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|. Introductory examples

We are given an m-dimensional Riemannian manifold (X", (,)). A natural
way to detect the geometry and the topology of X is to view X either as
the domain or as the target space of some interesting class of maps. Clearly,
the Riemannian structure adds information on X and therefore the interesting
maps should take them into account.

Let us consider a couple of (classical) examples to give some flavour of ideas
and techniques and to introduce (some of) the main ingredients.



Let M, N be compact, with Secpr < 0. Let f : M — N be a smooth map.
Then we have

Th. 1 (Eells-Sampson, Hartman)

Ju: M — N / du|? = min {/ dh|? : h homotopic to f} .
M M

The minimizer u satisfies the (system of) equations
—Au:=9(du) =0

I.e. u is a harmonic map. Note: u is smooth by elliptic regularity. In particular,
the validity of a Liouville type result

Au =0 — u = const

gives that f is topologically trivial. For instance, we have the following



Th. 2 (Eells-Sampson) M cmpt, Ricy; > 0 and N cmpt, Secy < 0.

(a) If Ricyy (pg) > 0 for some pg € M = Liouville for harmonic maps —>
every smooth f : M — N is homotopically trivial.

(b) If Secpy < O then either the harmonic map w : M — N is constant or
u (M) =T a closed geodesic of N.

Proof. Let u : M — N be harmonic. The Bochner-Weitzenboéck formula
states
1
SO |dul® = | Ddul® + 3~ {du (Ricar (E;)) , du (E;))
)
2
— > Seen(du( E;) A du(Ej)) |du(E;) A du(Ej)|”.
ij



Since Ricpy > 0 and Secy <0,
A |dul? > 0,
equality holding iff Ddu = 0. Use Stokes theorem with X = |du|? V |dul|?:

. 212 _
0:/ dlv(X)Z/ V |duf?[” > 0= |du| = const.
M M

and du is parallel. If Ricps (pg) > 0 then dpyu = 0 and this implies du = 0.
Similarly if Secyy < 0 and du # 0, since du (E;) Adu (Ej) = 0 we obtain that
u (M) is 1-dimensional. Since Ddu = 0 = u maps geodesics into geodesics=>
u (M) C T geodesic. If I is not closed then u is homotopically trivial. But (M
cmpt) it can be shown that w minimizes energy in its homotopy class=
u = const. Contradiction. It is now easy to obtain u (M) =T. =

Now, some classical applications.



Application I. We first illustrate a use of X as a target space.
Th. 3 (Preissman) X cmpt, Sec < 0. Then Z* ¢ 71 (X).

Proof. By contradiction, Z? C 71 (X). Fix any injective homomorphism
p: m(T?) ~ Z? — 7 (X) with T2 the flat torus. Since Secx < 0, by
the general theory of aspherical spaces, we can assume that dsmooth nonconst
map u : T% — X which induces p up to some a € Aut(m (X)), say
aop = uy. By Eells-Sampson-Hartman, we can take u harmonic. Liouville
Theorem=> u(T?) =closed geodesic of X. Therefore, u maps the generators
of m1(T?) onto a single loop=- u is not injective. Contradiction. =

The flat-torus theorem by Lawson-Yau and Gromoll-Wolf can be obtained along
the same line.



Application Il. Now we illustrate a use of X as a source space.

Th. 4 (Lohkamp remark) There is no metric (,) on R™ such that:
(a) {,) = cangpm on R™\B; and

(b.1) Ric > 0 in By, (b.2) Ric(xg) > 0 for some zg € By

Proof. By contradiction, suppose (,) exists. Cut an m-cube C centered at 0
s.t. B1 C C. Glue the faces of C to obtain an m-torus X with Ricx > 0 and
Ricx (xg) > 0. Now, in the homotopy class of the identity mapid : X — T™
there is a harmonic map v : X — T". Liouville theorem=- u = cnst = id
homotopically trivial. Contradiction. m

What is impressive is that there exists (,) on R™ satisfying (a) and Ric < 0
on B; (Lohkamp Ric < 0-balls)



Il. p-harmonic maps and functions

The previous examples involve (2-)harmonic maps. The concept was introduced
by Eells-Sampson in the mid '60s and extends the notion of harmonic function.

Let w : (M, {,)r;) — (N, (,)n) be a smooth map. The Hilbert-Schmidt
norm of its differential du € I (T*M @ u ™1 (TN)) is denoted by |du|. Let
p > 1.

Def. 1 The map u is said to be p-harmonic if
Apu = —§ (|du\p_2 du) =0,

where § is the formal adjoint of d with respect to the standard L?-inner product
on vector valued 1-forms. The operator Apu is called the p-Laplacian (or p-
tension field) of u. In case u € C the above condition has to be interpreted
in the sense of distributions, i.e., (Apu,n) = — [3/ <|alu|p_2 du, d77>.



Let X be a vector field along u with compact support in 2 CC M. Define
the variation with fixed boundary u; (z) = expy, ;) tX (). Then

d
e duy|P = — / Ay, X) |
dt|t20/9|ut| p [ (B, X)

proving that p-harmonic maps are stationary points of the p-energy
functional for this kind of variations.

Note that
Apu = |dufP ™ Au + du (V |dufP~?).

In the special case N = IR one can also speak of p-subharmonic function
whenever Apu > 0 and of p-superharmonic function if Ayu < 0.



Il.a. p-harmonic maps as “canonical”’ representatives

We are interested in complete non-compact domains. [t is then natural to
prescribe asymptotic (decay) properties to maps, more precisely on the energy
of maps. Say that f : M — N has finite p-energy if |df|P € L1 (M). Ac-
cording to results by R. Schoen and S.T. Yau, F. Burstall, B. White, S.W. Wei,
p-harmonic maps can be considered as canonical representatives of homotopy
class of maps with finite p-energy into nonpositively curved targets.

Th. 5 Let (M, (,),s) be complete and (N, (,) ) be compact with Secy <
0. Fix a smooth map f : M — N with finite p-energy |df|P € L' (M),

p > 2. Then, in the homotopy class of f, there exists a p-harmonic map
uw € CLY(M, N) with |du|P € L1 (M). If p= 2 then u € C*° (M, N).



Some consequences and questions that arise naturally from the existence thm:

(a) Trivial homotopy type. Liouville type thms under geometric assumptions
on M = amap f: M — N with finite p-energy must be topologically trivial.

(b) Comparison of homotopic p-harmonic maps. How many p-harmonic
maps with finite p-energy are there in a given homotopy class ?

In case p = 2 (harmonic case) both questions in the complete setting are
answered in deep seminal works by Schoen-Yau (the compact case is due to P.
Hartman). They proved:

(a) vanishing results for harmonic maps assuming that either Ricp; > 0 or M
is a stable minimal hypersurface in R™t1.

(8) comparison of homotopic harmonic maps and uniqueness of the harmonic
representative, assuming vol (M) < +oo.



Schoen-Yau vanishing results alluded to in () have been unified and extended
by allowing a controlled amount of negative Ricci curvature.

The negative part of the curvature is measured via a spectral assumption.
Suppose Ricy; > —a(x). Let L = —A — a(x). By definition

2—CL$ 2
f|w|f¢2< )¢ ;gpecg%M)\{O}}-

A (L) = inf{

Th. 6 (P.-Rigoli-Setti [2]) Let M be complete, noncmpt, Ricy; > —a(x)
with A1 (£) > 0. Let N be complete, Secyy < 0. Then a harmonic map
w: M — N with finite energy |du| € L? must be constant.



Proof. Starting point: Bochner formula+refined Kato (RHS)

1
(B)  |dul (Aldul +a(x)|dul) = |Ddul* — |V |dul [* > — |V |dul|*.
By assumption A1 (—A — a (z)) > 0. According to FischerColbrie-Schoen
(FCS) Jv>0:Av+a(x)v=0.

In the spirit of the generalized maximum principle define

d
0<w= T2 (M, v2dvol)
(V)

Then, the v2—Lap|acian of w satisfies
A pw = v 2 div (U2Vfw) >0,

l.e. w IS A,Ug—subharmonic.



By an L2-Liouville Theorem (a la Yau) for A >-subharmonic functions on the

manifold with density (M, fuzdvol), we obtain w = @ = cnst

Whence, combining equations (B) + (F'C'S) we deduce V |du| = 0 and either
|[du| = 0 or Ricpy > 0.

By Calabi and Yau, Ricy; > 0 = vol (M) = +oo. Since cnst = |du| € L?
we must conclude |du| = 0. =

Rmk 1 (P.-Rigoli-Setti [2]) Actually, a very similar proof gives a more gen-
eral vanishing result for |du| € L?Y (M) and A\ (—A — Ha (z)) > 0 where
~ and H are related by (m — 1) /m <~y < H.



Rmk 2 (on the spectral assumption) Let £L = —A — a(x). Intuitively,
A1 (L) > 0 relies on the fact that a4 (x) = max{a(x),0} is small in some
integral sense.

For instance, assume an Euclidean L? Sobolev inequality
loll 2m, < SVl 2, Vi € CE°

for some S > 0. Then, by Sobolev and Hélder inequalities,

V|2 —ap?) > S72 |2 2m — ||| m||sr>|! 2m -
Lm— Lm—

Thus

Jaill,p <52 = M (£) >0,



As for general comparisons alluded to in (3) we have the following classical

Th. 7 (Schoen-Yau) Let u,v : M — N be homotopic harmonic maps with
[dul? + |dv|? € LY. Ifvol (M) < +oo and Secy < 0O then, either u = v or
u(M),v (M) C T geodesic of N.

Proof. Focus on some key points. Lift u, v to mi-equivariant harmonic maps

u',v" 1 M’ — N’ between universal coverings (w7 acts by isometries). Then
/ - . . . .

(u',v") : M — N’ x N’ is (equivariant) harmonic. Define

p (z) = distyy o (u/(2'),v'(2)) : M — Rxg

where z’ is any point in the fiber over z. Since N’ is Cartan-Hadamard then
dist; is convex. Harmonic maps pull-back convex functions to subhar-

monic functions. Therefore Ap > 0. Consider h = /1 + p2. Then, Ah > 0.
Moreover, |du|? + |dv|? € L1 = |Vh|? € L. Now use a Liouville-type the-
orem to deduce h = const. This implies p = const. Etc... =



Project: extend Schoen-Yau theory to p # 2, thus obtaining topological in-
formation on higher energy maps.

Neither of the above proofs work in this general contest due to the (nonlinear)
structure of the p-Laplace operator Ap. A list of difficulties:

(A) Vanishing thm. No refined Kato inequalities, low regularity of maps,
Bochner formula presents new terms, no possibility of combine solutions of

PDEs

(B) Comparison theory. u,v : M — N p-harmonic# (u,v) : M — N X N
p-harmonic. Moreover:

Th. 8 (Veronelli [8]) There exist Riemannian manifolds M, N, a convex
function H : N — R and a p-harmonic map u : M — N, for some p > 2,
such that H ou : M — R is not p-subharmonic.



Il.b. New vanishing for finite-energy p-harmonic maps

Th. 9 (P.-Veronelli [6]) Let u: M — N be a C p-harmonic map, p > 2,
with |du| € LY. Assume N complete with Secy < 0 and M complete,
Ricyr > —a(x) with A\; (=A — Ha (x)) > 0 for some H > ¢°/4 (¢ — 1) .
Then u = const.

Cor. 1 (P.-Veronelli [6]) Assume N cmpt with Secyy < 0 and M com-
plete with Ricp; > —a(x) and \{(—A — Ha(x)) > 0 for some H >
p?/4(p—1). Then every f : M — N with |df|P € L' is homotopic to a

constant.



Proof (idea). Again we start with a Bochner-type inequality
du| A |du| + a (z) |du]® > — (du, dAu),
where, since u is p-harmonic,
Au=—(p—2)du(Vlog|dul).

However:

(a) The RHS is not so nice as in the case p = 2 (no sign, no refined Kato). We
need manipulations in integral form and a direct use of the spectral assumption
with suitably chosen test-functions.

(b) u is not smooth. We use of a version of the approximation procedure by
Duzaar-Fuchs. ldea: Cl-approximate u on My = {|du| > 0} by smooth uy,
(not p-harmonic). Prove an LP-Caccioppoli type inequality for |dug|. The
Caccioppoli contains an extra term that vanishes as k — +oo. Take limits to
get a Caccioppoli for |du|. Duzaar-Fuchs teach us how to extend this inequality
from My to M. m



Il.c. New comparisons for finite-energy p-harmonic maps
We need to record some facts from potential theory. Let 1 < p < 400.
Def. 2 M is p-parabolic if Apu > 0, supp; u < +00 = u = const.

There are a number of equivalent definitions of parabolicity. The first one is
classical and involves the concept of capacity.

Th. 10 M is p-parabolicc— VK CC M,

cap, (K) = inf /M Vel|P =0,

the infimum being taken with respect to all p € CZ° such that ¢ > 1 on K.

Interpretation: every K CC M has a small mass from the viewpoint of
p-harmonic functions.



The next result is known as the Kelvin-Nevanlinna-Royden criterion (KNR
for short). It is due to T. Lyons and D. Sullivan (p = 2) and V. Gol'dshtein
and M. Troyanov (p > 1).

_p_
Th. 11 M is p-parabolic==> VX € L»—T vector field s.t. (divX)_ € L1,
/ div X = 0.
M

Interpretation: from the viewpoint of X, the “boundary” of M is negligible (or
X has zero “boundary values”). Therefore, a global version of Stokes theorem
holds. In a sense, the celebrated Gaffney(-Karp) version of Stokes theorem
is in the same spirit: take p = 400 and X € L!. Here oo-parabolicity =
geodesic completeness (thanks to Troyanov for this remark).



Proof (of =). Let Q; CC M bes.t. Q; / M. Since
capy, (Ql) =0,
we can choose 0 < ¢, € C2°(2;) s.t.
@w;j = 1 on 2y, and HVgijLP — 0.
Apply Stokes theorem

0:/Mdiv (X)) :/M<pj divX—l—/M (X,Ve;).

To conclude, note that

[, (X903 SIXI 2 IVl — 0

and

div X / div X.
/Mgoj vX — f div



Geometric conditions insuring p-parabolicity rely on volume growth properties.

Th. 12 Let (M, (,)) be complete. Consider the following growth conditions:

1
(i) vol (Br)P~1 = O (R1+1?Tl log Rlogld R - - - log(¥) R), as R — +o0.

area(0Bp)P~1

Then, 1) = (i2) = (212) = M is p-parabolic.
(4) 7é:( ) %:( ) bad

Ex. 1 (recall Schoen-Yau Th.) vol (M) < 400 = p-parabolicity, Vp > 1.



Here is our new global comparison for vector-valued maps.

Th. 13 (Holopainen-P.-Veronelli [1]) Let u,v : M — R"™ satisfy

Ap'u, = Ap'U
and |du|+ |dv| € LP, for somep > 2. If M is p-parabolic then u—v = const.
Proof (idea). Set u (xg) = v(zg) =0 € R™ and VA > 0, let

X 4= {dhA|(u_,U) o (|du|p_2du — |dv|p_2d’v)}ﬁ,

where h 4(y) := \/A -+ |y|2 Apply the KNR criterion to deduce

div. Xy, = 0.
/M v X 4

Take the limit as A — 4+o0 and conclude

O:/ |du — dvlP .
M



Note that R™ is contractible, hence u, v are homotopic. Therefore if u,v are
p-harmonic, the previous result follows from the next

Th. 14 (P.-Rigoli-Setti [4]) Letu : M — N be a C°° p-harmonic map with
|du| € LP, p > 2. Assume that M is p-parabolic and Secy < 0. If u is
homotopic to a constant then u = const.

Very recently, the complete analogue of Schoen-Yau comparison has been finally
obtained.

Th. 15 (Veronelli [9]) Let u,v : M — N be C, homotopic, p-harmonic
maps with |du|P + |dv|P € L. If M is p-parabolic and Secp; < O then, either
u=wvoru(M),v(M)CT geodesic of N.



I1l. Sobolev inequalities and p-Laplacian

Say that (M™, (,)) enjoys an LP"P-Sobolev inequality, 1/p—1/p* =1/m,
if

(Slp) el < SplIVellrp,
Vo € C° and for some constant Sp > 0.

Rmk 3 /f M is complete with vol (Br) < C'R™ then, by density arguments,
(Slp) extends to ¢ € Lr satisfying |V| € LP.

In R™ inequality (Slp) holds and the explicit value of the optimal Sobolev
constant K is known. In general, K, < Sp, and the validity of (Sl,) (es-
pecially when combined with curvature conditions) introduces a number of
constrains on the geometry and the topology of M. Let us consider some
examples.



Ill.a. Rigidity under Sobolev inequalities

Th. 16 (Carron, Akutagawa) Assume the validity of (Sl,). Then 3y > 0
such that vol (Bgr) > ~yvol (Bg), where B C R™.

Th. 17 (Anderson, Li) Assume the validity of (Sly) and vol(B%) < vol (BR)
where B, C M', M'=the universal covering of M (e.g. Ricpy > 0). Then
|1 (M)| < 400.

Ex. 2 Discussed with Veronelli and Valtorta: in the above Th., w1 (M) can
achieve all possible cardinalities. Let M = R3#IL3, with L3 = S3/Z;. a
lens space. Then, by Seifert-Van Kampen, w1 (M) ~ Zj, and M' is a k-fold
covering of M. Note that M satisfies the assumptions of Anderson-Li. Indeed,
for some K CC M, (a) Ricy; = 0 on M\ K and (b) the Sobolev inequality
(Sly) holds on M\ K. Since M' is a finite covering, Ricy; = 0 off a compact
set. Thus, volume comparison= vol(B,) < vol (Br). On the other hand
(b)=(Sly) on all of M by Carron (p = 2) and P.-Setti-Troyanov (p > 1).



Th. 18 (Ledoux, Xia) Let Ricp; > 0 and assume the validity of (Sl,). If Sp
is suthiciently close to Ky then M is diffeomorphic to R™. If S, = Ky, then
M is isometric to R™.

Proof (P.-Veronelli [7]). Crucial point: use the curvature condition to im-
prove Carron volume estimate. Recall that, in R™, the equality in (Slp) is
realized by the (radial) Bliss-Aubin-Talenti functions

m—p

B (m,p) X P°

_D
(/\+ |:13|P—1)

P (lz]) = g

S|3

which satisfy



and obey the nonlinear Yamabe equation

R™ - —p p*—1
APQO)\ — —Op pgp)\ .

Define ¢ : M — R as py(z) := ¢ (r(x)) and consider the vector field
Xy =@\ |VEP 2 V).
Then, by volume comparison, X, &€ Lt (M). Also, by Laplacian comparison,

N _ppF—1
DApp > — K, pcpz)?\ :
Therefore,
div Xy > @rAp@y > —K, P38 € LY (M).

Using the Karp version of Stokes theorem we deduce

oz/ div X >/ A% P—K—P/ 50"
y A2 Ml DAl R



that is
s @5

On the other hand, by [, @Z;\* < 1 and by definition of Sobolev constant .Sy,

. |P . |P
I IVexl® o fM|V90/\|p > S5,

~p* — R\
Iy @ (fM PN )p
It follows from (*)-(**) that

Kp/Sp)™ < / F<1=
( p/ p) > MSOA > e
With the aid of integration by parts in polar-coordinates, and Bishop-Gromouv:

vol (BRr) > (Kp/Sp)™ vol (Br), VR > 0.

Now, if K; = Sp, by volume comparison vol (Br) = vol (Bg) and we conclude
M = R™ using the equality case in Bishop-Gromov. =

—Pp
< K,P.

(*%)

*

o -



Rmk 4 (P.-Veronelli [7]) A similar proof works if we replace Ricy; > 0 with
the asymptotic condition Ricy; > —G(r(x)) where r () = d(x,0), o € M
Is a reference origin, and G > 0 satisfies

+00
/O tG (t) dt = by < +o00.

The corresponding rigidity (diffeomorphic rigidity) holds under the curvature
requirement Sec); > —G(r(x)) when bq is sufficiently close to 0.

Conj. 1 (Ledoux) Sharp volume estimate for the optimal Euclidean Sobolev
constant holds without any curvature restriction. Namely:

M complete, (Sl,) holds with Sy, = Kp = vol (Br) > vol (Bg).



Ill.b. Sobolev inequalities and topology at infinity

In the presence of the Sobolev inequality (Slp) we are able to bulid a link
between the analysis of p-harmonic functions and the topology at infinity of
the underlying complete, non-compact manifold M.

Def. 3 An end E of M with respect to Q CC M is any of the unbounded
connected components of M\S2. Say that M is connected at infinity if, for
evey smooth Q CC M, M\S2 has exactly one end.




Ex. 3 M =universal covering of a cmpt manifold N with w1 (N) = ZF=2
Then M is connected at infinity. Indeed, by Svarc-Milnor theory, M is quasi-
isometric to the Cayley graph G of w1 (N). The number of ends is a quasi-
iIsometry invariant+G connected at infinity= M connected at infinity.

Ex. 4 M = N x R with N cmpt is disconnected at infinity.
Ex. 5 M = N x R* with k > 2, is connected at infinity.

Ex. 6 (Cheeger-Gromoll) Assume Ricp; > 0 and Ricyy (x) > 0 for some
x € M. Then M is connected at infinity. Indeed, if M\S2 has two unbounded
components Eq, F» then M contains a line. Since Ricy; > 0 we have iso-
metric splitting M = N x R. This violates the assumption Ricps(x) > 0

somewhere.



In the presence of a general LYP-Sobolev inequality the curvature assumption
in Cheeger-Gromoll Ex. 6 can be considerably relaxed.

Th. 19 (P.-Setti-Troyanov [5]) Let (M™,(,)) be a complete manifold sat-
isfying the Sobolev inequality

lellre < SIIVellrp,

for some S > 0 and 1/p — 1/q < 1/m. Assume that Ric > —a (x) where
a (x) > 0 is small in the spectral sense

M (—A — Ha(x)) >0,
for some H > p®/4(p — 1). Then, M is connected at infinity.



The proof inspires to harmonic function theory developed by P. Li, L.-F. Tam

and collaborators. In case p = 2, versions of this result are due to P. Li and
J. Wang, H.-D. Cao, Y. Shen, S. Zhu. See also [3]. It is done in three steps.

(a) Sobolev inequality (Slp) = every end E has infinite volume and is “large”
in the sense of potential theory, i.e., E is p-hyperbolic=not p-parabolic.

(b) If M has two p-hyperbolic ends, construct a non-constant p-harmonic
function v € C1 (M) satisfying |Vu| € LP.

(c) Curvature assumption + corresponding vanishing result = u = const.
(this has been already discussed)



(a) volume and potential theory of ends. Basic idea: since

lelle < SVl e,

if we fix K CC M and choose ¢ =1 on K, then
IVl 1p > S~ Ivol (K)V/9.
This means
cap, (K) > S~ vol (K)/7 > 0
and the manifold is p-hyperbolic. Also, by Carron-Akutagawa volume estimates,
vol (Bgr) > CR™ — +oo.

All these considerations can be localized on each end.



Def. 4 Say that the end E of M is p-parabolic if its Riemannian double D (E)
is p-parbolic as a manifold without boundary.

The key point to localize the above arguments on E' is the next

Th. 20 (Carron, P.-Setti-Troyanov [5]) The L9P Sobolev inequality holds
off a compact set if and only if it holds (with a different constant) on all of M



(b) construction of the p-harmonic function

Let Fq1, E5,...,E; be the ends of M, kK > 2. By (a) they are p-hyperbolic.
Take an exhaustion D; M. For every j solve the Dirichlet problem

Apu; =0 on D;
Uj = 0 on F/1 N 3Dj
u; =1 on (M\E1)NoD;.




By the maximum principle U " and, therefore, we can define
u(x) = Iijm uj ().

Then:
1) w is p-harmonic by the Harnack principle.

2) Using the fact that there are at least two p-hyperbolic ends it can be shown
that u is nonconstant.

3) Using capacitary arguments it follows HVujHLp < (C, V3. This implies
|Vu| € LP.

This completes the proof of the Theorem.
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