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I. Introductory examples

We are given an m-dimensional Riemannian manifold (Xm; h; i). A natural
way to detect the geometry and the topology of X is to view X either as
the domain or as the target space of some interesting class of maps. Clearly,
the Riemannian structure adds information on X and therefore the interesting
maps should take them into account.

Let us consider a couple of (classical) examples to give some �avour of ideas
and techniques and to introduce (some of) the main ingredients.



Let M;N be compact, with SecN � 0. Let f : M ! N be a smooth map.
Then we have

Th. 1 (Eells-Sampson, Hartman)

9u :M ! N :
Z
M
jduj2 = min

�Z
M
jdhj2 : h homotopic to f

�
:

The minimizer u satis�es the (system of) equations

��u := � (du) = 0

i.e. u is a harmonic map. Note: u is smooth by elliptic regularity. In particular,
the validity of a Liouville type result

�u = 0 =) u = const

gives that f is topologically trivial. For instance, we have the following



Th. 2 (Eells-Sampson) M cmpt, RicM � 0 and N cmpt, SecN � 0.

(a) If RicM (p0) > 0 for some p0 2M =) Liouville for harmonic maps =)
every smooth f :M ! N is homotopically trivial.

(b) If SecN < 0 then either the harmonic map u : M ! N is constant or
u (M) = � a closed geodesic of N .

Proof. Let u : M ! N be harmonic. The Bochner-Weitzenböck formula
states

1

2
� jduj2 = jDduj2 +

X
i

hdu (RicM (Ei)) ; du (Ei)i

�
X
i;j

SecN(du(Ei) ^ du(Ej))
���du(Ei) ^ du(Ej)���2 :



Since RicM � 0 and SecN � 0,

� jduj2 � 0;

equality holding i¤ Ddu = 0. Use Stokes theorem with X = jduj2r jduj2:

0 =
Z
M
div (X) �

Z
M

���r jduj2���2 � 0) jduj � const:

and du is parallel. If RicM (p0) > 0 then dp0u = 0 and this implies du = 0.
Similarly if SecN < 0 and du 6= 0, since du (Ei)^du

�
Ej
�
= 0 we obtain that

u (M) is 1-dimensional. SinceDdu = 0) u maps geodesics into geodesics)
u (M) � � geodesic. If � is not closed then u is homotopically trivial. But (M
cmpt) it can be shown that u minimizes energy in its homotopy class)
u � const. Contradiction. It is now easy to obtain u (M) = �.

Now, some classical applications.



Application I. We �rst illustrate a use of X as a target space.

Th. 3 (Preissman) X cmpt, Sec < 0. Then Z2 6� �1 (X).

Proof. By contradiction, Z2 � �1 (X). Fix any injective homomorphism
� : �1(T

2) ' Z2 ! �1 (X) with T 2 the �at torus. Since SecX � 0, by
the general theory of aspherical spaces, we can assume that 9smooth nonconst
map u : T 2 ! X which induces � up to some � 2 Aut (�1 (X)), say
� � � = u#. By Eells-Sampson-Hartman, we can take u harmonic. Liouville
Theorem) u(T 2) =closed geodesic of X: Therefore, u# maps the generators
of �1(T 2) onto a single loop) u# is not injective. Contradiction.

The �at-torus theorem by Lawson-Yau and Gromoll-Wolf can be obtained along
the same line.



Application II. Now we illustrate a use of X as a source space.

Th. 4 (Lohkamp remark) There is no metric h; i on Rm such that:

(a) h; i = canRm on RmnB1 and

(b.1) Ric � 0 in B1, (b.2) Ric (x0) > 0 for some x0 2 B1

Proof. By contradiction, suppose h; i exists. Cut an m-cube C centered at 0
s.t. B1 � C. Glue the faces of C to obtain an m-torus X with RicX � 0 and
RicX (x0) > 0. Now, in the homotopy class of the identity map id : X ! Tm

there is a harmonic map u : X ! Tm. Liouville theorem) u � cnst ) id

homotopically trivial. Contradiction.

What is impressive is that there exists h; i on Rm satisfying (a) and Ric < 0

on B1 (Lohkamp Ric < 0-balls)



II. p-harmonic maps and functions

The previous examples involve (2-)harmonic maps. The concept was introduced
by Eells-Sampson in the mid �60s and extends the notion of harmonic function.

Let u : (M; h; iM) ! (N; h; iN) be a smooth map. The Hilbert-Schmidt
norm of its di¤erential du 2 �

�
T �M 
 u�1 (TN)

�
is denoted by jduj. Let

p > 1.

Def. 1 The map u is said to be p-harmonic if

�pu := ��
�
jdujp�2 du

�
= 0;

where � is the formal adjoint of d with respect to the standard L2-inner product
on vector valued 1-forms. The operator �pu is called the p-Laplacian (or p-
tension �eld) of u. In case u 2 C1 the above condition has to be interpreted
in the sense of distributions, i.e., (�pu; �) = �

R
M

D
jdujp�2 du; d�

E
.



Let X be a vector �eld along u with compact support in 
 �� M . De�ne
the variation with �xed boundary ut (x) = expu(x) tX (x). Then

d

dt

����
t=0

Z


jdutjp = �p

Z


h�pu;Xi ;

proving that p-harmonic maps are stationary points of the p-energy
functional for this kind of variations.

Note that

�pu = jdujp�2�u+ du
�
r jdujp�2

�
:

In the special case N = R one can also speak of p-subharmonic function
whenever �pu � 0 and of p-superharmonic function if �pu � 0.



II.a. p-harmonic maps as �canonical� representatives

We are interested in complete non-compact domains. It is then natural to
prescribe asymptotic (decay) properties to maps, more precisely on the energy
of maps. Say that f : M ! N has �nite p-energy if jdf jp 2 L1 (M). Ac-
cording to results by R. Schoen and S.T. Yau, F. Burstall, B. White, S.W. Wei,
p-harmonic maps can be considered as canonical representatives of homotopy
class of maps with �nite p-energy into nonpositively curved targets.

Th. 5 Let (M; h; iM) be complete and (N; h; iN) be compact with SecN �
0. Fix a smooth map f : M ! N with �nite p-energy jdf jp 2 L1 (M),
p � 2. Then, in the homotopy class of f , there exists a p-harmonic map
u 2 C1;�(M;N) with jdujp 2 L1 (M). If p = 2 then u 2 C1 (M;N) :



Some consequences and questions that arise naturally from the existence thm:

(a) Trivial homotopy type. Liouville type thms under geometric assumptions
onM ) a map f :M ! N with �nite p-energy must be topologically trivial.

(b) Comparison of homotopic p-harmonic maps. How many p-harmonic
maps with �nite p-energy are there in a given homotopy class ?

In case p = 2 (harmonic case) both questions in the complete setting are
answered in deep seminal works by Schoen-Yau (the compact case is due to P.
Hartman). They proved:

(�) vanishing results for harmonic maps assuming that either RicM � 0 orM
is a stable minimal hypersurface in Rm+1;

(�) comparison of homotopic harmonic maps and uniqueness of the harmonic
representative, assuming vol (M) < +1.



Schoen-Yau vanishing results alluded to in (�) have been uni�ed and extended
by allowing a controlled amount of negative Ricci curvature.

The negative part of the curvature is measured via a spectral assumption.
Suppose RicM � �a (x). Let L = ��� a (x). By de�nition

�1 (L) := inf
(R

jr'j2 � a (x)'2R
'2

: ' 2 C1c (M) n f0g
)
:

Th. 6 (P.-Rigoli-Setti [2]) Let M be complete, noncmpt, RicM � �a (x)
with �1 (L) � 0. Let N be complete, SecN � 0. Then a harmonic map
u :M ! N with �nite energy jduj 2 L2 must be constant.



Proof. Starting point: Bochner formula+re�ned Kato (RHS)

(B) jduj (� jduj+ a (x) jduj) = jDduj2 � jr jdujj2 � 1

m
jr jdujj2 :

By assumption �1 (��� a (x)) � 0: According to FischerColbrie-Schoen

(FCS) 9v > 0 : �v + a (x) v = 0:

In the spirit of the generalized maximum principle de�ne

0 � w = jduj
v

2 L2
�
M; v2dvol

�
:

Then, the v2-Laplacian of w satis�es

�v2w := v
�2 div

�
v2rw

�
� 0,

i.e. w is �v2-subharmonic.



By an L2-Liouville Theorem (a la Yau) for �v2-subharmonic functions on the

manifold with density
�
M; v2dvol

�
, we obtain w := jduj

v � cnst

Whence, combining equations (B)+(FCS) we deduce r jduj � 0 and either
jduj � 0 or RicM � 0.

By Calabi and Yau, RicM � 0 ) vol (M) = +1. Since cnst � jduj 2 L2
we must conclude jduj = 0.

Rmk 1 (P.-Rigoli-Setti [2]) Actually, a very similar proof gives a more gen-
eral vanishing result for jduj 2 L2
 (M) and �1 (���Ha (x)) � 0 where

 and H are related by (m� 1) =m < 
 � H.



Rmk 2 (on the spectral assumption) Let L = �� � a (x) : Intuitively,
�1 (L) � 0 relies on the fact that a+ (x) = max fa (x) ; 0g is small in some
integral sense.

For instance, assume an Euclidean L2 Sobolev inequality

k'k
L
2m
m�2

� S kr'kL2 , 8' 2 C
1
c

for some S > 0. Then, by Sobolev and Hölder inequalities,Z �
jr'j2 � a'2

�
� S�2 k'k2

L
2m
m�2

� ka+k
L
m
2
k'k2

L
2m
m�2

:

Thus

ka+k
L
m
2
� S�2 =) �1 (L) � 0:



As for general comparisons alluded to in (�) we have the following classical

Th. 7 (Schoen-Yau) Let u; v : M ! N be homotopic harmonic maps with
jduj2 + jdvj2 2 L1. If vol (M) < +1 and SecN < 0 then, either u = v or
u (M) ; v (M) � � geodesic of N .

Proof. Focus on some key points. Lift u; v to �1-equivariant harmonic maps
u0; v0 : M 0 ! N 0 between universal coverings (�1 acts by isometries). Then
(u0; v0) :M

0 ! N 0 �N 0 is (equivariant) harmonic. De�ne

� (x) = distN 0 � (u0(x0); v0(x0)) :M ! R�0
where x0 is any point in the �ber over x. Since N 0 is Cartan-Hadamard then
distN 0 is convex. Harmonic maps pull-back convex functions to subhar-

monic functions. Therefore�� � 0. Consider h =
q
1 + �2: Then,�h � 0.

Moreover, jduj2+ jdvj2 2 L1 =) jrhj2 2 L1. Now use a Liouville-type the-
orem to deduce h � const. This implies � � const. Etc...



Project: extend Schoen-Yau theory to p 6= 2, thus obtaining topological in-
formation on higher energy maps.

Neither of the above proofs work in this general contest due to the (nonlinear)
structure of the p-Laplace operator �p. A list of di¢ culties:

(A) Vanishing thm. No re�ned Kato inequalities, low regularity of maps,
Bochner formula presents new terms, no possibility of combine solutions of
PDEs

(B) Comparison theory. u; v :M ! N p-harmonic 6) (u; v) :M ! N �N
p-harmonic. Moreover:

Th. 8 (Veronelli [8]) There exist Riemannian manifolds M , N , a convex
function H : N ! R and a p-harmonic map u : M ! N , for some p > 2,
such that H � u :M ! R is not p-subharmonic.



II.b. New vanishing for �nite-energy p-harmonic maps

Th. 9 (P.-Veronelli [6]) Let u : M ! N be a C1 p-harmonic map, p � 2,
with jduj 2 Lq. Assume N complete with SecN � 0 and M complete,
RicM � �a (x) with �1 (���Ha (x)) � 0 for some H > q2=4 (q � 1) :
Then u � const:

Cor. 1 (P.-Veronelli [6]) Assume N cmpt with SecN � 0 and M com-
plete with RicM � �a (x) and �1 (���Ha (x)) � 0 for some H >

p2=4 (p� 1) : Then every f : M ! N with jdf jp 2 L1 is homotopic to a
constant.



Proof (idea). Again we start with a Bochner-type inequality

jduj� jduj+ a (x) jduj2 � �hdu; d�ui ;
where, since u is p-harmonic,

�u = � (p� 2) du (r log jduj) :
However:

(a) The RHS is not so nice as in the case p = 2 (no sign, no re�ned Kato). We
need manipulations in integral form and a direct use of the spectral assumption
with suitably chosen test-functions.

(b) u is not smooth. We use of a version of the approximation procedure by
Duzaar-Fuchs. Idea: C1-approximate u on M+ = fjduj > 0g by smooth uk
(not p-harmonic). Prove an Lp-Caccioppoli type inequality for jdukj. The
Caccioppoli contains an extra term that vanishes as k ! +1. Take limits to
get a Caccioppoli for jduj. Duzaar-Fuchs teach us how to extend this inequality
from M+ to M .



II.c. New comparisons for �nite-energy p-harmonic maps

We need to record some facts from potential theory. Let 1 < p < +1.

Def. 2 M is p-parabolic if �pu � 0, supM u < +1) u � const:

There are a number of equivalent de�nitions of parabolicity. The �rst one is
classical and involves the concept of capacity.

Th. 10 M is p-parabolic() 8K ��M ,

capp (K) = inf
Z
M
jr'jp = 0;

the in�mum being taken with respect to all ' 2 C1c such that ' � 1 on K.

Interpretation: every K �� M has a small mass from the viewpoint of
p-harmonic functions.



The next result is known as the Kelvin-Nevanlinna-Royden criterion (KNR
for short). It is due to T. Lyons and D. Sullivan (p = 2) and V. Gol�dshtein
and M. Troyanov (p > 1).

Th. 11 M is p-parabolic() 8X 2 L
p
p�1 vector �eld s.t. (divX)� 2 L1,Z

M
divX = 0:

Interpretation: from the viewpoint ofX, the �boundary�ofM is negligible (or
X has zero �boundary values�). Therefore, a global version of Stokes theorem
holds. In a sense, the celebrated Ga¤ney(-Karp) version of Stokes theorem
is in the same spirit: take p = +1 and X 2 L1. Here 1-parabolicity =
geodesic completeness (thanks to Troyanov for this remark).



Proof (of )). Let 
j ��M be s.t. 
j %M . Since

capp (
1) = 0;

we can choose 0 � 'j 2 C1c (
j) s.t.

'j = 1 on 
1, and



r'j


Lp ! 0:

Apply Stokes theorem

0 =
Z
M
div

�
X'j

�
=
Z
M
'j divX +

Z
M

D
X;r'j

E
:

To conclude, note that����Z
M

D
X;r'j

E���� � kXk
L

p
p�1

kr'kLp ! 0

and Z
M
'j divX !

Z
M
divX:



Geometric conditions insuring p-parabolicity rely on volume growth properties.

Th. 12 Let (M; h; i) be complete. Consider the following growth conditions:

(i) vol (BR)
1
p�1 = O

�
R
1+ 1

p�1 logR log(2)R � � � log(k)R
�
, as R! +1:

(ii)
Z +1

R
1
p�1

vol(BR)
1
p�1
dR = +1:

(iii)
Z +1

dR

area(@BR)
1
p�1

= +1.

Then, (i) )
6(=

(ii) )
6(=

(iii) )
6(=

M is p-parabolic.

Ex. 1 (recall Schoen-Yau Th.) vol (M) < +1) p-parabolicity, 8p > 1.



Here is our new global comparison for vector-valued maps.

Th. 13 (Holopainen-P.-Veronelli [1]) Let u; v :M ! Rn satisfy

�pu = �pv

and jduj+ jdvj 2 Lp, for some p > 2. IfM is p-parabolic then u�v � const:

Proof (idea). Set u (x0) = v (x0) = 0 2 Rm and 8A > 0, let

XA :=
h
dhAj(u�v) �

�
jdujp�2du� jdvjp�2dv

�i]
;

where hA(y) :=
q
A+ jyj2. Apply the KNR criterion to deduceZ

M
divXA = 0:

Take the limit as A! +1 and conclude

0 =
Z
M
jdu� dvjp :



Note that Rn is contractible, hence u; v are homotopic. Therefore if u; v are
p-harmonic, the previous result follows from the next

Th. 14 (P.-Rigoli-Setti [4]) Let u :M ! N be a C1 p-harmonic map with
jduj 2 Lp, p > 2. Assume that M is p-parabolic and SecN � 0. If u is
homotopic to a constant then u � const:

Very recently, the complete analogue of Schoen-Yau comparison has been �nally
obtained.

Th. 15 (Veronelli [9]) Let u; v : M ! N be C1, homotopic, p-harmonic
maps with jdujp+ jdvjp 2 L1. IfM is p-parabolic and SecN < 0 then, either
u = v or u (M) ; v (M) � � geodesic of N .



III. Sobolev inequalities and p-Laplacian

Say that (Mm; h; i) enjoys an Lp�;p-Sobolev inequality, 1=p�1=p� = 1=m,
if

(SIp) k'kLp� � Sp kr'kLp ,
8' 2 C1c and for some constant Sp > 0.

Rmk 3 If M is complete with vol (BR) � CRm then, by density arguments,
(SIp) extends to ' 2 Lp

�
satisfying jr'j 2 Lp:

In Rm inequality (SIp) holds and the explicit value of the optimal Sobolev
constant Kp is known. In general, Kp � Sp and the validity of (SIp) (es-
pecially when combined with curvature conditions) introduces a number of
constrains on the geometry and the topology of M . Let us consider some
examples.



III.a. Rigidity under Sobolev inequalities

Th. 16 (Carron, Akutagawa) Assume the validity of (SIp). Then 9
 > 0
such that vol (BR) � 
vol (BR), where BR � Rm.

Th. 17 (Anderson, Li) Assume the validity of (SIp) and vol(B0R) . vol (BR)
where B0R � M 0, M 0=the universal covering of M (e.g. RicM � 0). Then
j�1 (M)j < +1.

Ex. 2 Discussed with Veronelli and Valtorta: in the above Th., �1 (M) can
achieve all possible cardinalities. Let M = R3#L3, with L3 = S3=Zk a
lens space. Then, by Seifert-Van Kampen, �1 (M) ' Zk and M 0 is a k-fold
covering ofM . Note thatM satis�es the assumptions of Anderson-Li. Indeed,
for some K �� M , (a) RicM = 0 on MnK and (b) the Sobolev inequality
(SIp) holds onMnK. SinceM 0 is a �nite covering, RicM 0 = 0 o¤ a compact
set. Thus, volume comparison) vol(B0R) . vol (BR). On the other hand
(b))(SIp) on all of M by Carron (p = 2) and P.-Setti-Troyanov (p > 1).



Th. 18 (Ledoux, Xia) Let RicM � 0 and assume the validity of (SIp). If Sp
is su¢ ciently close to Kp then M is di¤eomorphic to Rm. If Sp = Kp then
M is isometric to Rm.

Proof (P.-Veronelli [7]). Crucial point: use the curvature condition to im-
prove Carron volume estimate. Recall that, in Rm, the equality in (SIp) is
realized by the (radial) Bliss-Aubin-Talenti functions

'� (jxj) =
� (m; p)�

m�p
p2�

�+ jxj
p
p�1

�m
p�1

:

which satisfy Z
Rm

'
p�
� = 1,



and obey the nonlinear Yamabe equation

Rm�p'� = �K�pp '
p��1
� :

De�ne b'� :M ! R as b'�(x) := '�(r(x)) and consider the vector �eld
X� := b'� jr b'�jp�2r b'�:

Then, by volume comparison, X� 2 L1 (M). Also, by Laplacian comparison,

�p b' � �K�pp b'p��1� :

Therefore,

divX� � b'��p b'� � �K�pp b'p�� 2 L1 (M) :

Using the Karp version of Stokes theorem we deduce

0 =
Z
M
divX� �

Z
M
jr b'�jp �K�pp Z

M
b'p�� ;



that is

(*)
R
M jr b'�jpR
M b'p�� � K�pp :

On the other hand, by
R
M b'p�� � 1 and by de�nition of Sobolev constant Sp,

(**)
R
M jr b'�jpR
M b'p�� �

R
M jr b'�jp�R
M b'p�� � pp�

� S�pp :

It follows from (*)+(**) that

(Kp=Sp)
m �

Z
M

b'p�� � 1 =
Z
Rm

'
p�
� :

With the aid of integration by parts in polar-coordinates, and Bishop-Gromov:

vol (BR) � (Kp=Sp)m vol (BR) , 8R > 0.
Now, ifKp = Sp, by volume comparison vol (BR) = vol (BR) and we conclude
M = Rm using the equality case in Bishop-Gromov.



Rmk 4 (P.-Veronelli [7]) A similar proof works if we replace RicM � 0 with
the asymptotic condition RicM � �G(r(x)) where r (x) = d (x; o), o 2 M
is a reference origin, and G � 0 satis�esZ +1

0
tG (t) dt = b0 < +1:

The corresponding rigidity (di¤eomorphic rigidity) holds under the curvature
requirement SecM � �G(r(x)) when b0 is su¢ ciently close to 0.

Conj. 1 (Ledoux) Sharp volume estimate for the optimal Euclidean Sobolev
constant holds without any curvature restriction. Namely:

M complete, (SIp) holds with Sp = Kp ) vol (BR) � vol (BR).



III.b. Sobolev inequalities and topology at in�nity

In the presence of the Sobolev inequality (SIp) we are able to bulid a link
between the analysis of p-harmonic functions and the topology at in�nity of
the underlying complete, non-compact manifold M .

Def. 3 An end E of M with respect to 
 �� M is any of the unbounded
connected components of Mn
. Say that M is connected at in�nity if, for
evey smooth 
 ��M , Mn
 has exactly one end.



Ex. 3 M =universal covering of a cmpt manifold N with �1 (N) = Zk�2.
Then M is connected at in�nity. Indeed, by �varc-Milnor theory, M is quasi-
isometric to the Cayley graph G of �1 (N). The number of ends is a quasi-
isometry invariant+G connected at in�nity)M connected at in�nity.

Ex. 4 M = N � R with N cmpt is disconnected at in�nity.

Ex. 5 M = N � Rk, with k � 2, is connected at in�nity.

Ex. 6 (Cheeger-Gromoll) Assume RicM � 0 and RicM (x) > 0 for some
x 2M . Then M is connected at in�nity. Indeed, if Mn
 has two unbounded
components E1; E2 then M contains a line. Since RicM � 0 we have iso-
metric splitting M = N � R. This violates the assumption RicM (x) > 0

somewhere.



In the presence of a general Lq;p-Sobolev inequality the curvature assumption
in Cheeger-Gromoll Ex. 6 can be considerably relaxed.

Th. 19 (P.-Setti-Troyanov [5]) Let (Mm; h; i) be a complete manifold sat-
isfying the Sobolev inequality

k'kLq � S kr'kLp ,

for some S > 0 and 1=p � 1=q � 1=m: Assume that Ric � �a (x) where
a (x) � 0 is small in the spectral sense

�1 (���Ha (x)) � 0;

for some H > p2=4 (p� 1). Then, M is connected at in�nity.



The proof inspires to harmonic function theory developed by P. Li, L.-F. Tam
and collaborators. In case p = 2 , versions of this result are due to P. Li and
J. Wang, H.-D. Cao, Y. Shen, S. Zhu. See also [3]. It is done in three steps.

(a) Sobolev inequality (SIp)) every end E has in�nite volume and is �large�
in the sense of potential theory, i.e., E is p-hyperbolic=not p-parabolic.

(b) If M has two p-hyperbolic ends, construct a non-constant p-harmonic
function u 2 C1 (M) satisfying jruj 2 Lp:

(c) Curvature assumption + corresponding vanishing result ) u � const:

(this has been already discussed)



(a) volume and potential theory of ends. Basic idea: since

k'kLq � S kr'kLp ,

if we �x K ��M and choose ' = 1 on K, then

kr'kLp � S
�1vol (K)1=q :

This means

capp (K) � S�1vol (K)1=q > 0

and the manifold is p-hyperbolic. Also, by Carron-Akutagawa volume estimates,

vol (BR) � CRm ! +1:

All these considerations can be localized on each end.



Def. 4 Say that the end E ofM is p-parabolic if its Riemannian double D (E)
is p-parbolic as a manifold without boundary.

The key point to localize the above arguments on E is the next

Th. 20 (Carron, P.-Setti-Troyanov [5]) The Lq;p Sobolev inequality holds
o¤ a compact set if and only if it holds (with a di¤erent constant) on all of M



(b) construction of the p-harmonic function

Let E1, E2,...,Ek be the ends of M , k � 2. By (a) they are p-hyperbolic.
Take an exhaustion Dj %M . For every j solve the Dirichlet problem8><>:

�puj = 0 on Dj
uj = 0 on E1 \ @Dj
uj = 1 on (MnE1) \ @Dj:



By the maximum principle uj % and, therefore, we can de�ne

u (x) = lim
j
uj (x) :

Then:

1) u is p-harmonic by the Harnack principle.

2) Using the fact that there are at least two p-hyperbolic ends it can be shown
that u is nonconstant.

3) Using capacitary arguments it follows



ruj


Lp � C, 8j. This implies

jruj 2 Lp:

This completes the proof of the Theorem.
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