Math. J.,51 (2001).

Theorem

Let T1M be unit tangent sphere bundle of an n-dimensional Riemannian

manifold M = (M, g) equipped with the standard contact metric structure

(ḡ , φ, ξ, η). Then (T1M, ḡ , φ, ξ, η) is η-Einstein, if and only if M is a space

of constant sectional curvature 1 or n − 2.

J. H. Park, and K. Sekigawa, When are the tangent sphere bundles of a
Riemannian manifold eta-Einstein?, Annals of Global Analysis and Geometry, 36
(3)(2009), 275-284.
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Definition

An Riemannian manifold M is called a 2-point homogeneous space if for

every pair of points (p1, q1) and (p2, q2) with d(p1, q1) = d(p2, q2), there

is an isometry T of M such that T (p1) = p2 and T (q1) = q2.

Definition

An Riemannian manifold M is called a locally 2-point homogeneous space

if for any points p1, p2 of M, there exists neighborhoods U1, U2 centered

at p1, p2 respectively such that if for every pair of points (q1, r1) and

(q2, r2) with d(q1, r1) = d(q2, r2), there is an isometry T from U1 onto U2

satisfying T (q1) = q2 and T (r1) = r2.
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Theorem

A locally 2-point homogeneous space is locally symmetric (∇R = 0).

Z. I. Szabo, A short topological proof of for the symmetry of 2 point homogeneous
spaces, Invent. Math., 106 (1991), 61–64.

Proposition

A complete, simply connected locally 2-point homogeneous space is

2-point homogeneous space.

Theorem

A two-point homogeneous space is a Euclidean or a symmetric space of

the rank 1.

H. C. Wang, Two-point homogeneous spaces, Ann. Math., 55 (1952), 177–191.

J. A. Wolf, Spaces of constant curvature, McGRAW-Hill Book Company, 1967.
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Theorem

The unit tangent sphere bundle T1M of two-point homogeneous space is

H-contact.

E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields in tangent and
unit tangent bundles, Differential Geom. Appl., 13 (2000), 77–93.
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Question

Calvaruso and Perrone [1] raised the following question, which was first

asked in [1].

Question 1 Are the (possibly locally) two-point homogeneous spaces the

only Riemannian manifolds whose unit tangent sphere bundles are

H-contact?

G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky
Mountain J. Math., 37 (2007), 1435–1458.

E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields in tangent and
unit tangent bundles, Differential Geom. Appl., 13 (2000), 77–93.
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Partial positive answers

Theorem

The unit tangent sphere bundle T1M of a 2-dimensional or 3-dimensional

Riemannian manifold M is H-contact if and only if the base manifold M

has constant sectional curvature.

E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields in tangent and
unit tangent bundles, Differential Geom. Appl., 13 (2000), 77–93.

Theorem

T1M of the n(≥ 4)-dimensional conformally flat manifold M is H-contact

if and only if M has constant sectional curvature.

G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky
Mountain J. Math., 37 (2007), 1435–1458.
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Theorem

If T1M of a Kähler manifold is H-contact, then the base manifold is

Kähler-Einstein, and further Kähler-Einstein locally symmetric when the

base manifold is compact Kähler manifold with nonnegative sectional

curvature.

Theorem

Let (M, J, g) be a four-dimensional Kähler manifold. Suppose that M

satisfies one of the following properties:

(a) M has either nonnegative or nonpositive sectional curvature, or

(b) M is not Ricci-flat.

Then, T1M is H-contact if and only if M has constant holomorphic

sectional curvature.

G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky
Mountain J. Math., 37 (2007), 1435–1458.
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Tangent bundle

Let M = (M, g) be an n-dimensional Riemannian manifold and

let TM denote its tangent bundle with the natural projection.

π : TM −→ M ; π(x , u) = x

Consider the tangent space T(x ,u)TM to TM at (x , u) ∈ TM.

VTM(x ,u) = T(x ,u)(π
−1(x)) = Kerπ∗|(x ,u) = {X v}

is called the vertical subspace of T(x ,u)TM

J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 18 / 56



Find a complementary subspace HTM(x ,u) to VTM(x ,u) in T(x ,u)TM.

HTM(x ,u) = {X h} is called the horizontal subspace of T(x ,u)TM. Then

T(x ,u)TM = VTM(x ,u) ⊕ HTM(x ,u)

J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 19 / 56



Take a local coordinate system (x1, · · · , xn) on an open subset U of M.

On π−1(U), define coordinates (x̄1, · · · , x̄n; u1, · · · , un) as follows:

x̄ i (x , u) = (x i ◦ π)(x , u) = x i (x),

ui (x , u) = dx i (u) = ux i

for i = 1, · · · , n and (x , u) ∈ π−1(U).

Then for X =
∑

i X i ∂
∂x i , X h and X v are given by

X h =
∑

i

(X i ◦ π)
∂

∂x̄ i
−
∑
i ,j ,k

uk((X jΓi
jk) ◦ π)

∂

∂ui
,

X v =
∑

i

(X i ◦ π)
∂

∂ui
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Define a Riemannian metric g̃ , the Sasaki metric on TM, in a natural way,

by

g̃(X h,Y h) = g̃(X v ,Y v ) = g(X ,Y ) ◦ π, g̃(X h,Y v ) = 0

for all vector fields X and Y on M.

Define an almost complex structure tensor J of TM as the following:

JX h = X v , JX v = −X h.

Also, an associated 2-form Ω is given by

Ω(X h,Y h) = Ω(X v ,Y v ) = 0, Ω(X v ,Y h) = g(X ,Y ) ◦ π.

Then (TM; g̃ , J) is an almost Kähler manifold.
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Unit tangent sphere bundle

Consider the unit tangent sphere bundle (T1M, g ′), which is an

isometrically embedded hypersurface in (TM, g̃) with unit normal vector

field N = uv .

Definition

For X ∈ TxM, we define the tangential lift of X to (x , u) ∈ T1M by

X t
(x ,u) = X v

(x ,u) − g(X , u)N(x ,u).

The tangent space T(x ,u)T1M is spanned by vectors of the form X h and

X t .
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The Riemannian metric g ′ on T1M is given by

g ′(X h,Y h) = g(X ,Y ) ◦ π,

g ′(X t ,Y t) = (g(X ,Y )− g(X , u)g(Y , u)) ◦ π,

g ′(X h,Y t) = 0

for all vector fields X and Y on M.
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We define the standard contact metric structure of the unit tangent sphere

bundle T1M of a Riemannian manifold (M, g). Using the almost complex

structure J on TM, we define a unit vector field ξ′, a 1-form η′ and a

(1,1)-tensor field φ′ on T1M by

ξ′ = −JN, φ′ = J − η′ ⊗ N.

Since g ′(X̄ , φ′Ȳ ) = 2dη′(X̄ , Ȳ ), (η′, g ′, φ′, ξ′) is not a contact metric

structure.If we rescale by

ξ = 2ξ′, η =
1

2
η′, φ = φ′, ḡ =

1

4
g ′,

we get the standard contact metric structure (η, ḡ , φ, ξ).
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Let {e1, · · · , en = u} be an orthonormal basis of TxM. Then

{2et
1, · · · , 2et

n−1, 2eh
1 , · · · , 2eh

n = ξ} is an orthonormal basis for T(x ,u)T1M.

The Ricci tensor ρ̄ and the scalar curvature τ̄ of T1M are given by

ρ̄(X t ,Y t) = (n − 2)
(
g(X ,Y )− g(X , u)g(Y , u)

)
+

1

4

n∑
i=1

g(R(u,X )ei ,R(u,Y )ei ),

ρ̄(X t ,Y h) =
1

2
((∇uρ)(X ,Y )− (∇Xρ)(u,Y )),

ρ̄(X h,Y h) = ρ(X ,Y )− 1

2

n∑
i=1

g(R(u, ei )X ,R(u, ei )Y ),

(1)
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From (1) and Theorem 2,

Theorem

T1M is H-contact with respect to the standard contact metric structure

(ḡ , φ, ξ, η) if and only if the base manifold M = (M, g) satisfies the following

conditions:

(1) the Ricci tensor ρ of (M, g) is Codazzi tensor, that is,

(∇xρ)(y , z) = (∇yρ)(x , z) for any x , y , z ∈ TpM, and

(2)

2ρux =
n∑

i,j=1

RuixjRuiuj (2)

for all p ∈ M, x ⊥ u, |u| = |x | = 1 and {ei}ni=1 orthonormal basis of TpM.

G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky
Mountain J. Math., 37 (2007), 1435–1458.
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We set {
u = cosθea + sinθeb,

x = −sinθea + cosθeb for all a 6= b.
(3)

Substituting (3) into the left hand side of (2), we get (using some

standard trigonometric identities)

2ρ(cosθea + sinθeb,−sinθea + cosθeb)

=2ρabcos(2θ) + (ρbb − ρaa)sin(2θ).
(4)
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Similarly, substituting (3) into the right hand side of (2), we get

n∑
i ,j=1

R(cosθea + sinθeb, ei ,−sinθea + cosθeb, ej)

× R(cosθea + sinθeb, ei , cosθea + sinθeb, ej)

=2ρabcos(2θ) +
1

4

{ n∑
i ,j=1

(Rbibj)
2 −

n∑
i ,j=1

(Raiaj)
2
}

sin(2θ)

+
1

4
sin(4θ)

{ n∑
i ,j=1

(Raibj)
2 +

n∑
i ,j=1

RaibjRbiaj +
n∑

i ,j=1

RaiajRbibj

− 1

2

n∑
i ,j=1

(Raiaj)
2 − 1

2

n∑
i ,j=1

(Rbibj)
2
}
.

(5)

J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 28 / 56



Then, comparing the finite Fourier series in (4) and (5), we obtain two

equations:

4(ρaa − ρbb) =
n∑

i ,j=1

(Raiaj)
2 −

n∑
i ,j=1

(Rbibj)
2, (6)

2
{ n∑

i ,j=1

(Raibj)
2 +

n∑
i ,j=1

RaibjRbiaj +
n∑

i ,j=1

RaiajRbibj

}
=

n∑
i ,j=1

(Raiaj)
2 +

n∑
i ,j=1

(Rbibj)
2.

(7)
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Lemma

Let Sn(n ≥ 2) be an n-dimensional unit sphere centered at the origin 0 in

an (n + 1)-dimensional Euclidean space En+1 and f be a real-valued

function on Sn satisfying the condition f (u) = f (v) for any u, v ∈ Sn such

that u ⊥ v. Then, f is constant on Sn.
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For any u ∈ Sn, we set E (u) = {v ∈ Sn|v⊥u}.
⇒ E (u) is the intersection of Sn and the hyperplane in En+1 through the

origin 0 which is perpendicular to u.
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·o

Sn ⊂ En+1

Proof of the Lemma

Choose a point uo ∈ Sn and

fix it.

Let w(6= u0) ∈ Sn and

S1(w) : the great circle

S1(w) meets with E (u0) at a

point v1 ∈ E (u0)

∃ v ∈ Sn s.t. v⊥u0, v⊥v1

⇒ v⊥w

f (w) = f (v) = f (u0)

⇒ f (w) = f (u0) for w 6= u0

∴ f is constant
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Proof of the Main Theorem 3

(⇒) Assume that (T1M, ḡ , φ, ξ, η) is H-contact. For each point p ∈ M,

we may regard

f (u) =
n∑

i ,j=1

(Ruiuj)
2, u ∈ TpM (|u| = 1)

as a function on an (n − 1)-dimensional unit sphere Sn−1. Because M is

Einstein(i.e., ρaa = ρbb), then (6) implies that f (ea) = f (eb) for a 6= b

with respect to any fixed orthonormal basis {ei}ni=1.

Hence, f (u) = f (v) for each orthonormal pair u ⊥ v . Thus, applying

Lemma 14 to the function f (u), we see that

f (u) =
n∑

i ,j=1

(Ruiuj)
2 = constant

at each point and hence M is 2-stein.
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(⇒) Assume that (T1M, ḡ , φ, ξ, η) is H-contact. For each point p ∈ M,

we may regard

f (u) =
n∑

i ,j=1

(Ruiuj)
2, u ∈ TpM (|u| = 1)

as a function on an (n − 1)-dimensional unit sphere Sn−1. Because M is

Einstein(i.e., ρaa = ρbb), then (6) implies that f (ea) = f (eb) for a 6= b

with respect to any fixed orthonormal basis {ei}ni=1.

Hence, f (u) = f (v) for each orthonormal pair u ⊥ v . Thus, applying

Lemma 14 to the function f (u), we see that

f (u) =
n∑

i ,j=1

(Ruiuj)
2 = constant

at each point and hence M is 2-stein.
J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 33 / 56



Proof of the Main Theorem 3
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(⇐) Assume that M is 2-stein. Then, since M is Einstein, the Ricci

tensor ρ is the Codazzi tensor. Further, from the definition of 2-stein

manifold, we may obtain the following equality:

n∑
i ,j=1

R(cosθu + sinθv , ei , cosθu + sinθv , ej)
2 = µ(p) (8)

for any real number θ and any orthonormal pair (u, v) in TpM.
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Thus, from (8) and the hypothesis, we have easily

ρ(u, v) = 0, (9)

0 =
d

dθ
|θ=0

 n∑
i ,j=1

R(cosθu + sinθv , ei , cosθu + sinθv , ej)
2


= 4

n∑
i ,j=1

RuivjRuiuj

(10)

for any orthonormal pair (u, v) in TpM. From (9) and (10), we see that

2ρuv =
n∑

i ,j=1

RuivjRuiuj .

Therefore, by Theorem 13, we see that (T1M, ḡ , φ, ξ, η) is H-contact. �
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Harmonic spaces

H1 :
n∑

a=1

Rauau = λ1‖u‖2,

H2 :
n∑

a,b=1

R2
aubu = λ2‖u‖4,

H3 : 9
n∑

a,b,c=1

RaubuRbucuRcuau − 32
n∑

a,b=1

(∇uRaubu)2 = λ3‖u‖6,

H4 : 72
n∑

a,b,c,d=1

RaubuRbucuRcuduRduau − 50
n∑

a,b,c=1

∇uRaubu∇uRbucuRcuau

+ 8
n∑

a,b,c=1

∇2
uuRaubuRbucuRcuau + 3

n∑
a,b=1

(∇2
uuRaubu)2 = λ4‖u‖8,

(11)

for any tangent vector u to M. Here each λk (k = 1, 2, · · · ) is a constant.
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Definition

The `th Ricci curvature ρ[`] of M is the symmetric covariant tensor field of
degree 2` given by

ρ[`](u, · · · , u) =
n∑

a1,··· ,a`=1

Ra1uua2Ra2uua3 · · ·Raluua`

for u ∈ Tp(M) and p ∈ M. Here {1, · · · , n} is an arbitrary orthonormal

basis of Tp(M). ρ[1] is the ordinary Ricci curvature.

Definition

A Riemannian manifold M = (M, g) is called a k-stein manifold provided
there are real-valued functions µ` on M such that ρ[`](u) = µ`‖u‖2` for all
u ∈ Tp(M) and p ∈ M for 1 5 ` 5 k.
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Application

Theorem

Let M = (M, g) be a simply connected irreducible symmetric space. Then the

standard contact metric structure (ḡ , φ, ξ, η) on the unit tangent sphere bundle

T1M of M is H-contact if and only if M is isometric to any of the spaces

belonging to the following three series :

(1) Simply connected rank one symmetric spaces,

(2) Lie groups SU(2), SU(3), Spin(8), G2, F4, E6, E7, E8, and their

noncompact duals,

(3) The compact symmetric spaces SU(3)
SO(3) ,

SO(8)
SO(4)×SO(4) ,

SO(8)
SO(5)×SO(3) ,

SO(8)
SO(6)×SO(2) ,

SU(6)
Sp(3) ,

G2

SO(4) ,
F4

(Sp(3)×Sp(2))/Z2
, E6

F4
, E6

(Spin(10)×U(1))/Z4
,

E6

(SU(6)×Sp(1))/Z2
, E6

Sp(4)/Z2
, E7

(E6×U(1))/Z3
, E7

(Spin(12)×SU(2))/Z2
,

E7

SU(8)/Z2
, E8

(E7×SU(2))/Z2
, E8

SO(16) , and their non-compact duals.
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Proof. Assume that (T1M, ḡ , φ, ξ, η) is H-contact. Then, by the Main
theorem, M is 2-stein. In [1], the Tables I(39), II(40) and III(41, 42) were
presented, listing k-stein symmetric spaces for all values of k . Part
(1)(15), (2)(15) and (3)(15) of the statement of Theorem 3 correspond to
the 2-stein examples in Tables II, I, III of [1] respectively.

P. Carpenter, A. Gray and T. J. Willmore, The curvature of Einstein symmetric
spaces, Quart. J. Math. Oxford, 33 (1982), 45–64.

J. A. Wolf, Spaces of constant curvature, McGRAW-Hill Book Company, 1967.

The sufficiency part follows easily, as well, from the same Tables and the

Main Theorem.

There are plenty of simply connected, Einstein, symmetric spaces which

are not two-point homogeneous and have H-contact unit tangent sphere

bundles.We have a negative answer of the Question 1(14).
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Examples

The unit tangent sphere bundle T1M of 4-dimensional strictly almost

Kähler Einstein manifold M = (M, J, g) which is locally neither a real

space form nor a complex space form, and not even a locally symmetric

space.

P. Nurowski and M. Pruzanowski, A four-dimensional example of Ricci flat metric
admitting almost-Kähler non-Kähler structure, Class. Quantum Grav., 16 (3)
(1999), L9–L13.

T. Oguro, K. Sekigawa and A. Yamada, Four-dimensional almost Kähler Einstein
and weakly ∗-Einstein manifolds, Yokohama Math. J., 47 (1999), 75–91
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Let M be an 4-dimensional Einstein manifold and p be any point of M.

Then, we may choose an orthonormal basis {ei} (known as the

Singer-Thorpe basis) at each point p ∈ M such that
R1212 = R3434 = a, R1313 = R2424 = b, R1414 = R2323 = c,

R1234 = d , R1342 = e, R1423 = f ,

Rijkl = 0 whenever just three of the indices i , j , k, l are distinct.

(12)

I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, In:
Global Analysis, Papers in Honor of K. Kodaira, pp 355–365: Princeton University
Press (1969).
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It is known that M is 2-Einstein if and only if

± d = a +
τ

12
, ±e = b +

τ

12
, ±f = c +

τ

12
. (13)

K. Sekigawa and L. Vanhecke, Volume-preserving geodesic symmetries on four
dimensional 2-stein spaces, Kodai Math. J., 9 (1986), 215–224.
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Examples

Let M be a 4-dimensional real half-space given by

M = {(x1, x2, x3, x4) ∈ R4| x1 > 0, (x2, x3, x4) ∈ R3}. We define a

Riemannian metric g and almost complex structure J on M respectively by

g = (gij) =


x1 0 0 0

0 x1 +
x2
3

4x1
− x2x3

4x1

x3
2x1

0 − x2x3
4x1

x1 +
x2
2

4x1
− x2

2x1

0 x3
2x1

− x2
2x1

1
x1

 , (14)

J = (J i
j ) =


0 0 −1 0
0 x3

2x1
− x2

2x1

1
x1

1 0 0 0
x2
2 −x1 −

x2
3

4x1

x2x3
4x1

− x3
2x1

 , (15)

where gij = g( ∂
∂xi
, ∂
∂xj

) and J( ∂
∂xj

) =
∑

i J i
j ( ∂
∂xi

).
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Then, (J, g) is an almost Hermitian structure on M and the Kähler form

Ω is given by

Ω = −x1dx1 ∧ dx3 −
x2

2
dx2 ∧ dx3 + dx2 ∧ dx4. (16)

From (16), dΩ = 0, and hence (M, J, g) is an almost Kähler manifold.

Now, we define vector fields e1, e2, e3, e4 on M respectively by

e1 =
1
√

x1

∂

∂x1
, e2 =

1
√

x1

∂

∂x3
+

x2

2
√

x1

∂

∂x4
,

e3 =
√

x1
∂

∂x4
, e4 =

1
√

x1

∂

∂x2
− x3

2
√

x1

∂

∂x4
.

(17)

Then, {ei}i=1,2,3,4 is a unitary frame field on M with e2 = Je1, e4 = Je3.
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From the definition of the frame field {ei}, we have

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = 0,

∇e2e1 =
1

2x1
√

x1
e2, ∇e2e2 = − 1

2x1
√

x1
e1,

∇e2e3 =
1

2x1
√

x1
e4, ∇e2e4 = − 1

2x1
√

x1
e3,

∇e3e1 = − 1

2x1
√

x1
e3, ∇e3e2 =

1

2x1
√

x1
e4,

∇e3e3 =
1

2x1
√

x1
e1, ∇e3e4 = − 1

2x1
√

x1
e2,

∇e4e1 =
1

2x1
√

x1
e4, ∇e4e2 =

1

2x1
√

x1
e3,

∇e4e3 = − 1

2x1
√

x1
e2, ∇e4e4 = − 1

2x1
√

x1
e1.

(18)
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Further, we obtain
R1212 = R3434 = − 1

2x3
1
, R1313 = R2424 = 1

x3
1
,

R1414 = R2323 = − 1
2x3

1
,

R1234 = − 1
2x3

1
, R1342 = 1

x3
1
, R1423 = − 1

2x3
1
,

all others are zero.

(19)

Then M is 2-stein and {ei}i=1,2,3,4 is a global Singer-Thorpe basis on M,
and further M = (M, J, g) is a strictly almost Kähler manifold of pointwise
constant holomorphic sectional curvature C (p) = 1

2x3
1

(p = (x1, x2, x3, x4) ∈ M) and ρ = 0, ρ∗ = 1
x1

3 g .|R| is not constant, and
hence (M, g) is not locally symmetric space. Thus, from the Szabo’s
result M can not be locally two-point homogeneous.
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Next, we shall define the opposite almost complex structure J ′ on M by

J ′e1 = e2, J
′e2 = −e1, J

′e3 = −e4, J
′e4 = e3. (20)

Then, from (18) and (20), M ′ = (M, J ′, g) is a Ricci-flat 2-stein Kähler

manifold. Thus, from the main Theorem, we see that the corresponding

unit tangent sphere bundles of M = (M, J, g) and M ′ = (M, J ′, g) are

both H-contact with respect to the common standard contact metric

structure.

Further, M ′ is not a space of constant holomorphic sectional curvature.

Indeed, using (19) and (20), we see that the holomorphic sectional

curvature varies with the variable x1. These examples can be seen as a

counterpart to a result by Calvaruso and Perrone ([1], Theorem 7.3).
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Theorem

Let (M, J, g) be a four-dimensional Kähler manifold. Suppose that M

satisfies one of the following properties:

(a) M has either nonnegative or nonpositive sectional curvature, or

(b) M is not Ricci-flat.

Then, T1M is H-contact if and only if M has constant holomorphic

sectional curvature.

G. Calvaruso and D. Perrone, H-contact unit tangent sphere bundles, Rocky
Mountain J. Math., 37 (2007), 1435–1458.
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Question 2 Let M = (M, g) be an n(≥ 3)-dimensional Riemannian

manifold. If the unit tangent sphere bundle T1M equipped with the

standard contact metric structure is H-contact, then is the base

Riemannian manifold M Einstein ?

Theorem

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then the unit

tangent sphere bundle T1M equipped with the standard contact metric

structure (ḡ , φ, ξ, η) is H-contact if and only if the base manifold M is

2-stein.
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structure (ḡ , φ, ξ, η) is H-contact if and only if the base manifold M is

2-stein.

J. H. Park (Sungkyunkwan University, Korea) H-contact 13 December, 2010 53 / 56



Further progress on our Main theorem

Given an arbitrary g -natural metric G on the tangent bundle TM of a
Riemannian manifold (M, g), there exist smooth functions αi , βi : R+ → R,
where i = 1, 2, 3, such that

G(x,u)(X h,Y h) =(α1 + α3)(r2)gx(X ,Y )

+ (β1 + β3)(r2)gx(X , u), gx(Y , u),

G(x,u)(X h,Y v ) =G(x,u)(X v ,Y h) = α2(r2)gx(X ,Y )

+ β2(r2)gx(X , u), gx(Y , u),

G(x,u)(X v ,Y v ) =α1(r2)gx(X ,Y ) + β1(r2)gx(X , u)gx(Y , u),

for every u, X , Y ∈ Tx(M), where r2 = gx(u, u).

Kaluza-Klein metrics, as commonly defined on principal bundles, are obtained for

α2(t) = β2(t) = β1(t) + β3(t) = 0. (21)
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Theorem

If (M, g) is an Einstein manifold and G̃ is a Riemannian g-natural metric

on T1M of Kaluza-Klein type, then (T1M, η̃, G̃ ) is H-contact if and only if

(M, g) is 2-stein.

G. Calvaruso and D. Perrone, Homogeneous and H-contact unit tangent sphere
bundles, J. Aust. Math. Soc. 88 (2010), 323–377.
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Theorem

Let M = (M, g) be an n(≥ 2)-dimensional Riemannian manifold whose

unit tangent sphere bundle T1M equipped with the standard contact

metric structure (η, ḡ , φ, ξ) is H-contact. If dimM 6= 4, then the scalar

curvature τ of M, the square norm |ρ|2 of the Ricci tensor and the square

norm |R|2 of the curvature tensor are all constant. If dimM = 4, then τ

and |ρ|2 are constant, however, |R|2 is not necessarily constant.

Theorem

If T1M is an η-Einstein manifold (ρ̄ = αḡ + βη ⊗ η), then α, β, τ , |ρ|2,

|R|2, and τ̄ are all constant.
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