$p\mbox{-}Laplacian$ and topology of manifolds

Stefano Pigola Università dell'Insubria, Como

Conference in Geometry and Global Analysis Celebrating P. Gilkey's 65th Birthday Santiago de Compostela, December 13 – 17, 2010

I. Introductory examples

We are given an *m*-dimensional Riemannian manifold (X^m, \langle, \rangle) . A natural way to detect the geometry and the topology of X is to view X either as the domain or as the target space of some interesting class of maps. Clearly, the Riemannian structure adds information on X and therefore the interesting maps should take them into account.

Let us consider a couple of (classical) examples to give some flavour of ideas and techniques and to introduce (some of) the main ingredients.

Let M, N be compact, with $Sec_N \leq 0$. Let $f : M \to N$ be a smooth map. Then we have

Th. 1 (Eells-Sampson, Hartman)

$$\exists u: M \to N: \int_M |du|^2 = \min\left\{\int_M |dh|^2: h \text{ homotopic to } f\right\}.$$

The minimizer u satisfies the (system of) equations

$$-\Delta u := \delta (du) = 0$$

i.e. u is a **harmonic map**. Note: u is smooth by elliptic regularity. In particular, the validity of a Liouville type result

$$\Delta u = 0 \Longrightarrow u = \mathsf{const}$$

gives that f is topologically trivial. For instance, we have the following

Th. 2 (Eells-Sampson) M cmpt, $Ric_M \ge 0$ and N cmpt, $Sec_N \le 0$.

(a) If $Ric_M(p_0) > 0$ for some $p_0 \in M \Longrightarrow$ Liouville for harmonic maps \Longrightarrow every smooth $f: M \to N$ is homotopically trivial.

(b) If $Sec_N < 0$ then either the harmonic map $u : M \to N$ is constant or $u(M) = \Gamma$ a closed geodesic of N.

Proof. Let $u : M \to N$ be harmonic. The **Bochner-Weitzenböck** formula states

$$\begin{aligned} \frac{1}{2} \Delta |du|^2 &= |Ddu|^2 + \sum_i \langle du \left(Ric_M \left(E_i \right) \right), du \left(E_i \right) \rangle \\ &- \sum_{i,j} Sec_N (du(E_i) \wedge du(E_j)) \left| du(E_i) \wedge du(E_j) \right|^2 \end{aligned}$$

Since $Ric_M \geq 0$ and $Sec_N \leq 0$,

$$\Delta |du|^2 \ge 0,$$

equality holding iff Ddu = 0. Use Stokes theorem with $X = |du|^2 \nabla |du|^2$:

$$0 = \int_M \operatorname{div}(X) \ge \int_M \left| \nabla |du|^2 \right|^2 \ge 0 \Rightarrow |du| \equiv \operatorname{const.}$$

and du is parallel. If $Ric_M(p_0) > 0$ then $d_{p_0}u = 0$ and this implies du = 0. Similarly if $Sec_N < 0$ and $du \neq 0$, since $du(E_i) \land du(E_j) = 0$ we obtain that u(M) is 1-dimensional. Since $Ddu = 0 \Rightarrow u$ maps geodesics into geodesics $\Rightarrow u(M) \subset \Gamma$ geodesic. If Γ is not closed then u is homotopically trivial. But (M cmpt) it can be shown that u minimizes energy in its homotopy class $\Rightarrow u \equiv \text{const.}$ Contradiction. It is now easy to obtain $u(M) = \Gamma$.

Now, some classical applications.

Application I. We first illustrate a use of X as a target space.

Th. 3 (Preissman) X cmpt, Sec < 0. Then $\mathbb{Z}^2 \not\subset \pi_1(X)$.

Proof. By contradiction, $\mathbb{Z}^2 \subset \pi_1(X)$. Fix any injective homomorphism $\rho : \pi_1(T^2) \simeq \mathbb{Z}^2 \to \pi_1(X)$ with T^2 the flat torus. Since $Sec_X \leq 0$, by the general theory of aspherical spaces, we can assume that \exists smooth nonconst map $u : T^2 \to X$ which induces ρ up to some $\alpha \in Aut(\pi_1(X))$, say $\alpha \circ \rho = u_{\#}$. By Eells-Sampson-Hartman, we can take u harmonic. Liouville Theorem $\Rightarrow u(T^2) =$ closed geodesic of X. Therefore, $u_{\#}$ maps the generators of $\pi_1(T^2)$ onto a single loop $\Rightarrow u_{\#}$ is not injective. Contradiction.

The flat-torus theorem by Lawson-Yau and Gromoll-Wolf can be obtained along the same line.

Application II. Now we illustrate a use of X as a source space.

Th. 4 (Lohkamp remark) There is no metric \langle , \rangle on \mathbb{R}^m such that:

(a) $\langle, \rangle = \mathsf{can}_{\mathbb{R}^m}$ on $\mathbb{R}^m \setminus \mathbb{B}_1$ and

(b.1) $Ric \geq 0$ in \mathbb{B}_1 , (b.2) $Ric(x_0) > 0$ for some $x_0 \in \mathbb{B}_1$

Proof. By contradiction, suppose \langle , \rangle exists. Cut an *m*-cube C centered at 0 s.t. $\mathbb{B}_1 \subset C$. Glue the faces of C to obtain an *m*-torus X with $Ric_X \geq 0$ and $Ric_X(x_0) > 0$. Now, in the homotopy class of the identity map id $: X \to T^m$ there is a harmonic map $u : X \to T^m$. Liouville theorem $\Rightarrow u \equiv \text{cnst} \Rightarrow \text{id}$ homotopically trivial. Contradiction.

What is impressive is that there exists \langle , \rangle on \mathbb{R}^m satisfying (a) and Ric < 0 on \mathbb{B}_1 (Lohkamp Ric < 0-balls)

II. *p*-harmonic maps and functions

The previous examples involve (2-)harmonic maps. The concept was introduced by Eells-Sampson in the mid '60s and extends the notion of harmonic function.

Let $u : (M, \langle, \rangle_M) \to (N, \langle, \rangle_N)$ be a smooth map. The Hilbert-Schmidt norm of its differential $du \in \Gamma(T^*M \otimes u^{-1}(TN))$ is denoted by |du|. Let p > 1.

Def. 1 The map u is said to be p-harmonic if

$$\Delta_p u := -\delta\left(|du|^{p-2} \, du\right) = \mathbf{0},$$

where δ is the formal adjoint of d with respect to the standard L^2 -inner product on vector valued 1-forms. The operator $\Delta_p u$ is called the p-Laplacian (or ptension field) of u. In case $u \in C^1$ the above condition has to be interpreted in the sense of distributions, i.e., $(\Delta_p u, \eta) = -\int_M \langle |du|^{p-2} du, d\eta \rangle$. Let X be a vector field along u with compact support in $\Omega \subset M$. Define the variation with fixed boundary $u_t(x) = \exp_{u(x)} tX(x)$. Then

$$\frac{d}{dt}\Big|_{t=0}\int_{\Omega}|du_t|^p=-p\int_{\Omega}\left\langle\Delta_p u,X\right\rangle,$$

proving that *p*-harmonic maps are stationary points of the *p*-energy functional for this kind of variations.

Note that

$$\Delta_p u = |du|^{p-2} \Delta u + du \left(
abla \, |du|^{p-2}
ight).$$

In the special case $N = \mathbb{R}$ one can also speak of *p*-subharmonic function whenever $\Delta_p u \ge 0$ and of *p*-superharmonic function if $\Delta_p u \le 0$.

II.a. *p*-harmonic maps as "canonical" representatives

We are interested in **complete non-compact domains**. It is then natural to prescribe asymptotic (decay) properties to maps, more precisely on the energy of maps. Say that $f: M \to N$ has **finite** p-energy if $|df|^p \in L^1(M)$. According to results by R. Schoen and S.T. Yau, F. Burstall, B. White, S.W. Wei, p-harmonic maps can be considered as canonical representatives of homotopy class of maps with finite p-energy into nonpositively curved targets.

Th. 5 Let (M, \langle, \rangle_M) be complete and (N, \langle, \rangle_N) be compact with $Sec_N \leq 0$. 0. Fix a smooth map $f : M \to N$ with finite *p*-energy $|df|^p \in L^1(M)$, $p \geq 2$. Then, in the homotopy class of f, there exists a *p*-harmonic map $u \in C^{1,\alpha}(M, N)$ with $|du|^p \in L^1(M)$. If p = 2 then $u \in C^\infty(M, N)$. Some consequences and questions that arise naturally from the existence thm:

(a) **Trivial homotopy type**. Liouville type thms under geometric assumptions on $M \Rightarrow$ a map $f : M \rightarrow N$ with finite *p*-energy must be topologically trivial.

(b) **Comparison of homotopic** p-harmonic maps. How many p-harmonic maps with finite p-energy are there in a given homotopy class ?

In case p = 2 (harmonic case) both questions in the complete setting are answered in deep seminal works by Schoen-Yau (the compact case is due to P. Hartman). They proved:

(α) vanishing results for harmonic maps assuming that either $Ric_M \ge 0$ or M is a stable minimal hypersurface in \mathbb{R}^{m+1} ;

(β) comparison of homotopic harmonic maps and uniqueness of the harmonic representative, assuming vol (M) < + ∞ .

Schoen-Yau vanishing results alluded to in (α) have been unified and extended by allowing a controlled amount of negative Ricci curvature.

The negative part of the curvature is measured via a spectral assumption. Suppose $Ric_M \ge -a(x)$. Let $\mathcal{L} = -\Delta - a(x)$. By definition

$$\lambda_{1}(\mathcal{L}) := \inf \left\{ \frac{\int |\nabla \varphi|^{2} - a(x) \varphi^{2}}{\int \varphi^{2}} : \varphi \in C_{c}^{\infty}(M) \setminus \{0\} \right\}.$$

Th. 6 (P.-Rigoli-Setti [2]) Let M be complete, noncmpt, $Ric_M \ge -a(x)$ with $\lambda_1(\mathcal{L}) \ge 0$. Let N be complete, $Sec_N \le 0$. Then a harmonic map $u: M \to N$ with finite energy $|du| \in L^2$ must be constant. **Proof.** Starting point: Bochner formula+refined Kato (RHS)

(B)
$$|du| (\Delta |du| + a(x) |du|) = |Ddu|^2 - |\nabla |du||^2 \ge \frac{1}{m} |\nabla |du||^2.$$

By assumption $\lambda_1 \left(-\Delta - a \left(x \right) \right) \geq 0$. According to FischerColbrie-Schoen

(FCS)
$$\exists v > 0 : \Delta v + a(x) v = 0.$$

In the spirit of the generalized maximum principle define

$$\mathbf{0} \le w = \frac{|du|}{v} \in L^2\left(M, v^2 d \mathrm{vol}\right).$$

Then, the v^2 -Laplacian of w satisfies

$$\Delta_{v^2}w:=v^{-2}\operatorname{div}\left(v^2
abla w
ight)\geq 0$$
 ,

i.e. w is Δ_{v^2} -subharmonic.

By an L^2 -Liouville Theorem (a la Yau) for Δ_{v^2} -subharmonic functions on the manifold with density $(M, v^2 d \text{vol})$, we obtain $w := \frac{|du|}{v} \equiv \text{cnst}$

Whence, combining equations (B) + (FCS) we deduce $\nabla |du| \equiv 0$ and either $|du| \equiv 0$ or $Ric_M \geq 0$.

By Calabi and Yau, $Ric_M \ge 0 \Rightarrow vol(M) = +\infty$. Since $cnst \equiv |du| \in L^2$ we must conclude |du| = 0.

Rmk 1 (P.-Rigoli-Setti [2]) Actually, a very similar proof gives a more general vanishing result for $|du| \in L^{2\gamma}(M)$ and $\lambda_1(-\Delta - Ha(x)) \ge 0$ where γ and H are related by $(m-1)/m < \gamma \le H$.

Rmk 2 (on the spectral assumption) Let $\mathcal{L} = -\Delta - a(x)$. Intuitively, $\lambda_1(\mathcal{L}) \ge 0$ relies on the fact that $a_+(x) = \max\{a(x), 0\}$ is small in some integral sense.

For instance, assume an Euclidean L^2 Sobolev inequality

$$\|\varphi\|_{L^{\frac{2m}{m-2}}} \leq S \, \|\nabla\varphi\|_{L^2}$$
 , $\forall \varphi \in C^\infty_c$

for some S > 0. Then, by Sobolev and Hölder inequalities,

$$\int \left(|\nabla \varphi|^2 - a\varphi^2 \right) \ge S^{-2} \|\varphi\|_{L^{\frac{2m}{m-2}}}^2 - \|a_+\|_{L^{\frac{m}{2}}} \|\varphi\|_{L^{\frac{2m}{m-2}}}^2$$

Thus

$$\|a_+\|_{L^{\frac{m}{2}}} \leq S^{-2} \Longrightarrow \lambda_1(\mathcal{L}) \geq 0.$$

As for general comparisons alluded to in (β) we have the following classical

Th. 7 (Schoen-Yau) Let $u, v : M \to N$ be homotopic harmonic maps with $|du|^2 + |dv|^2 \in L^1$. If vol $(M) < +\infty$ and $Sec_N < 0$ then, either u = v or $u(M), v(M) \subset \Gamma$ geodesic of N.

Proof. Focus on some key points. Lift u, v to π_1 -equivariant harmonic maps $u', v' : M' \to N'$ between universal coverings (π_1 acts by isometries). Then $(u', v') : M' \to N' \times N'$ is (equivariant) harmonic. Define

$$\rho(x) = \mathsf{dist}_{N'} \circ (u'(x'), v'(x')) : M \to \mathbb{R}_{\geq 0}$$

where x' is any point in the fiber over x. Since N' is Cartan-Hadamard then dist_{N'} is convex. Harmonic maps pull-back convex functions to subharmonic functions. Therefore $\Delta \rho \geq 0$. Consider $h = \sqrt{1 + \rho^2}$. Then, $\Delta h \geq 0$. Moreover, $|du|^2 + |dv|^2 \in L^1 \implies |\nabla h|^2 \in L^1$. Now use a Liouville-type theorem to deduce $h \equiv \text{const.}$ This implies $\rho \equiv \text{const.}$ Etc...

Project: extend Schoen-Yau theory to $p \neq 2$, thus obtaining topological information on higher energy maps.

Neither of the above proofs work in this general contest due to the (nonlinear) structure of the *p*-Laplace operator Δ_p . A list of difficulties:

(A) **Vanishing thm.** No refined Kato inequalities, low regularity of maps, Bochner formula presents new terms, no possibility of combine solutions of PDEs

(B) Comparison theory. $u, v : M \to N p$ -harmonic $\not\Rightarrow (u, v) : M \to N \times N p$ -harmonic. Moreover:

Th. 8 (Veronelli [8]) There exist Riemannian manifolds M, N, a convex function $H : N \to \mathbb{R}$ and a *p*-harmonic map $u : M \to N$, for some p > 2, such that $H \circ u : M \to \mathbb{R}$ is not *p*-subharmonic.

II.b. New vanishing for finite-energy *p*-harmonic maps

Th. 9 (P.-Veronelli [6]) Let $u : M \to N$ be a C^1 p-harmonic map, $p \ge 2$, with $|du| \in L^q$. Assume N complete with $Sec_N \le 0$ and M complete, $Ric_M \ge -a(x)$ with $\lambda_1(-\Delta - Ha(x)) \ge 0$ for some $H > q^2/4(q-1)$. Then $u \equiv \text{const.}$

Cor. 1 (P.-Veronelli [6]) Assume N cmpt with $Sec_N \leq 0$ and M complete with $Ric_M \geq -a(x)$ and $\lambda_1(-\Delta - Ha(x)) \geq 0$ for some $H > p^2/4(p-1)$. Then every $f: M \to N$ with $|df|^p \in L^1$ is homotopic to a constant.

Proof (idea). Again we start with a Bochner-type inequality

$$|du| \Delta |du| + a (x) |du|^2 \ge - \langle du, d\Delta u \rangle$$

where, since u is p-harmonic,

$$\Delta u = -(p-2) du \left(\nabla \log |du| \right).$$

However:

(a) The RHS is not so nice as in the case p = 2 (no sign, no refined Kato). We need manipulations in integral form and a direct use of the spectral assumption with suitably chosen test-functions.

(b) u is not smooth. We use of a version of the approximation procedure by Duzaar-Fuchs. Idea: C^1 -approximate u on $M_+ = \{|du| > 0\}$ by smooth u_k (**not** p-harmonic). Prove an L^p -Caccioppoli type inequality for $|du_k|$. The Caccioppoli contains an extra term that vanishes as $k \to +\infty$. Take limits to get a Caccioppoli for |du|. Duzaar-Fuchs teach us how to extend this inequality from M_+ to M.

II.c. New comparisons for finite-energy *p*-harmonic maps

We need to record some facts from **potential theory**. Let 1 .

Def. 2 M is p-parabolic if $\Delta_p u \geq 0$, $\sup_M u < +\infty \Rightarrow u \equiv \text{const.}$

There are a number of equivalent definitions of parabolicity. The first one is classical and involves the concept of **capacity**.

Th. 10 *M* is *p*-parabolic $\iff \forall K \subset \subset M$,

$$\operatorname{cap}_p(K) = \inf \int_M |\nabla \varphi|^p = 0,$$

the infimum being taken with respect to all $\varphi \in C_c^{\infty}$ such that $\varphi \geq 1$ on K.

Interpretation: every $K \subset M$ has a small mass from the viewpoint of p-harmonic functions.

The next result is known as the Kelvin-Nevanlinna-Royden criterion (KNR for short). It is due to T. Lyons and D. Sullivan (p = 2) and V. Gol'dshtein and M. Troyanov (p > 1).

Th. 11 *M* is *p*-parabolic
$$\iff \forall X \in L^{\frac{p}{p-1}}$$
 vector field s.t. $(\operatorname{div} X)_{-} \in L^{1}$,
 $\int_{M} \operatorname{div} X = 0.$

Interpretation: from the viewpoint of X, the "boundary" of M is negligible (or X has zero "boundary values"). Therefore, a global version of Stokes theorem holds. In a sense, the celebrated **Gaffney(-Karp) version** of Stokes theorem is in the same spirit: take $p = +\infty$ and $X \in L^1$. Here ∞ -parabolicity = geodesic completeness (thanks to Troyanov for this remark).

Proof (of \Rightarrow **).** Let $\Omega_j \subset \subset M$ be s.t. $\Omega_j \nearrow M$. Since $\operatorname{cap}_p(\Omega_1) = 0$, we can choose $0 \leq \varphi_j \in C_c^{\infty}(\Omega_j)$ s.t.

$$arphi_j = 1 ext{ on } \Omega_1, ext{ and } \left\|
abla arphi_j
ight\|_{L^p} o 0.$$

Apply Stokes theorem

$$\mathbf{0} = \int_{M} \operatorname{div} \left(X \varphi_{j} \right) = \int_{M} \varphi_{j} \operatorname{div} X + \int_{M} \left\langle X, \nabla \varphi_{j} \right\rangle.$$

To conclude, note that

$$\left| \int_{M} \left\langle X, \nabla \varphi_{j} \right\rangle \right| \leq \|X\|_{L^{\frac{p}{p-1}}} \|\nabla \varphi\|_{L^{p}} \to \mathbf{0}$$

and

$$\int_M \varphi_j \operatorname{div} X \to \int_M \operatorname{div} X.$$

Geometric conditions insuring p-parabolicity rely on volume growth properties.

Th. 12 Let (M, \langle, \rangle) be complete. Consider the following growth conditions:

(i) vol
$$(B_R)^{\frac{1}{p-1}} = O\left(R^{1+\frac{1}{p-1}}\log R\log^{(2)}R\cdots\log^{(k)}R\right)$$
, as $R \to +\infty$.

(ii)
$$\int^{+\infty} \frac{R^{\frac{1}{p-1}}}{\operatorname{vol}(B_R)^{\frac{1}{p-1}}} dR = +\infty.$$

(iii)
$$\int^{+\infty} \frac{dR}{\operatorname{area}(\partial B_R)^{\frac{1}{p-1}}} = +\infty.$$

Then, (i) $\Rightarrow_{\not=} (ii) \Rightarrow_{\not=} (iii) \Rightarrow_{\not=} M$ is p-parabolic.

Ex. 1 (recall Schoen-Yau Th.) vol $(M) < +\infty \Rightarrow p$ -parabolicity, $\forall p > 1$.

Here is our new global comparison for vector-valued maps.

Th. 13 (Holopainen-P.-Veronelli [1]) Let $u, v : M \to \mathbb{R}^n$ satisfy

$$\Delta_p u = \Delta_p v$$

and $|du| + |dv| \in L^p$, for some p > 2. If M is p-parabolic then $u - v \equiv \text{const.}$

Proof (idea). Set $u(x_0) = v(x_0) = 0 \in \mathbb{R}^m$ and $\forall A > 0$, let

$$X_A := \left[dh_A |_{(u-v)} \circ \left(|du|^{p-2} du - |dv|^{p-2} dv \right) \right]^{\sharp},$$

where $h_A(y) := \sqrt{A + |y|^2}$. Apply the KNR criterion to deduce

$$\int_M \operatorname{div} X_A = \mathbf{0}.$$

Take the limit as $A \to +\infty$ and conclude

$$\mathbf{0} = \int_M |du - dv|^p \,.$$

Note that \mathbb{R}^n is contractible, hence u, v are homotopic. Therefore if u, v are *p*-harmonic, the previous result follows from the next

Th. 14 (P.-Rigoli-Setti [4]) Let $u : M \to N$ be a C^{∞} *p*-harmonic map with $|du| \in L^p$, p > 2. Assume that M is *p*-parabolic and $Sec_N \leq 0$. If u is homotopic to a constant then $u \equiv \text{const.}$

Very recently, the complete analogue of Schoen-Yau comparison has been finally obtained.

Th. 15 (Veronelli [9]) Let $u, v : M \to N$ be C^1 , homotopic, *p*-harmonic maps with $|du|^p + |dv|^p \in L^1$. If M is *p*-parabolic and $Sec_N < 0$ then, either u = v or $u(M), v(M) \subset \Gamma$ geodesic of N.

III. Sobolev inequalities and *p*-Laplacian

Say that (M^m, \langle, \rangle) enjoys an $L^{p^*,p}$ -Sobolev inequality, $1/p - 1/p^* = 1/m$, if

 $\begin{aligned} \left\|\varphi\right\|_{L^{p^*}} &\leq S_p \left\|\nabla\varphi\right\|_{L^p}, \\ \forall \varphi \in C_c^{\infty} \text{ and for some constant } S_p > \mathbf{0}. \end{aligned}$

Rmk 3 If M is complete with vol $(B_R) \leq CR^m$ then, by density arguments, (Sl_p) extends to $\varphi \in L^{p^*}$ satisfying $|\nabla \varphi| \in L^p$.

In \mathbb{R}^m inequality (SI_p) holds and the explicit value of the optimal Sobolev constant K_p is known. In general, $K_p \leq S_p$ and the validity of (SI_p) (especially when combined with curvature conditions) introduces a number of constrains on the geometry and the topology of M. Let us consider some examples.

III.a. Rigidity under Sobolev inequalities

Th. 16 (Carron, Akutagawa) Assume the validity of (Sl_p) . Then $\exists \gamma > 0$ such that vol $(B_R) \ge \gamma \text{vol}(\mathbb{B}_R)$, where $\mathbb{B}_R \subset \mathbb{R}^m$.

Th. 17 (Anderson, Li) Assume the validity of (Sl_p) and $vol(B'_R) \lesssim vol(\mathbb{B}_R)$ where $B'_R \subset M'$, M'=the universal covering of M (e.g. $Ric_M \ge 0$). Then $|\pi_1(M)| < +\infty$.

Ex. 2 Discussed with Veronelli and Valtorta: in the above Th., $\pi_1(M)$ can achieve all possible cardinalities. Let $M = \mathbb{R}^3 \# \mathbb{L}^3$, with $\mathbb{L}^3 = \mathbb{S}^3 / \mathbb{Z}_k$ a lens space. Then, by Seifert-Van Kampen, $\pi_1(M) \simeq \mathbb{Z}_k$ and M' is a k-fold covering of M. Note that M satisfies the assumptions of Anderson-Li. Indeed, for some $K \subset M$, (a) $Ric_M = 0$ on $M \setminus K$ and (b) the Sobolev inequality (Sl_p) holds on $M \setminus K$. Since M' is a finite covering, $Ric_{M'} = 0$ off a compact set. Thus, volume comparison \Rightarrow vol $(B'_R) \lesssim$ vol (\mathbb{B}_R) . On the other hand $(b) \Rightarrow (Sl_p)$ on all of M by Carron (p = 2) and P.-Setti-Troyanov (p > 1).

Th. 18 (Ledoux, Xia) Let $Ric_M \ge 0$ and assume the validity of (Sl_p) . If S_p is sufficiently close to K_p then M is diffeomorphic to \mathbb{R}^m . If $S_p = K_p$ then M is isometric to \mathbb{R}^m .

Proof (P.-Veronelli [7]). Crucial point: use the curvature condition to improve Carron volume estimate. Recall that, in \mathbb{R}^m , the **equality** in (SI_p) is realized by the (radial) Bliss-Aubin-Talenti functions

$$\varphi_{\lambda}(|x|) = \frac{\beta(m,p) \lambda^{\frac{m-p}{p^2}}}{\left(\lambda + |x|^{\frac{p}{p-1}}\right)^{\frac{m}{p}-1}}.$$

which satisfy

$$\int_{\mathbb{R}^m} arphi_\lambda^{p^*} = 1$$
 ,

and obey the nonlinear Yamabe equation

$$\mathbb{R}^m \Delta_p \varphi_{\lambda} = -K_p^{-p} \varphi_{\lambda}^{p^*-1}.$$

Define $\widehat{\varphi}_{\lambda} : M \to \mathbb{R}$ as $\widehat{\varphi}_{\lambda}(x) := \varphi_{\lambda}(r(x))$ and consider the vector field

$$X_{\lambda} := \widehat{\varphi}_{\lambda} \, |\nabla \widehat{\varphi}_{\lambda}|^{p-2} \, \nabla \widehat{\varphi}_{\lambda}.$$

Then, by volume comparison, $X_{\lambda} \in L^{1}(M)$. Also, by Laplacian comparison,

$$\Delta_p \widehat{\varphi} \ge -K_p^{-p} \widehat{\varphi}_{\lambda}^{p^*-1}.$$

Therefore,

div
$$X_{\lambda} \geq \widehat{\varphi}_{\lambda} \Delta_p \widehat{\varphi}_{\lambda} \geq -K_p^{-p} \widehat{\varphi}_{\lambda}^{p^*} \in L^1(M)$$
.

Using the Karp version of Stokes theorem we deduce

$$\mathbf{0} = \int_M \operatorname{div} X_\lambda \ge \int_M |\nabla \widehat{\varphi}_\lambda|^p - K_p^{-p} \int_M \widehat{\varphi}_\lambda^{p^*},$$

that is

(*)
$$\frac{\int_M |\nabla \widehat{\varphi}_\lambda|^p}{\int_M \widehat{\varphi}_\lambda^{p^*}} \le K_p^{-p}.$$

On the other hand, by $\int_M \widehat{\varphi}_\lambda^{p^*} \leq 1$ and by definition of Sobolev constant S_p ,

(**)
$$\frac{\int_{M} |\nabla \widehat{\varphi}_{\lambda}|^{p}}{\int_{M} \widehat{\varphi}_{\lambda}^{p^{*}}} \geq \frac{\int_{M} |\nabla \widehat{\varphi}_{\lambda}|^{p}}{\left(\int_{M} \widehat{\varphi}_{\lambda}^{p^{*}}\right)^{\frac{p}{p^{*}}}} \geq S_{p}^{-p}$$

It follows from (*)+(**) that

$$(K_p/S_p)^m \leq \int_M \widehat{\varphi}_{\lambda}^{p^*} \leq 1 = \int_{\mathbb{R}^m} \varphi_{\lambda}^{p^*}.$$

With the aid of integration by parts in polar-coordinates, and Bishop-Gromov:

$$\operatorname{vol}\left(B_{R}
ight)\geq\left(K_{p}/S_{p}
ight)^{m}\operatorname{vol}\left(\mathbb{B}_{R}
ight)$$
, $orall R>0.$

Now, if $K_p = S_p$, by volume comparison vol $(B_R) =$ vol (\mathbb{B}_R) and we conclude $M = \mathbb{R}^m$ using the equality case in Bishop-Gromov.

Rmk 4 (P.-Veronelli [7]) A similar proof works if we replace $Ric_M \ge 0$ with the asymptotic condition $Ric_M \ge -G(r(x))$ where r(x) = d(x, o), $o \in M$ is a reference origin, and $G \ge 0$ satisfies

$$\int_0^{+\infty} tG(t) \, dt = b_0 < +\infty.$$

The corresponding rigidity (diffeomorphic rigidity) holds under the curvature requirement $Sec_M \ge -G(r(x))$ when b_0 is sufficiently close to 0.

Conj. 1 (Ledoux) Sharp volume estimate for the optimal Euclidean Sobolev constant holds without any curvature restriction. Namely:

M complete, (Sl_p) holds with $S_p = K_p \Rightarrow \text{vol}(B_R) \ge \text{vol}(\mathbb{B}_R)$.

III.b. Sobolev inequalities and topology at infinity

In the presence of the Sobolev inequality (SI_p) we are able to bulid a link between the analysis of *p*-harmonic functions and the topology at infinity of the underlying **complete**, **non-compact** manifold M.

Def. 3 An end E of M with respect to $\Omega \subset \subset M$ is any of the unbounded connected components of $M \setminus \Omega$. Say that M is connected at infinity if, for every smooth $\Omega \subset \subset M$, $M \setminus \Omega$ has exactly one end.

Ex. 3 M = universal covering of a cmpt manifold N with $\pi_1(N) = \mathbb{Z}^{k \ge 2}$. Then M is connected at infinity. Indeed, by Švarc-Milnor theory, M is quasiisometric to the Cayley graph \mathcal{G} of $\pi_1(N)$. The number of ends is a quasiisometry invariant+ \mathcal{G} connected at infinity $\Rightarrow M$ connected at infinity.

Ex. 4 $M = N \times \mathbb{R}$ with N cmpt is disconnected at infinity.

Ex. 5 $M = N \times \mathbb{R}^k$, with $k \ge 2$, is connected at infinity.

Ex. 6 (Cheeger-Gromoll) Assume $Ric_M \ge 0$ and $Ric_M(x) > 0$ for some $x \in M$. Then M is connected at infinity. Indeed, if $M \setminus \Omega$ has two unbounded components E_1, E_2 then M contains a line. Since $Ric_M \ge 0$ we have isometric splitting $M = N \times \mathbb{R}$. This violates the assumption $Ric_M(x) > 0$ somewhere.

In the presence of a general $L^{q,p}$ -Sobolev inequality the curvature assumption in Cheeger-Gromoll Ex. 6 can be considerably relaxed.

Th. 19 (P.-Setti-Troyanov [5]) Let (M^m, \langle, \rangle) be a complete manifold satisfying the Sobolev inequality

 $\|\varphi\|_{L^q} \leq S \, \|\nabla\varphi\|_{L^p}$,

for some S > 0 and $1/p - 1/q \le 1/m$. Assume that $Ric \ge -a(x)$ where $a(x) \ge 0$ is small in the spectral sense

 $\lambda_1\left(-\Delta - Ha\left(x\right)\right) \ge 0,$

for some $H > p^2/4 (p-1)$. Then, M is connected at infinity.

The proof inspires to harmonic function theory developed by P. Li, L.-F. Tam and collaborators. In case p = 2, versions of this result are due to P. Li and J. Wang, H.-D. Cao, Y. Shen, S. Zhu. See also [3]. It is done in three steps.

- (a) Sobolev inequality $(SI_p) \Rightarrow$ every end E has infinite volume and is "large" in the sense of potential theory, i.e., E is p-hyperbolic=not p-parabolic.
- (b) If M has two p-hyperbolic ends, construct a non-constant p-harmonic function $u \in C^1(M)$ satisfying $|\nabla u| \in L^p$.
- (c) Curvature assumption + corresponding vanishing result $\Rightarrow u \equiv \text{const.}$ (this has been already discussed)

(a) volume and potential theory of ends. Basic idea: since

 $\| \varphi \|_{L^q} \leq S \, \| \nabla \varphi \|_{L^p}$,

if we fix $K \subset \subset M$ and choose $\varphi = 1$ on K, then

$$\|\nabla\varphi\|_{L^p} \ge S^{-1} \operatorname{vol} (K)^{1/q}.$$

This means

$$cap_{p}(K) \geq S^{-1}vol(K)^{1/q} > 0$$

and the manifold is p-hyperbolic. Also, by Carron-Akutagawa volume estimates,

$$\operatorname{vol}(B_R) \geq CR^m \to +\infty.$$

All these considerations can be localized on each end.

Def. 4 Say that the end E of M is p-parabolic if its Riemannian double $\mathcal{D}(E)$ is p-parbolic as a manifold without boundary.

The key point to localize the above arguments on E is the next

Th. 20 (Carron, P.-Setti-Troyanov [5]) The $L^{q,p}$ Sobolev inequality holds off a compact set if and only if it holds (with a different constant) on all of M

(b) construction of the *p*-harmonic function

Let E_1 , E_2 ,..., E_k be the ends of M, $k \ge 2$. By (a) they are p-hyperbolic. Take an exhaustion $D_j \nearrow M$. For every j solve the Dirichlet problem

$$\left(\begin{array}{ccc} \Delta_p u_j = \mathbf{0} & \text{on } D_j \\ u_j = \mathbf{0} & \text{on } E_1 \cap \partial D_j \\ u_j = \mathbf{1} & \text{on } (M \backslash E_1) \cap \partial D_j \end{array} \right)$$

By the maximum principle $u_j \nearrow$ and, therefore, we can define

$$u\left(x\right) = \lim_{j} u_{j}\left(x\right).$$

Then:

1) u is p-harmonic by the Harnack principle.

2) Using the fact that there are at least two p-hyperbolic ends it can be shown that u is nonconstant.

3) Using capacitary arguments it follows $\|\nabla u_j\|_{L^p} \leq C$, $\forall j$. This implies $|\nabla u| \in L^p$.

This completes the proof of the Theorem.

References

- [1] S. Pigola, I. Holopainen, G. Veronelli, Global Comparison Principles for the p-Laplace Operator on Riemannian Manifolds. Potential Analysis. To appear. Preliminary version: http://wiki.helsinki.fi/display/mathstat/Reports.
- [2] S. Pigola, M. Rigoli, A.G. Setti, Vanishing theorems on Riemannian manifolds and geometric applications. J. Funct. Anal. 229 (2005), 424–461.
- [3] S. Pigola, M. Rigoli, A.G. Setti, Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique. Progress in Mathematics 266 (2008). Birkhäuser.

- [4] S. Pigola, M. Rigoli, A.G. Setti, Constancy of p-harmonic maps of finite q-energy into non-positively curved manifolds. Math. Z. 258 (2008), no. 2, 347–362.
- [5] S. Pigola, A.G. Setti, M. Troyanov, The topology at infinity of a manifold supporting an L^{q,p}-Sobolev inequality. Submitted. Preliminary version: arXiv:1007.1761v1.
- [6] S. Pigola, G. Veronelli, *On the homotopy class of maps with finite p-energy into non-positively curved manifolds.* Geom. Dedicata **143** (2009), 109–116.
- S. Pigola, G. Veronelli, *Sobolev inequalities and volume growth*. Proc. Amer. Math. Soc. **138** (2010), 4479–4486.

- [8] G. Veronelli, On p-harmonic maps and convex functions. Manuscripta Math.
 131 (2010), 537–546.
- [9] G. Veronelli, *A general comparison theorem for p-harmonic maps in homo-topy class.* Submitted. arXiv:1011.3703v1.