About the Lorentzian version of Nash's theorem on isometric embeddings

Miguel Sánchez

Universidad de Granada

Santiago de Compostela, December '10, in honour to Professor Peter Gilkey

Theorem

(Nash, Ann. Math.'56.) Any smooth Riemannian manifold (M, g) can be isometrically embedded in [an arbitrarily small open subset U of] \mathbb{R}^N , for some N.

Notes:

- Smooth: C^{∞} —but C^3 is enough
- Value of N: if $m = \dim(M)$, Nash's bound was N = (m+1)(3m(m+1)/2 + 4m)
- Günther's '89 bound: $\max \{2m + m(m+1)/2, m+5 + m(m+1)/2\}$ (optimal?, it can be lowered in many particular cases)

Theorem

(Nash, Ann. Math.'56.) Any smooth Riemannian manifold (M, g) can be isometrically embedded in [an arbitrarily small open subset U of] \mathbb{R}^N , for some N.

Notes:

- Smooth: C^{∞} —but C^3 is enough
- Value of N: if $m = \dim(M)$, Nash's bound was N = (m+1)(3m(m+1)/2 + 4m)
- Günther's '89 bound: $\max \{2m + m(m+1)/2, m+5 + m(m+1)/2\}$ (optimal?, it can be lowered in many particular cases)

We do not worry about these bounds but for the following:

Is a Lorentzian version available?

Independent simple arguments by Greene (Memoirs AMS'70) and Clarke (Proc. London'70) show:

Theorem

Any smooth manifold M endowed with a pseudo-metric (or, equivalently a possibly degenerate quadratic form) can be isometrically embedded in semi-Euclidean space \mathbb{R}^N_{ν} for sufficiently large dimension N and index ν .

(just by reducing the problem to the Riemannian one).

Independent simple arguments by Greene (Memoirs AMS'70) and Clarke (Proc. London'70) show:

Theorem

Any smooth manifold M endowed with a pseudo-metric (or, equivalently a possibly degenerate quadratic form) can be isometrically embedded in semi-Euclidean space \mathbb{R}^N_{ν} for sufficiently large dimension N and index ν .

(just by reducing the problem to the Riemannian one). However, the question is not so trivial if the index ν is not allowed to be arbitrary. That is, we focus in:

Which Lorentzian manifolds can be isometrically embedded in some \mathbb{L}^N ?

About this problem:

Our viewpoint will be global; locally such embeddings always exist (see for example JC Díaz Ramos & E García Río '04 about consequences for the curvature in Gilkey's book '01, further developed JC Díaz Ramos, E García Río, B. Fiedler, P. Gilkey '05).

- Our viewpoint will be global; locally such embeddings always exist (see for example JC Díaz Ramos & E García Río '04 about consequences for the curvature in Gilkey's book '01, further developed JC Díaz Ramos, E García Río, B. Fiedler, P. Gilkey '05).
- 2 Not all the Lorentzian manifolds (M,g) are isometrically embeddable in \mathbb{L}^N (consider some (M,g) with closed timelike curves)

- Our viewpoint will be global; locally such embeddings always exist (see for example JC Díaz Ramos & E García Río '04 about consequences for the curvature in Gilkey's book '01, further developed JC Díaz Ramos, E García Río, B. Fiedler, P. Gilkey '05).
- 2 Not all the Lorentzian manifolds (M,g) are isometrically embeddable in \mathbb{L}^N (consider some (M,g) with closed timelike curves)
- The most important class of Lorentzian manifolds (from the viewpoint of hyperbolic equations, General Relativity, etc.) are the globally hyperbolic spacetimes

- Our viewpoint will be global; locally such embeddings always exist (see for example JC Díaz Ramos & E García Río '04 about consequences for the curvature in Gilkey's book '01, further developed JC Díaz Ramos, E García Río, B. Fiedler, P. Gilkey '05).
- 2 Not all the Lorentzian manifolds (M,g) are isometrically embeddable in \mathbb{L}^N (consider some (M,g) with closed timelike curves)
- The most important class of Lorentzian manifolds (from the viewpoint of hyperbolic equations, General Relativity, etc.) are the globally hyperbolic spacetimes
- 4 Clarke '70 claimed that any globally hyperbolic spacetime can be isometrically embedded in \mathbb{L}^N .

- Our viewpoint will be global; locally such embeddings always exist (see for example JC Díaz Ramos & E García Río '04 about consequences for the curvature in Gilkey's book '01, further developed JC Díaz Ramos, E García Río, B. Fiedler, P. Gilkey '05).
- 2 Not all the Lorentzian manifolds (M,g) are isometrically embeddable in \mathbb{L}^N (consider some (M,g) with closed timelike curves)
- The most important class of Lorentzian manifolds (from the viewpoint of hyperbolic equations, General Relativity, etc.) are the globally hyperbolic spacetimes
- 4 Clarke '70 claimed that any globally hyperbolic spacetime can be isometrically embedded in \mathbb{L}^N .
- **5** However, his proof was affected by the so-called *folk problems* of causally-constructed functions.

Thus, our aim is to prove two results (MS & O. Müller, TAMS '11):

Thus, our aim is to prove two results (MS & O. Müller, TAMS '11):

Theorem

A Lorentzian manifold (M,g) is isometrically embeddable in some \mathbb{L}^N iff:

Thus, our aim is to prove two results (MS & O. Müller, TAMS '11):

Theorem

A Lorentzian manifold (M,g) is isometrically embeddable in some \mathbb{L}^N iff: it admits a steep temporal function τ (i.e. $g(\nabla \tau, \nabla \tau) \leq -1$).

by reducing the problem to Nash's Riemannian one, and:

Thus, our aim is to prove two results (MS & O. Müller, TAMS '11):

Theorem

A Lorentzian manifold (M,g) is isometrically embeddable in some \mathbb{L}^N iff: it admits a steep temporal function τ (i.e. $g(\nabla \tau, \nabla \tau) \leq -1$).

by reducing the problem to Nash's Riemannian one, and:

Theorem

Any globally hyperbolic s-t. admits a steep temporal function au

by using techniques which are not affected by the folk problems of smoothability. Moreover, τ will be *Cauchy*, recall:

Folk problems and structure of globally hyperbolic (M, g):

1 Cornerstone: ∃ a Cauchy time function (R. Geroch, JMP'70) ⇒ Topological splitting $M \cong_{top} \mathbb{R} \times S$ (with levels acausal Cauchy hypersurfaces)

Folk problems and structure of globally hyperbolic (M, g):

- **1** Cornerstone: ∃ a Cauchy time function (R. Geroch, JMP'70) ⇒ Topological splitting $M \cong_{top} \mathbb{R} \times S$ (with levels acausal Cauchy hypersurfaces)
- \exists a (smooth) spacelike Cauchy hyp (AN Bernal, MS CMP'03) \Longrightarrow Smooth splitting $M\cong_{\mathrm{smooth}} \mathbb{R} \times S$

Folk problems and structure of globally hyperbolic (M, g):

- **1** Cornerstone: \exists a Cauchy time function (R. Geroch, JMP'70) ⇒ Topological splitting $M \cong_{\text{top}} \mathbb{R} \times S$ (with levels acausal Cauchy hypersurfaces)
- \exists a (smooth) spacelike Cauchy hyp (AN Bernal, MS CMP'03) \Longrightarrow Smooth splitting $M\cong_{\mathrm{smooth}} \mathbb{R} \times S$
- \exists a Cauchy temporal function (AN Bernal, M.S, CMP'05) \Longrightarrow Orthogonal splitting $(M,g)\equiv (\mathbb{R}\times S, g=-\beta dt^2+g_t)$

Folk problems and structure of globally hyperbolic (M, g):

- 1 Cornerstone: \exists a Cauchy time function (R. Geroch, JMP'70) \Longrightarrow Topological splitting $M \cong_{\text{top}} \mathbb{R} \times S$ (with levels acausal Cauchy hypersurfaces)
- 2 \exists a (smooth) spacelike Cauchy hyp (AN Bernal, MS CMP'03) \Longrightarrow Smooth splitting $M \cong_{\mathrm{smooth}} \mathbb{R} \times S$
- 3 ∃ a Cauchy temporal function (AN Bernal, M.S, CMP'05) ⇒ Orthogonal splitting $(M,g) \equiv (\mathbb{R} \times S, g = -\beta dt^2 + g_t)$
- **4** ∃ a steep Cauchy temporal function (O. Müller, M.S, '09) ⇒ Orthogonal splitting with bounded lapse $(M,g) \equiv (\mathbb{R} \times S, g = -\beta dt^2 + g_t), \beta < \mathbf{1}$

Folk problems and structure of globally hyperbolic (M, g):

- **1** Cornerstone: \exists a Cauchy time function (R. Geroch, JMP'70) ⇒ Topological splitting $M \cong_{\text{top}} \mathbb{R} \times S$ (with levels acausal Cauchy hypersurfaces)
- \exists a (smooth) spacelike Cauchy hyp (AN Bernal, MS CMP'03) \Longrightarrow Smooth splitting $M\cong_{\mathrm{smooth}} \mathbb{R} \times S$
- 3 ∃ a Cauchy temporal function (AN Bernal, M.S, CMP'05) ⇒ Orthogonal splitting $(M,g) \equiv (\mathbb{R} \times S, g = -\beta dt^2 + g_t)$
- **4** ∃ a steep Cauchy temporal function (O. Müller, M.S, '09) ⇒ Orthogonal splitting with bounded lapse $(M,g) \equiv (\mathbb{R} \times S, g = -\beta dt^2 + g_t), \beta < \mathbf{1}$ → Isometric embedding in \mathbb{L}^N by means of a reduction

to Nash' theorem, and t with interest in its own right

Contents:

- Reduction to Nash Riemannian theorem
 - (a) Greene's result for arbitrary metrics
 - (b) Lorentzian preliminary conventions
 - (c) Characterization of embeddability in \mathbb{L}^N
 - (d) Consequences for conformal embeddings
- Background: causal volume functions and "folk problems"
 - (a) Future/past volume functions
 - (b) Relation with the causal ladder of spacetimes
 - (c) Geroch's topological construction
 - (d) Folk problems related to smoothability
- 3 Steep temporal functions on globally hyperbolic spacetimes

(a) Greene's result for arbitrary metrics

Result for pseudo-metrics (with an associated quadratic form with no restrictions: degenerate, signature-changing...)

(a) Greene's result for arbitrary metrics

Result for pseudo-metrics (with an associated quadratic form with no restrictions: degenerate, signature-changing...)

Theorem

(Greene '70). Assume that any Riemannian metric on $M=M^m$ admits an isometric embedding in \mathbb{R}^N . Then, any pseudo-metric g on M admits an isometric embedding ψ_g in $\mathbb{R}^{N+2m+1}_{2m+1}$.

(For M compact as well as isometric immersions, the dimension and index can be reduced in 1.)

Theorem

(Greene '70). Assume that any Riemannian metric on $M=M^m$ admits an isometric immersion in \mathbb{R}^N . Then, any pseudo-metric g on M admits an isometric embedding ψ_g in $\mathbb{R}^{N+2m+1}_{2m+1}$.

Proof. By Whitney theorem there exists a closed (proper) embedding $\psi:M\to\mathbb{R}^{2m+1}$ and by the claim below we can assume that [notation: g_0 natural metric in Euclidean space]

$$g_R := g + \psi^* g_0$$

is Riemannian.

Theorem

(Greene '70). Assume that any Riemannian metric on $M=M^m$ admits an isometric immersion in \mathbb{R}^N . Then, any pseudo-metric g on M admits an isometric embedding ψ_g in $\mathbb{R}^{N+2m+1}_{2m+1}$.

Proof. By Whitney theorem there exists a closed (proper) embedding $\psi:M\to\mathbb{R}^{2m+1}$ and by the claim below we can assume that [notation: g_0 natural metric in Euclidean space]

$$g_R := g + \psi^* g_0$$

is Riemannian. By assumption there exists an isometric embedding $\psi_R:(M,g_R)\to\mathbb{R}^N$ and the required one is

$$\psi_{g}(x) = (\psi(x), \psi_{R}(x)) \in \mathbb{R}^{2m+1}_{2m+1} \times \mathbb{R}^{N}.$$

Claim

Let $\phi: M \to \mathbb{R}^{N'}$ be a (smooth) proper embedding, and g be a pseudo-metric on M. Then, there exists a positive function $f: \mathbb{R}^{N'} \to \mathbb{R}$ such that the embedding $\phi_f := (f \circ \phi) \cdot \phi$ satisfies:

$$g_R := g + \phi_f^* g_0$$

is a Riemannian metric.

Claim

Let $\phi: M \to \mathbb{R}^{N'}$ be a (smooth) proper embedding, and g be a pseudo-metric on M. Then, there exists a positive function $f: \mathbb{R}^{N'} \to \mathbb{R}$ such that the embedding $\phi_f := (f \circ \phi) \cdot \phi$ satisfies:

$$g_R := g + \phi_f^* g_0$$

is a Riemannian metric.

Proof. Obvious if M is compact: choose f as a (big enough) constant c.

Otherwise, for each compact $K_r = \phi^{-1}(\overline{B_0(r)}), r = 1, 2, \ldots$ take the constant c_r corresponding to K_r , and choose f radial and monotone with $f|_{K_r \setminus K_r}|_1 \ge c_r$. \square

1. Reduction to Nash: (b) Lorentzian conventions

(b) Lorentzian preliminary conventions

- Causal character of a tangent vector $v \in T_pM$ in a Lorentzian manifold (-,+...,+) (analogously for curves, hypersurfaces):
 - v is causal when timelike g(v, v) < 0, or lightlike $g(v, v) = 0, v \neq 0$
 - Otherwise, spacelike: g(v, v) > 0, or v = 0.
- (M, g) spacetime: time-orientable (and time-oriented, when necessary) connected smooth Lorentzian n-manifold.
 (No restrictive: any Lorentzian manifold isometrically embeddable in L^N must be time-orientable).
 One can speak on future and past directed causal vectors.

1. Reduction to Nash: (b) Lorentzian conventions

- The (piecewise) smooth timelike (resp. causal) curves define the chronological ≪ (resp. causal ≤) relation.
- Future and past of points (analogously subsets)
 - Chronological fut. $I^+(p) = \{q \in M : p \ll q\}$ (future-directed timelike curve from p to q)
 - Causal future $J^+(p) = \{q \in M : p \le q\}$ (fut.-dir. causal curve from p to q, or p = q)
 - Analogously $I^-(p)$, $J^-(p)$.
 - For an open subset $U \subset M$ regarded as spacetime: $I^+(p, U), J^-(p, U)...$
 - $J(p,q) = J^{+}(p) \cap J^{-}(q) (J(p,S) = J^{+}(p) \cap J^{-}(S))$

1. Reduction to Nash: (b) Lorentzian conventions

■ Time-separation (or Lorentzian distance): $d: M \times M \rightarrow [0, +\infty]$

$$d\left(p,q\right) = \left\{ \begin{array}{l} 0, \text{ if } \mathcal{C}_{p,q} = \emptyset \\ \sup \left\{L\left(\alpha\right), \, \alpha \in \mathcal{C}_{p,q}\right\}, \text{ if } \mathcal{C}_{p,q} \neq \emptyset \end{array} \right.$$

 $C_{p,q}$ space of future-directed causal curves from p to q

- Temporal function: smooth function τ with $\nabla \tau$ timelike and past-directed
 - —in particular, it is a time-function: continuous function which increases on any future-directed causal curve

(c) Characterization of embeddability in \mathbb{L}^N

Theorem

For a Lorentzian manifold (M,g), it is equivalent:

- (i) (M,g) admits a isometric embedding in \mathbb{L}^N for some $N \in \mathbb{N}$.
- (ii) (M,g) (is a stably causal spacetime which) admits a steep temporal function τ $(g(\nabla \tau, \nabla \tau) \leq -1)$.

In this case, d is finite.

Lemma

- If $i: M \to \mathbb{L}^N$ is an isometric embedding, then:
- (a) the natural time coordinate $t=x^0$ of \mathbb{L}^N induces a steep temporal function on M, and
- (b) the time-separation d of (M,g) is finite-valued.

Lemma

- If $i: M \to \mathbb{L}^N$ is an isometric embedding, then:
- (a) the natural time coordinate $t=x^0$ of \mathbb{L}^N induces a steep temporal function on M, and
- (b) the time-separation d of (M,g) is finite-valued.

Proof. (a) $x^0 \circ i$ is clearly temporal, and it is steep because $1 \equiv |\nabla^0 x^0| (i(M)) \leq |\nabla(x^0 \circ i)|$ the latter as $\nabla(x^0 \circ i)_p$ is the projection of $\nabla^0 x^0_{i(p)}$ onto the tangent space $di(T_pM)$ (and its orthogonal $di(T_pM)^{\perp}$ in $T_{i(p)}\mathbb{L}^N$ is spacelike).

Lemma

- If $i: M \to \mathbb{L}^N$ is an isometric embedding, then:
- (a) the natural time coordinate $t=x^0$ of \mathbb{L}^N induces a steep temporal function on M, and
- (b) the time-separation d of (M,g) is finite-valued.

Proof. (a) $x^0 \circ i$ is clearly temporal, and it is steep because $1 \equiv |\nabla^0 x^0|(i(M)) \leq |\nabla(x^0 \circ i)|$ the latter as $\nabla(x^0 \circ i)_p$ is the projection of $\nabla^0 x_{i(p)}^0$ onto the tangent space $di(T_pM)$ (and its orthogonal $di(T_pM)^{\perp}$ in $T_{i(p)}\mathbb{L}^N$ is spacelike).

(b) The finiteness of d is consequence of the finiteness of the time-separation d_0 on \mathbb{L}^N and the inequality $d(p,q) \leq d_0(i(p),i(q))$ for all $p,q \in M$.

Theorem

For a Lorentzian manifold (M, g), it is equivalent:

- (i) (M,g) admits a isometric embedding in \mathbb{L}^N for some $N \in \mathbb{N}$.
- (ii) (M,g) (is a stably causal spacetime which) admits a steep temporal function τ $(g(\nabla \tau, \nabla \tau) \leq -1)$.

In this case, d is finite.

Proof. From the lemma , only (ii) \Rightarrow (i) needs to be proved.

Lemma

If (M,g) admits a temporal function τ then the metric g admits a decomposition

$$g = -\beta d\tau^2 + g_{\tau},$$

 $(g_{\tau_0}$: Riemannian metric on the slice $S_{\tau_0}=\tau^{-1}(\tau_0)$ varying locally smoothly with τ_0 –globally the topology of S_{τ_0} may change), where $\beta=|\nabla \tau|^{-2}$.

In particular, if τ is steep then $\beta \leq 1$.

Proof. Decomposition: restrict *g*.

Value of
$$\beta$$
: $d\tau(\nabla \tau) = g(\nabla \tau, \nabla \tau) = -\beta (d\tau(\nabla \tau))^2$. \Box

Proof of Th. (steep temporal function \Rightarrow embeddability in \mathbb{L}^N). Using the decomposition of previous lemma, the auxiliary Riemannian metric

$$g_R := (4 - \beta)d\tau^2 + g_\tau$$

admits a Nash isometric embedding

$$i_{\mathsf{nash}}: (M, g_R) \hookrightarrow \mathbb{R}^{N_0}$$

1. Reduction to Nash: (c) embeddability in \mathbb{L}^N

Proof of Th. (steep temporal function \Rightarrow embeddability in \mathbb{L}^N). Using the decomposition of previous lemma, the auxiliary Riemannian metric

$$g_R := (4 - \beta)d\tau^2 + g_\tau$$

admits a Nash isometric embedding

$$i_{\mathsf{nash}}: (M, g_R) \hookrightarrow \mathbb{R}^{N_0}$$

The required isometric embedding $i:(M,g)\hookrightarrow \mathbb{L}^{N_0+1}$ is just:

$$i(\tau, x) = (2\tau, i_{\mathsf{nash}}(\tau, x)).$$

1. Reduction to Nash: (c) embeddability in \mathbb{L}^N

In principle, this solves the problem of embeddability —embeddable spacetimes are a subclass of stably causal ones—but we have to check the existence of the steep τ

1. Reduction to Nash: (c) embeddability in \mathbb{L}^N

In principle, this solves the problem of embeddability —embeddable spacetimes are a subclass of stably causal ones—but we have to check the existence of the steep τ However, even this question is harmless for conformal embeddings.

- (d) Consequences for conformal embeddings
- (1) A Lorentzian manifold is a stably causal spacetime if and only if it admits a conformal embedding in some \mathbb{L}^N .

Proof. (1) Let τ be any temporal function. Then τ is temporal for any conformal metric, and steep for $g^* = \sqrt{|\nabla t|}g$ ($|\nabla^* \tau|^* \equiv 1$).

(d) Consequences for conformal embeddings

- (1) A Lorentzian manifold is a stably causal spacetime if and only if it admits a conformal embedding in some \mathbb{L}^N .
- (2) In this case, there is a representative of its conformal class whose time-separation (Lorentzian distance) function is finite-valued.

Proof. (2) For $g^* = \sqrt{|\nabla t|}g$ as above, (M, g^*) is isometrically embeddable, and, then, its time-separation d^* is finite.

(d) Consequences for conformal embeddings

- (1) A Lorentzian manifold is a stably causal spacetime if and only if it admits a conformal embedding in some \mathbb{L}^N .
- (2) In this case, there is a representative of its conformal class whose time-separation (Lorentzian distance) function is finite-valued.
- (3) A stably causal spacetime is conformal to a spacetime non-isometrically embeddable in \mathbb{L}^N if [and only if] it is not globally hyperbolic.

Proof. (3) Such spacetimes are conformal to a spacetime with infinite-valued d and, thus, non-isometrically embeddable. \square

Summing up, we will conclude:

(1) A Lorentzian manifold admits a conformal embedding in some \mathbb{L}^N iff it is a stably causal spacetime.

Summing up, we will conclude:

- (1) A Lorentzian manifold admits a conformal embedding in some \mathbb{L}^N iff it is a stably causal spacetime.
- (2) All the members of the conformal class of a Lorentzian manifold admit an isometric embedding in some \mathbb{L}^N iff it is a globally hyperbolic spacetime

Summing up, we will conclude:

- (1) A Lorentzian manifold admits a conformal embedding in some \mathbb{L}^N iff it is a stably causal spacetime.
- (2) All the members of the conformal class of a Lorentzian manifold admit an isometric embedding in some \mathbb{L}^N iff it is a globally hyperbolic spacetime

Remark. As a difference with the Riemannian case, there is a (very neat) obstruction to the existence of isometric and conformal embeddings.

(a) Future/past volume functions

Definition

Admissible Borel measure on M for Geroch-type construction:

- (U) > 0 if $U \neq \emptyset$ is open
- $m(\partial I^{\pm}(z)) = 0, \forall z \in M.$

The one associated to a Riemannian metric with finite volume suffices

(a) Future/past volume functions

Definition

Admissible Borel measure on M for Geroch-type construction:

- 2 m(U) > 0 if $U \neq \emptyset$ is open
- $m(\partial I^{\pm}(z)) = 0, \forall z \in M.$

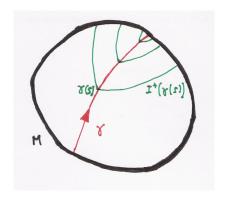
The one associated to a Riemannian metric with finite volume suffices

Definition

Associated past/future *volume* functions on *M*:

- $t^-: M \to \mathbb{R}, \ t^-(p) = m(I^-(p))$
- $t^+: M \to \mathbb{R}, \ t^+(p) = -m(I^+(p))$

Let $\gamma:(a,b)\to M$ fut.-pointing causal: $s\to t^\pm(\gamma(s))$ is non-decreasing.



Definition

Let $M \to \mathbb{R}$ be a (non-necessarily continuous) function on M:

■ Generalized time function: *t* strictly increasing on any future-directed causal curve.

Definition

Let $M \to \mathbb{R}$ be a (non-necessarily continuous) function on M:

- Generalized time function: *t* strictly increasing on any future-directed causal curve.
- Time function: continuous generalized time function.

Definition

Let $M \to \mathbb{R}$ be a (non-necessarily continuous) function on M:

- Generalized time function: *t* strictly increasing on any future-directed causal curve.
- Time function: continuous generalized time function.
- Temporal function: smooth time function with (necessarily past-directed) timelike gradient ∇t .

Definition

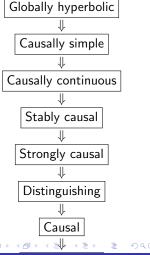
Let $M \to \mathbb{R}$ be a (non-necessarily continuous) function on M:

- Generalized time function: *t* strictly increasing on any future-directed causal curve.
- Time function: continuous generalized time function.
- Temporal function: smooth time function with (necessarily past-directed) timelike gradient ∇t .

Remark: in general, t^{\pm} are not generalized time functions (for ex.: when there exist closed causal curves). To understand this well...

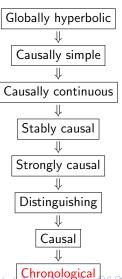
(b) Relation with the causal ladder of spacetimes

- To obtain spacetimes both, physically realistic and mathematical interesting, it is useful to impose conditions on the global causality of the spacetime.
- Such conditions are always conformally invariant
- This yields a causal ladder or hierarchy of spacetimes.
- The steps directly related to volume functions are:

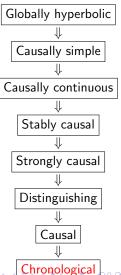


 A spacetime is chronological if it does not contain closed timelike curves

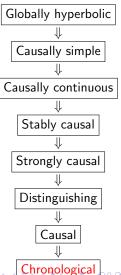
Miguel Sánchez



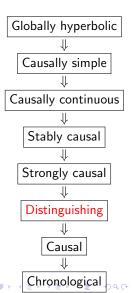
- A spacetime is chronological if it does not contain closed timelike curves
- **Characterization**: (M, g) is chronological $\iff t^-$ (resp. t^+) is strictly increasing on any future-directed **timelike** curve.



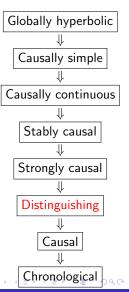
- A spacetime is chronological if it does not contain closed timelike curves
- **Characterization**: (M, g) is chronological $\iff t^-$ (resp. t^+) is strictly increasing on any future-directed **timelike** curve.



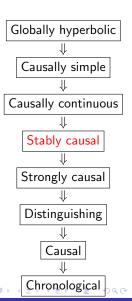
■ (M,g) is distinguishing if $p \neq q \Rightarrow I^{\pm}(p) \neq I^{\pm}(q)$



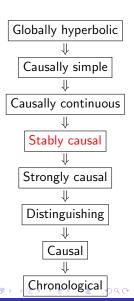
- (M,g) is distinguishing if $p \neq q \Rightarrow I^{\pm}(p) \neq I^{\pm}(q)$
- Characterization: (M,g) distinguishing $\iff t^-, t^+$ are strictly increasing on any future-directed causal curv, i.e. t^\pm generalized time functions (non-necessarily continuous).



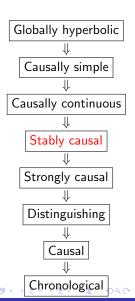
 A spacetime is stably causal if it remains causal under C⁰ perturbations of the metric (or if it remains causal when its cones are opened slightly)



- A spacetime is stably causal if it remains causal under C⁰ perturbations of the metric (or if it remains causal when its cones are opened slightly)
- Characterization: it admits a time (or a temporal) function (a continuous function which is strictly increasing on any future-directed causal curve).



- A spacetime is stably causal if it remains causal under C⁰ perturbations of the metric (or if it remains causal when its cones are opened slightly)
- Characterization: it admits a time (or a temporal) function (a continuous function which is strictly increasing on any future-directed causal curve).
- The existence of a time/temporal function seems a big gap with previous conditions...



Theorem

- (1) To be stably causal
- (2) To admit a time function t (continuous strictly increasing on any future-directed causal curve)
- (3) To admit a temporal function T (smooth with timelike gradient everywhere)

Theorem

- (1) To be stably causal
- (2) To admit a time function t (continuous strictly increasing on any future-directed causal curve)
- (3) To admit a temporal function T (smooth with timelike gradient everywhere)
 - (1) \Rightarrow (2) (Hawking) Even though volume functions are only generalized time functions, a true (continuous) time function can be obtained by integrating the t^- of close metrics $g_{\lambda}, \lambda \in [0,1]$ with wider lightcones: $t(p) = \int_0^1 t_{\lambda}^-(p) d\lambda$.

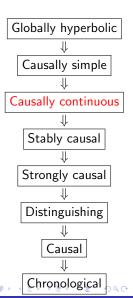
Theorem

- (1) To be stably causal
- (2) To admit a time function t (continuous strictly increasing on any future-directed causal curve)
- (3) To admit a temporal function T (smooth with timelike gradient everywhere)
 - (1) \Rightarrow (2) (Hawking) Even though volume functions are only generalized time functions, a true (continuous) time function can be obtained by integrating the t^- of close metrics $g_{\lambda}, \lambda \in [0,1]$ with wider lightcones: $t(p) = \int_0^1 t_{\lambda}^-(p) d\lambda$.
 - (2) \Rightarrow (3) One of the "folk questions" (Bernal, MS'05).

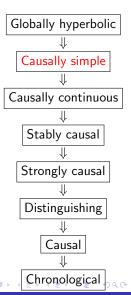
Theorem

- (1) To be stably causal
- (2) To admit a time function t (continuous strictly increasing on any future-directed causal curve)
- (3) To admit a temporal function T (smooth with timelike gradient everywhere)
 - (1) \Rightarrow (2) (Hawking) Even though volume functions are only generalized time functions, a true (continuous) time function can be obtained by integrating the t^- of close metrics $g_{\lambda}, \lambda \in [0,1]$ with wider lightcones: $t(p) = \int_0^1 t_{\lambda}^-(p) d\lambda$.
 - (2) \Rightarrow (3) One of the "folk questions" (Bernal, MS'05).
 - $(3) \Rightarrow (1)$ Not difficult

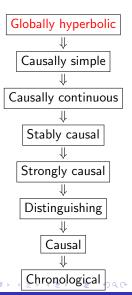
■ (M,g) is causally continuous when (M,g) is distinguishing and I[±](p) vary continuously with p Equivalently, if the volume functions t[±] are time functions



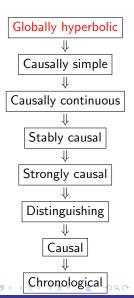
- (M,g) is causally continuous when (M,g) is distinguishing and $I^{\pm}(p)$ vary continuously with p Equivalently, if the volume functions t^{\pm} are time functions
- (M,g) is causally simple if it is causal and $J^{\pm}(p)$ is the closure of $I^{\pm}(p)$ Beware: d may reach the value ∞ and, so, not all these spacetimes are isometrically embeddable in \mathbb{L}^N



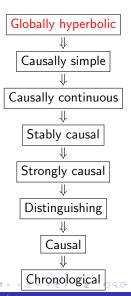
■ (M,g) is globally hyperbolic if it is causal and it does not contain naked singularities: $J(p,q) := J^+(p) \cap J^-(p)$ compact for all p,q.



- (M,g) is globally hyperbolic if it is causal and it does not contain naked singularities: $J(p,q) := J^+(p) \cap J^-(p)$ compact for all p,q.
- Natural strengthening of the causal requirements...



- (M,g) is globally hyperbolic if it is causal and it does not contain naked singularities: $J(p,q) := J^+(p) \cap J^-(p)$ compact for all p,q.
- Natural strengthening of the causal requirements...
- ... but implies spectacular properties for the spacetime!



Theorem

(Characterization of global hyperbolicity). For a spacetime (M, g), the following conditions are equivalent (Geroch'70):

$\mathsf{Theorem}$

(Characterization of global hyperbolicity). For a spacetime (M, g), the following conditions are equivalent (Geroch'70):

- (i) (M,g) is globally hyperbolic.
- (ii) (M,g) admits a Cauchy hypersurface, that is, a subset S which is crossed exactly once by any inextendible timelike curve (iii) (M,g) admits a Cauchy time function, i.e., an onto time function $t:M\to\mathbb{R}$ such that all its levels $S_{t_0}=t^{-1}(t_0)$, $t_0\in\mathbb{R}$, are (acausal) Cauchy hypersurfaces.

2. Background: (b) causal ladder

$\mathsf{Theorem}$

- (Characterization of global hyperbolicity). For a spacetime (M, g), the following conditions are equivalent (Geroch'70):
- (i) (M,g) is globally hyperbolic.
- (ii) (M,g) admits a Cauchy hypersurface, that is, a subset S which is crossed exactly once by any inextendible timelike curve (iii) (M,g) admits a Cauchy time function, i.e., an onto time function $t:M\to\mathbb{R}$ such that all its levels $S_{t_0}=t^{-1}(t_0)$, $t_0\in\mathbb{R}$, are (acausal) Cauchy hypersurfaces.
- plus "sharp smooth versions" (Bernal & MS '03,'05)

2. Background: (b) causal ladder

$\mathsf{Theorem}$

- (Characterization of global hyperbolicity). For a spacetime (M, g), the following conditions are equivalent (Geroch'70):
- (i) (M,g) is globally hyperbolic.
- (ii) (M,g) admits a Cauchy hypersurface, that is, a subset S which is crossed exactly once by any inextendible timelike curve
- (iii) (M,g) admits a Cauchy time function, i.e., an onto time function $t: M \to \mathbb{R}$ such that all its levels $S_{t_0} = t^{-1}(t_0)$, $t_0 \in \mathbb{R}$, are (acausal) Cauchy hypersurfaces.
- plus "sharp smooth versions" (Bernal & MS '03,'05)
- (iv) (M,g) admits a spacelike Cauchy hypersurface (a smooth hypersurface which is spacelike and Cauchy).
- (v) (M,g) admits a Cauchy temporal function, i.e., an onto temporal function $t:M\to\mathbb{R}$ such that all its levels $S_{t_0},t_0\in\mathbb{R}$, are Cauchy hypersurfaces $(\Rightarrow$ orthogonal splitting)

(c) Geroch's topological construction (JMP'70) (Existence of a Cauchy time function in any glob hyp spacetime in terms of volume functions)

(c) Geroch's topological construction (JMP'70)

(Existence of a Cauchy time function in any glob hyp spacetime in terms of volume functions)

Definition

Cauchy hypersurface: subset $S \subset M$ which is intersected exactly once by any inext. timelike curve ("the whole 'space' at an instant of time")

(c) Geroch's topological construction (JMP'70)

(Existence of a Cauchy time function in any glob hyp spacetime in terms of volume functions)

Definition

Cauchy hypersurface: subset $S \subset M$ which is intersected exactly once by any inext. timelike curve ("the whole 'space' at an instant of time")

Remarks:

■ Necessarily, S is then an embedded topological hypersurface

(c) Geroch's topological construction (JMP'70)

(Existence of a Cauchy time function in any glob hyp spacetime in terms of volume functions)

Definition

Cauchy hypersurface: subset $S \subset M$ which is intersected exactly once by any inext. timelike curve ("the whole 'space' at an instant of time")

Remarks:

- Necessarily, S is then an embedded topological hypersurface
- Cauchy hyp. yield an alternative definition of glob. hyp. as: ((M, g) is globally hyperbolic \Leftrightarrow it admits a Cauchy hypersurface)

(c) Geroch's topological construction (JMP'70)

(Existence of a Cauchy time function in any glob hyp spacetime in terms of volume functions)

Definition

Cauchy hypersurface: subset $S \subset M$ which is intersected exactly once by any inext. timelike curve ("the whole 'space' at an instant of time")

Remarks:

- Necessarily, *S* is then an *embedded topological hypersurface*
- Cauchy hyp. yield an alternative definition of glob. hyp. as: ((M, g)) is globally hyperbolic \Leftrightarrow it admits a Cauchy hypersurface)
- We will focus on one of the implications by Geroch:

Theorem

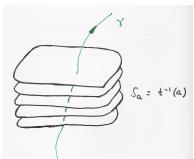
If M is glob. hyp., there exists a ("Cauchy time function")

 $t: M \to \mathbb{R}$ continuous and onto such that:

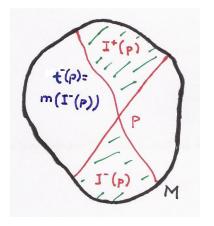
(1) t is strictly increasing on any future-directed causal curve (and then a time function).

(2) $S_a := t^{-1}(a)$ Cauchy hyp. $\forall a \in \mathbb{R}$.

(As a consequence, M is homeomorphic to $\mathbb{R} \times S$).

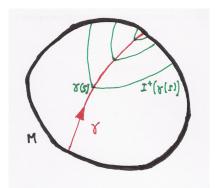


Idea of the proof. Consider the volume functions t^{\pm}



If $\gamma:(a,b)\to M$ is causal, fut.-directed and inextensible:

- **1** $s \to t^+(\gamma(s))$ (resp. $t^-(\gamma(s))$) is strictly increasing $[t^-, t^+]$ were time functions
- $\lim_{s\to b} t^+(\gamma(s)) = 0 = \lim_{s\to a} t^-(\gamma(s))$
- $\lim_{s\to a} (-t^+(\gamma(s))), \lim_{s\to b} t^-(\gamma(s)) > 0$

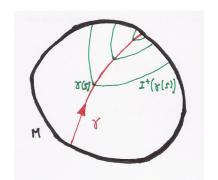


Required "Cauchy time" function:

$$t(z) = \log\left(-t^{-}(z)/t^{+}(z)\right)$$

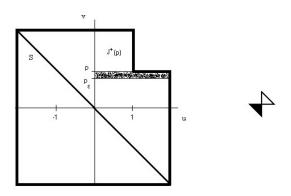
$$\lim_{s \to b} t(\gamma(s)) = \infty$$

 $\lim_{s \to a} t(\gamma(s)) = -\infty$ $\} \Longrightarrow t = \text{const.}$ is Cauchy



(d) Folk problems related to smoothability

Remark. From the constructive proof, t, t^{\pm} is not always smooth:



 $M \subset \mathbb{L}^2$, (null coord. u, v) Diagonal S Cauchy hyp, t^+

Given Geroch's result, folk questions for glob. hyp. spacetimes:

Given Geroch's result, folk questions for glob. hyp. spacetimes:

- (1) Find a **(smooth) spacelike** Cauchy hyp. (Sachs & Wu, Bulletin AMS '77)
 - Even more (Brunetti/Ruzzi): can any smooth spacelike compact submanifold with boundary be extended to a spacelike Cauchy hyp.?

Given Geroch's result, folk questions for glob. hyp. spacetimes:

- (1) Find a **(smooth) spacelike** Cauchy hyp. (Sachs & Wu, Bulletin AMS '77)
 - Even more (Brunetti/Ruzzi): can any smooth spacelike compact submanifold with boundary be extended to a spacelike Cauchy hyp.?
- (2) Find a Cauchy **temporal** function (i.e. additionally *t* smooth with past-pointing timelike gradient and Cauchy hyp, as levels)
 - → such a function would yield the structural orthogonal splitting

$$(M,g) \equiv (\mathbb{R} \times S, g = -\beta dt^2 + g_t),$$

Even more (Bär/Ginoux/Pfäffle): given a spacelike Cauchy hyp. S, find a Cauchy temporal function with one of the levels equal to S

(3) Prove that functions such as

$$f(x) = \int_{H^+(\tau(x), \sigma(x))} \mu$$

where μ is some (admissible) measure. Here, τ is a Cauchy temporal function which splits the spacetime, σ a sort of spacelike radial coordinate and

$$H^+(t,s) = J^+(\tau^{-1}(0)) \cap J^-(\tau^{-1}(t)) \cap \sigma^{-1}([0,s]).$$

■ A proof of the smoothness of such functions would complete Clarke's proof on embeddability and would have interest in its own right.

Difficulties to solve them with the strictly involved tools:

- Try to approximate Geroch's time function by smooth ones (Seifert '77): BUT even a smooth one may have degenerate Cauchy hypersurfaces.
- 2 Try to use a different admissible measure for the job (Dieckmann '88):
 BUT for the related problem of smoothability of time functions, no admissible measure can make t[±] be a time function (this happened iff the spacetime was causally continuous).

 The procedure developed in AN Bernal, MS. '03, '05 '06 yields a Cauchy temporal function (and a temporal function in the stably causal case, as well as solve the other refined problems)

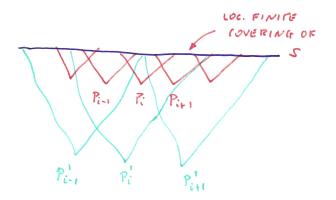
- The procedure developed in AN Bernal, MS. '03, '05 '06 yields a Cauchy temporal function (and a temporal function in the stably causal case, as well as solve the other refined problems)
- Next, we will construct a steep Cauchy temporal function by a modification of this procedure (Müller & MS, '11) This re-proves and simplifies widely (even though only in the globally hyperbolic case) the proof of the existence of a Cauchy temporal function.

- (a) Technical tools
- (1) We assume the existence of a Cauchy time function t as in Geroch's, each $S_a = t^{-1}(a)$ Cauchy.
- (2) Function

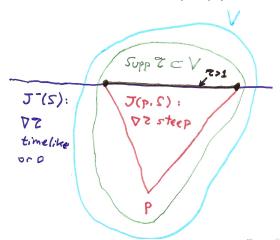
$$j_p: M \to \mathbb{R}, \quad j_p(q) = \exp(-1/d(p,q)^2).$$

Restricted to a convex neighborhood of p, this is a smoothed version of the Lorentzian distance to p (smooth even at 0).

(3) For any Cauchy S, a fat cone covering: sequence of pairs of points $p_i' \ll p_i, i \in \mathbb{N}$ such that both, $C' = \{I^+(p_i') : i \in \mathbb{N}\}$ and $C = \{I^+(p_i) : i \in \mathbb{N}\}$ yield a locally finite covering of S.



(4) For any Cauchy $S = S_a$, $p \in J^-(S)$ and $V \supset J(p, S)$, a smooth function τ steep temporal on J(p, S) with support in V (" τ steep on the forward cone J(p, S)").

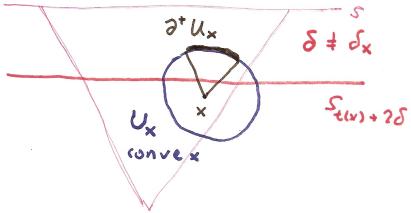


Proposition

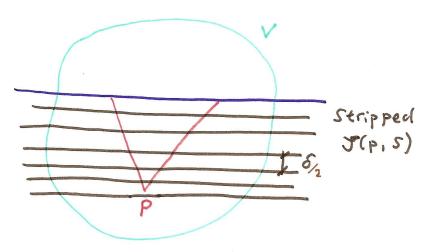
Let S be a Cauchy hypersurface, $p \in J^-(S)$. For all neighborhood V of J(p,S) there exists a smooth function $\tau \geq 0$ such that:

- (i) supp $\tau \subset V$
- (ii) $\tau > 1$ on $S \cap J^+(p)$.
- (iii) $\nabla \tau$ is timelike and past-directed in $\operatorname{Int}(\operatorname{Supp}\ (\tau) \cap J^{-}(S))$.
- (iv) $g(\nabla \tau, \nabla \tau) < -1$ on J(p, S).

Sketch of proof. Choose K compact, $J(p,S) \subset Int(K)$, $K \subset V$ and $\delta > 0$ s.t.: $\forall x \in K$, $\exists U_x \subset V$ convex with $\partial^+ U_x \subset J^+(S_{t(x)+2\delta})$ (where $\partial^+ U_x := \partial U_x \cap J^+(x)$).

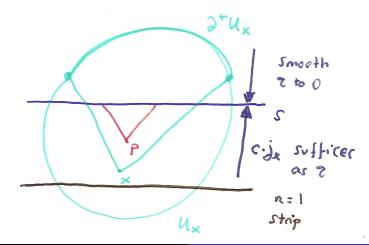


Slice J(p, S) in n strips, $a_0 < t(p) < a_1 < \cdots < a_n = a$ with $a_{i+1} - a_i < \delta/2$



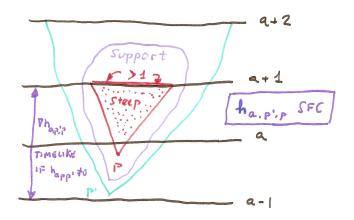
If n = 1 strip suffices (otherwise, careful induction!):

- $\tau = cj_x$ on $J^-(S)$ for c large and some close $x \ll p$
- τ is smoothed to 0 on $V \cap J^+(S)$.



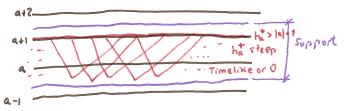
(b) Steps of the proof

- **Step 1**: for any $a \in \mathbb{R}$ and $p' \ll p$, $p, p' \in J(S_{a-1}, S_a)$, construct a *steep forward cone function* (SFC) $h_{a,p',p}^+ : M \to [0,\infty)$ which satisfies:
- 1 $supp(h_{a,p',p}^+) \subset J^+(p',S_{a+2}),$
- $h_{a,p',p}^+ > 1 \text{ on } S_{a+1} \cap J^+(p),$
- If $x \in J^-(S_{a+1})$ and $h^+_{a,p',p}(x) \neq 0$ then $\nabla h^+_{a,p',p}(x)$ is timelike and past-directed, and



(this is straightforward from the above constructed steep funtions on J(p, S)).

- **Step 2**: by using a fat cone covering $\{p'_i \ll p_i | i \in \mathbb{N}\}$ for $S = S_a$, adjust a locally finite sum of SFC functions to obtain some $h_a^+ > 0$ which satisfies:
- **1** $supp(h_a^+) \subset J(S_{a-1}, S_{a+2}),$
- 2 $h_a^+ > |a| + 1$ S_{a+1} , [this will ensure that the finally obtained temporal function is Cauchy]
- If $x \in J^-(S_{a+1})$ and $h_a^+(x) \neq 0$ then $\nabla h_a^+(x)$ is timelike and past-directed, and
- 4 $g(\nabla h_a^+, \nabla h_a^+) < -1 \text{ on } J(S_a, S_{a+1}).$



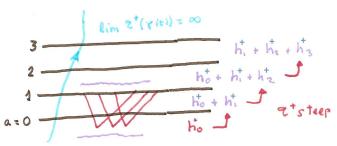
Step 3:

1 given $h_a^+ \geq 0$ ensure that h_{a+1}^+ can be chosen such that

$$g(\nabla(h_a^+ + h_{a+1}^+), \nabla(h_a^+ + h_{a+1}^+)) < -1$$
 on $J(S_{a+1}, S_{a+2})$ (1

So, $h_a^+ + h_{a+1}^+$ is steep on all $J(S_a, S_{a+2})$.

- 2 Inductively, construct a Cauchy steep function $\mathcal{T}^+ \geq 0$ on $J^+(S_0)$ with $\mathcal{T}^+(S_a) \geq a$ for $a=1,2,\ldots$
- 3 By reversing the time orientation and working on $J^-(S_0)$, obtain the Cauchy steep function $\mathcal{T} = \mathcal{T}^+ \mathcal{T}^-$ on all M.



By construction this function not only is smooth, temporal and steep, but also satisfies the abstract properties in Geroch's proof which ensure that the levels are Cauchy.