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0. Introduction

Theorem

(Nash, Ann. Math.’56.) Any smooth Riemannian manifold (M, g)
can be isometrically embedded in [an arbitrarily small open subset
U of] RN , for some N.

Notes:

Smooth: C∞ —but C 3 is enough

Value of N: if m =dim (M), Nash’s bound was
N = (m + 1)(3m(m + 1)/2 + 4m)

Günther’s ’89 bound:
max {2m + m(m + 1)/2,m + 5 + m(m + 1)/2}
(optimal?, it can be lowered in many particular cases)

We do not worry about these bounds but for the following:

Is a Lorentzian version available?
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0. Introduction

Independent simple arguments by Greene (Memoirs AMS’70) and
Clarke (Proc. London’70) show:

Theorem

Any smooth manifold M endowed with a pseudo-metric (or,
equivalently a possibly degenerate quadratic form) can be
isometrically embedded in semi-Euclidean space RN

ν for sufficiently
large dimension N and index ν.

(just by reducing the problem to the Riemannian one).

However, the question is not so trivial if the index ν is not allowed
to be arbitrary. That is, we focus in:

Which Lorentzian manifolds can be isometrically
embedded in some LN?
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0. Introduction

About this problem:

1 Our viewpoint will be global; locally such embeddings always
exist (see for example JC D́ıaz Ramos & E Garćıa Ŕıo ’04
about consequences for the curvature in Gilkey’s book ’01,
further developed JC D́ıaz Ramos, E Garćıa Ŕıo, B. Fiedler, P.
Gilkey ’05).

2 Not all the Lorentzian manifolds (M, g) are isometrically
embeddable in LN (consider some (M, g) with closed timelike
curves)

3 The most important class of Lorentzian manifolds (from the
viewpoint of hyperbolic equations, General Relativity, etc.) are
the globally hyperbolic spacetimes

4 Clarke ’70 claimed that any globally hyperbolic spacetime can
be isometrically embedded in LN .

5 However, his proof was affected by the so-called folk problems
of causally-constructed functions.
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0. Introduction

Thus, our aim is to prove two results (MS & O. Müller, TAMS
’11):

Theorem

A Lorentzian manifold (M, g) is isometrically embeddable in some
LN iff: it admits a steep temporal function τ
(i.e. g(∇τ,∇τ) ≤ −1).

by reducing the problem to Nash’s Riemannian one, and:

Theorem

Any globally hyperbolic s-t. admits a steep temporal function τ

by using techniques which are not affected by the folk problems of
smoothability. Moreover, τ will be Cauchy, recall:
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0. Introduction

Folk problems and structure of globally hyperbolic (M, g):

1 Cornerstone: ∃ a Cauchy time function (R. Geroch, JMP’70)
=⇒ Topological splitting M ∼=top R× S
(with levels acausal Cauchy hypersurfaces)

2 ∃ a (smooth) spacelike Cauchy hyp (AN Bernal, MS CMP’03)
=⇒ Smooth splitting M ∼=smooth R× S

3 ∃ a Cauchy temporal function (AN Bernal, M.S, CMP’05)
=⇒ Orthogonal splitting (M, g) ≡ (R× S , g = −βdt2 + gt)

4 ∃ a steep Cauchy temporal function (O. Müller, M.S, ’09)
=⇒ Orthogonal splitting with bounded lapse
(M, g) ≡ (R× S , g = −βdt2 + gt), β < 1
−→ Isometric embedding in LN by means of a reduction
to Nash’ theorem, and t with interest in its own right
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0. Introduction

Contents:

1 Reduction to Nash Riemannian theorem

(a) Greene’s result for arbitrary metrics
(b) Lorentzian preliminary conventions
(c) Characterization of embeddability in LN

(d) Consequences for conformal embeddings

2 Background: causal volume functions and “folk problems”

(a) Future/past volume functions
(b) Relation with the causal ladder of spacetimes
(c) Geroch’s topological construction
(d) Folk problems related to smoothability

3 Steep temporal functions on globally hyperbolic spacetimes
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1. Reduction to Nash: (a) Greene’s result

(a) Greene’s result for arbitrary metrics
Result for pseudo-metrics (with an associated quadratic form with
no restrictions: degenerate, signature-changing...)

Theorem

(Greene ’70). Assume that any Riemannian metric on M = Mm

admits an isometric embedding in RN . Then, any pseudo-metric g
on M admits an isometric embedding ψg in RN+2m+1

2m+1 .

(For M compact as well as isometric immersions, the dimension
and index can be reduced in 1.)

Miguel Sánchez Lorentzian version of Nash’s theorem



1. Reduction to Nash: (a) Greene’s result

(a) Greene’s result for arbitrary metrics
Result for pseudo-metrics (with an associated quadratic form with
no restrictions: degenerate, signature-changing...)

Theorem

(Greene ’70). Assume that any Riemannian metric on M = Mm

admits an isometric embedding in RN . Then, any pseudo-metric g
on M admits an isometric embedding ψg in RN+2m+1

2m+1 .

(For M compact as well as isometric immersions, the dimension
and index can be reduced in 1.)

Miguel Sánchez Lorentzian version of Nash’s theorem



1. Reduction to Nash: (a) Greene’s result

Theorem

(Greene ’70). Assume that any Riemannian metric on M = Mm

admits an isometric immersion in RN . Then, any pseudo-metric g
on M admits an isometric embedding ψg in RN+2m+1

2m+1 .

Proof. By Whitney theorem there exists a closed (proper)
embedding ψ : M → R2m+1 and by the claim below we can
assume that [notation: g0 natural metric in Euclidean space]

gR := g + ψ∗g0

is Riemannian.

By assumption there exists an isometric embedding
ψR : (M, gR)→ RN and the required one is

ψg (x) = (ψ(x), ψR(x)) ∈ R2m+1
2m+1 ×R

N .

�
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1. Reduction to Nash: (a) Greene’s result

Claim

Let φ : M → RN′ be a (smooth) proper embedding, and g be a
pseudo-metric on M. Then, there exists a positive function
f : RN′ → R such that the embedding φf := (f ◦ φ) · φ satisfies:

gR := g + φ∗f g0

is a Riemannian metric.

Proof. Obvious if M is compact: choose f as a (big enough)
constant c.
Otherwise, for each compact Kr = φ−1(B0(r)), r = 1, 2, . . . take
the constant cr corresponding to Kr , and choose f radial and
monotone with f |Kr\Kr−1

≥ cr . �
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1. Reduction to Nash: (b) Lorentzian conventions

(b) Lorentzian preliminary conventions

Causal character of a tangent vector v ∈ TpM in a Lorentzian
manifold (−,+ . . . ,+) (analogously for curves,
hypersurfaces):

v is causal when timelike g(v , v) < 0, or lightlike
g(v , v) = 0, v 6= 0
Otherwise, spacelike: g(v , v) > 0, or v = 0.

(M, g) spacetime: time-orientable (and time-oriented, when
necessary) connected smooth Lorentzian n−manifold.
(No restrictive: any Lorentzian manifold isometrically
embeddable in LN must be time-orientable).
One can speak on future and past directed causal vectors.
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1. Reduction to Nash: (b) Lorentzian conventions

The (piecewise) smooth timelike (resp. causal) curves define
the chronological � (resp. causal ≤) relation.

Future and past of points (analogously subsets)

Chronological fut. I +(p) = {q ∈ M : p � q} (future-directed
timelike curve from p to q)
Causal future J+(p) = {q ∈ M : p ≤ q}
(fut.-dir. causal curve from p to q, or p = q)
Analogously I−(p), J−(p).
For an open subset U ⊂ M regarded as spacetime:
I +(p,U), J−(p,U)...
J(p,q) = J+(p) ∩ J−(q) (J(p,S) = J+(p) ∩ J−(S))
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1. Reduction to Nash: (b) Lorentzian conventions

Time-separation (or Lorentzian distance):
d : M ×M → [0,+∞]

d (p, q) =

{
0, if Cp,q = ∅
sup {L (α) , α ∈ Cp,q} , if Cp,q 6= ∅

Cp,q space of future-directed causal curves from p to q }
Temporal function: smooth function τ with ∇τ timelike and
past-directed
—in particular, it is a time-function: continuous function
which increases on any future-directed causal curve
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1. Reduction to Nash: (c) embeddability in LN

(c) Characterization of embeddability in LN

Theorem

For a Lorentzian manifold (M, g), it is equivalent:

(i) (M, g) admits a isometric embedding in LN for some N ∈ N.

(ii) (M, g) (is a stably causal spacetime which) admits a steep
temporal function τ (g(∇τ,∇τ) ≤ −1).

In this case, d is finite.
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1. Reduction to Nash: (c) embeddability in LN

Lemma

If i : M → LN is an isometric embedding, then:
(a) the natural time coordinate t = x0 of LN induces a steep
temporal function on M, and
(b) the time-separation d of (M, g) is finite-valued.

Proof. (a) x0 ◦ i is clearly temporal, and it is steep because
1 ≡ |∇0x0|(i(M)) ≤ |∇(x0 ◦ i)| the latter as ∇(x0 ◦ i)p is the
projection of ∇0x0

i(p) onto the tangent space di(TpM) (and its

orthogonal di(TpM)⊥ in Ti(p)L
N is spacelike).

(b) The finiteness of d is consequence of the finiteness of the
time-separation d0 on LN and the inequality
d(p, q) ≤ d0(i(p), i(q)) for all p, q ∈ M.
�

Miguel Sánchez Lorentzian version of Nash’s theorem



1. Reduction to Nash: (c) embeddability in LN

Lemma

If i : M → LN is an isometric embedding, then:
(a) the natural time coordinate t = x0 of LN induces a steep
temporal function on M, and
(b) the time-separation d of (M, g) is finite-valued.

Proof. (a) x0 ◦ i is clearly temporal, and it is steep because
1 ≡ |∇0x0|(i(M)) ≤ |∇(x0 ◦ i)| the latter as ∇(x0 ◦ i)p is the
projection of ∇0x0

i(p) onto the tangent space di(TpM) (and its

orthogonal di(TpM)⊥ in Ti(p)L
N is spacelike).

(b) The finiteness of d is consequence of the finiteness of the
time-separation d0 on LN and the inequality
d(p, q) ≤ d0(i(p), i(q)) for all p, q ∈ M.
�

Miguel Sánchez Lorentzian version of Nash’s theorem



1. Reduction to Nash: (c) embeddability in LN

Lemma

If i : M → LN is an isometric embedding, then:
(a) the natural time coordinate t = x0 of LN induces a steep
temporal function on M, and
(b) the time-separation d of (M, g) is finite-valued.

Proof. (a) x0 ◦ i is clearly temporal, and it is steep because
1 ≡ |∇0x0|(i(M)) ≤ |∇(x0 ◦ i)| the latter as ∇(x0 ◦ i)p is the
projection of ∇0x0

i(p) onto the tangent space di(TpM) (and its

orthogonal di(TpM)⊥ in Ti(p)L
N is spacelike).

(b) The finiteness of d is consequence of the finiteness of the
time-separation d0 on LN and the inequality
d(p, q) ≤ d0(i(p), i(q)) for all p, q ∈ M.
�

Miguel Sánchez Lorentzian version of Nash’s theorem



1. Reduction to Nash: (c) embeddability in LN

Theorem

For a Lorentzian manifold (M, g), it is equivalent:

(i) (M, g) admits a isometric embedding in LN for some N ∈ N.

(ii) (M, g) (is a stably causal spacetime which) admits a steep
temporal function τ (g(∇τ,∇τ) ≤ −1).

In this case, d is finite.

Proof. From the lemma , only (ii) ⇒ (i) needs to be proved.
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1. Reduction to Nash: (c) embeddability in LN

Lemma

If (M, g) admits a temporal function τ then the metric g admits a
decomposition

g = −βdτ2 + gτ ,

(gτ0 : Riemannian metric on the slice Sτ0 = τ−1(τ0) varying locally
smoothly with τ0 –globally the topology of Sτ0 may change), where
β = |∇τ |−2.
In particular, if τ is steep then β ≤ 1.

Proof. Decomposition: restrict g .
Value of β: dτ(∇τ) = g(∇τ,∇τ) = −β (dτ(∇τ))2 . �
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1. Reduction to Nash: (c) embeddability in LN

Proof of Th. (steep temporal function ⇒ embeddability in LN).
Using the decomposition of previous lemma, the auxiliary
Riemannian metric

gR := (4− β)dτ2 + gτ

admits a Nash isometric embedding

inash : (M, gR) ↪→ RN0

The required isometric embedding i : (M, g) ↪→ LN0+1 is just:

i(τ, x) = (2τ, inash(τ, x)) .
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1. Reduction to Nash: (c) embeddability in LN

In principle, this solves the problem of embeddability
—embeddable spacetimes are a subclass of stably causal ones—
but we have to check the existence of the steep τ

However, even this question is harmless for conformal embeddings.
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1. Reduction to Nash: (d) conformal embeddings

(d) Consequences for conformal embeddings

(1) A Lorentzian manifold is a stably causal spacetime if and only
if it admits a conformal embedding in some LN .

Proof. (1) Let τ be any temporal function. Then τ is temporal for
any conformal metric, and steep for g∗ =

√
|∇t|g (|∇∗τ |∗ ≡ 1).
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1. Reduction to Nash: (d) conformal embeddings

(d) Consequences for conformal embeddings

(1) A Lorentzian manifold is a stably causal spacetime if and only
if it admits a conformal embedding in some LN .

(2) In this case, there is a representative of its conformal class
whose time-separation (Lorentzian distance) function is
finite-valued.

Proof. (2) For g∗ =
√
|∇t|g as above, (M, g∗) is isometrically

embeddable, and, then, its time-separation d∗ is finite.
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1. Reduction to Nash: (d) conformal embeddings

(d) Consequences for conformal embeddings

(1) A Lorentzian manifold is a stably causal spacetime if and only
if it admits a conformal embedding in some LN .

(2) In this case, there is a representative of its conformal class
whose time-separation (Lorentzian distance) function is
finite-valued.

(3) A stably causal spacetime is conformal to a spacetime
non-isometrically embeddable in LN if [and only if] it is not
globally hyperbolic .

Proof. (3) Such spacetimes are conformal to a spacetime with
infinite-valued d and, thus, non-isometrically embeddable. �
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1. Reduction to Nash: (d) conformal embeddings

Summing up, we will conclude:

(1) A Lorentzian manifold admits a conformal embedding in some
LN iff it is a stably causal spacetime.

(2) All the members of the conformal class of a Lorentzian
manifold admit an isometric embedding in some LN iff it is a
globally hyperbolic spacetime

Remark. As a difference with the Riemannian case, there is a (very
neat) obstruction to the existence of isometric and conformal
embeddings.
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2. Background: (a) volume functions

(a) Future/past volume functions

Definition

Admissible Borel measure on M for Geroch-type construction:

1 m(M) <∞,

2 m(U) > 0 if U 6= ∅ is open

3 m(∂I±(z)) = 0,∀z ∈ M.

The one associated to a Riemannian metric with finite volume
suffices

Definition

Associated past/future volume functions on M:

t− : M → R, t−(p) = m(I−(p))

t+ : M → R, t+(p) = −m(I +(p))
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2. Background: (a) volume functions

Let γ : (a, b)→ M fut.-pointing causal: s → t±(γ(s)) is
non-decreasing.
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2. Background: (a) volume functions

Definition

Let M → R be a (non-necessarily continuous) function on M:

Generalized time function: t strictly increasing on any
future-directed causal curve.

Time function: continuous generalized time function.

Temporal function: smooth time function with (necessarily
past-directed) timelike gradient ∇t.

Remark: in general, t± are not generalized time functions (for ex.:
when there exist closed causal curves). To understand this well...
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2. Background: (b) causal ladder

(b) Relation with the causal ladder of spacetimes

To obtain spacetimes both, physically
realistic and mathematical interesting,
it is useful to impose conditions on the
global causality of the spacetime.

Such conditions are always
conformally invariant

This yields a causal ladder or hierarchy
of spacetimes.

The steps directly related to volume
functions are:

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal
⇓

ChronologicalMiguel Sánchez Lorentzian version of Nash’s theorem



2. Background: (b) causal ladder

A spacetime is chronological if it does not
contain closed timelike curves

Characterization: (M, g) is chronological
⇐⇒ t− (resp. t+) is strictly increasing on
any future-directed timelike curve.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal
⇓

Chronological
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2. Background: (b) causal ladder

(M, g) is distinguishing if
p 6= q ⇒ I±(p) 6= I±(q)

Characterization: (M, g) distinguishing
⇐⇒ t−, t+ are strictly increasing on any
future-directed causal curv,
i.e. t± generalized time functions
(non-necessarily continuous).

Globally hyperbolic

⇓
Causally simple
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2. Background: (b) causal ladder

A spacetime is stably causal if it remains
causal under C 0 perturbations of the metric
(or if it remains causal when its cones are
opened slightly)

Characterization: it admits a time (or a
temporal) function (a continuous function
which is strictly increasing on any
future-directed causal curve).

The existence of a time/temporal function
seems a big gap with previous conditions...

Globally hyperbolic

⇓
Causally simple

⇓
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Stably causal

⇓
Strongly causal

⇓
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2. Background: (b) causal ladder

Theorem

For any (M, g), they are equivalent:

(1) To be stably causal

(2) To admit a time function t (continuous strictly increasing on
any future-directed causal curve)

(3) To admit a temporal function T (smooth with timelike
gradient everywhere)

(1) ⇒ (2) (Hawking) Even though volume functions are only
generalized time functions, a true (continuous) time function
can be obtained by integrating the t− of close metrics
gλ, λ ∈ [0, 1] with wider lightcones: t(p) =

∫ 1
0 t−λ (p)dλ.

(2) ⇒ (3) One of the “folk questions” (Bernal, MS’05).

(3) ⇒ (1) Not difficult
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2. Background: (b) causal ladder

(M, g) is causally continuous when (M, g) is
distinguishing and I±(p) vary continuously
with p
Equivalently, if the volume functions t±

are time functions

(M, g) is causally simple if it is causal and
J±(p) is the closure of I±(p)
Beware: d may reach the value ∞ and, so,
not all these spacetimes are isometrically
embeddable in  LN

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal
⇓

Chronological
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2. Background: (b) causal ladder

(M, g) is globally hyperbolic if it is causal
and it does not contain naked singularities:
J(p, q) := J+(p) ∩ J−(p) compact for all
p, q.

Natural strengthening of the causal
requirements...

... but implies spectacular properties for the
spacetime!

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal
⇓
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2. Background: (b) causal ladder

Theorem

(Characterization of global hyperbolicity). For a spacetime (M, g),
the following conditions are equivalent (Geroch’70):

(i) (M, g) is globally hyperbolic.
(ii) (M, g) admits a Cauchy hypersurface, that is, a subset S
which is crossed exactly once by any inextendible timelike curve
(iii) (M, g) admits a Cauchy time function, i.e., an onto time
function t : M → R such that all its levels St0 = t−1(t0), t0 ∈ R,
are (acausal) Cauchy hypersurfaces.
plus “sharp smooth versions” (Bernal & MS ’03,’05)
(iv) (M, g) admits a spacelike Cauchy hypersurface (a smooth
hypersurface which is spacelike and Cauchy).
(v) (M, g) admits a Cauchy temporal function, i.e., an onto
temporal function t : M → R such that all its levels St0 , t0 ∈ R,
are Cauchy hypersurfaces (⇒ orthogonal splitting)
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2. Background: (c) Geroch’s construction

(c) Geroch’s topological construction (JMP’70)
(Existence of a Cauchy time function in any glob hyp spacetime in
terms of volume functions)

Definition

Cauchy hypersurface: subset S ⊂ M which is intersected exactly
once by any inext. timelike curve (“the whole ‘space’ at an instant
of time”)

Remarks:

Necessarily, S is then an embedded topological hypersurface

Cauchy hyp. yield an alternative definition of glob. hyp. as:
((M, g) is globally hyperbolic ⇔ it admits a Cauchy
hypersurface)

We will focus on one of the implications by Geroch:
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2. Background: (c) Geroch’s construction

Theorem

If M is glob. hyp., there exists a (“Cauchy time function”)
t : M → R continuous and onto such that:
(1) t is strictly increasing on any future-directed causal curve (and
then a time function).
(2) Sa := t−1(a) Cauchy hyp. ∀a ∈ R.
(As a consequence, M is homeomorphic to R× S).
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2. Background: (c) Geroch’s construction

Idea of the proof. Consider the volume functions t±
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2. Background: (c) Geroch’s construction

If γ : (a, b)→ M is causal, fut.-directed and inextensible:

1 s → t+(γ(s)) (resp. t−(γ(s))) is strictly increasing
[t−, t+ were time functions]

2 lims→b t+(γ(s)) = 0 = lims→a t−(γ(s))

3 lims→a(−t+(γ(s))), lims→b t−(γ(s)) > 0
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2. Background: (c) Geroch’s construction

Required “Cauchy time” function:

t(z) = log
(
−t−(z)/t+(z)

)
lims→b t(γ(s)) =∞
lims→a t(γ(s)) = −∞

}
=⇒ t =const. is Cauchy
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2. Background: (d) folk problems

(d) Folk problems related to smoothability
Remark. From the constructive proof, t, t± is not always smooth:

M ⊂ L2, (null coord. u, v) Diagonal S Cauchy hyp, t+

non-smooth at p. Miguel Sánchez Lorentzian version of Nash’s theorem



2. Background: (d) folk problems

Given Geroch’s result, folk questions for glob. hyp. spacetimes:

(1) Find a (smooth) spacelike Cauchy hyp. (Sachs & Wu,
Bulletin AMS ’77)
� Even more (Brunetti/Ruzzi): can any smooth spacelike
compact submanifold with boundary be extended to a
spacelike Cauchy hyp.?

(2) Find a Cauchy temporal function (i.e. additionally t smooth
with past-pointing timelike gradient and Cauchy hyp, as
levels)
 such a function would yield the structural orthogonal
splitting
(M, g) ≡ (R× S , g = −βdt2 + gt),
� Even more (Bär/Ginoux/Pfäffle): given a spacelike Cauchy
hyp. S , find a Cauchy temporal function with one of the
levels equal to S
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hyp. S , find a Cauchy temporal function with one of the
levels equal to S
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2. Background: (d) folk problems

(3) Prove that functions such as

f (x) =

∫
H+(τ(x),σ(x))

µ

where µ is some (admissible) measure. Here, τ is a Cauchy
temporal function which splits the spacetime, σ a sort of
spacelike radial coordinate and

H+(t, s) = J+(τ−1(0)) ∩ J−(τ−1(t) ∩ σ−1([0, s])).

� A proof of the smoothness of such functions would
complete Clarke’s proof on embeddability and would have
interest in its own right.
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2. Background: (d) folk problems

Difficulties to solve them with the strictly involved tools:

1 Try to approximate Geroch’s time function by smooth ones
(Seifert ’77):
BUT even a smooth one may have degenerate Cauchy
hypersurfaces.

2 Try to use a different admissible measure for the job
(Dieckmann ’88):
BUT for the related problem of smoothability of time
functions, no admissible measure can make t± be a time
function (this happened iff the spacetime was causally
continuous).
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2. Background: (d) folk problems

The procedure developed in AN Bernal, MS. ’03, ’05 ’06 yields
a Cauchy temporal function (and a temporal function in the
stably causal case, as well as solve the other refined problems)

Next, we will construct a steep Cauchy temporal function by a
modification of this procedure (Müller & MS, ’11)
This re-proves and simplifies widely (even though only in the
globally hyperbolic case) the proof of the existence of a
Cauchy temporal function.
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3. Steep temporal functions on glob. hyp. s.-t.

(a) Technical tools

(1) We assume the existence of a Cauchy time function t as in
Geroch’s, each Sa = t−1(a) Cauchy.

(2) Function

jp : M → R, jp(q) = exp(−1/d(p, q)2).

Restricted to a convex neighborhood of p, this is a smoothed
version of the Lorentzian distance to p (smooth even at 0).
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3. Steep temporal functions on glob. hyp. s.-t.

(3) For any Cauchy S , a fat cone covering:
sequence of pairs of points p′i � pi , i ∈ N such that both,
C′ = {I +(p′i ) : i ∈ N} and C = {I +(pi ) : i ∈ N} yield a locally
finite covering of S .
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3. Steep temporal functions on glob. hyp. s.-t.

(4) For any Cauchy S = Sa, p ∈ J−(S) and V ⊃ J(p,S), a
smoooth function τ steep temporal on J(p, S) with support in
V (“τ steep on the forward cone J(p,S)”).
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3. Steep temporal functions on glob. hyp. s.-t.

Proposition

Let S be a Cauchy hypersurface, p ∈ J−(S). For all neighborhood
V of J(p, S) there exists a smooth function τ ≥ 0 such that:
(i) supp τ ⊂ V
(ii) τ > 1 on S ∩ J+(p).
(iii) ∇τ is timelike and past-directed in Int(Supp (τ) ∩ J−(S)).
(iv) g(∇τ,∇τ) < −1 on J(p,S).
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3. Steep temporal functions on glob. hyp. s.-t.

Sketch of proof. Choose K compact, J(p,S) ⊂ Int(K ), K ⊂ V
and δ > 0 s.t.: ∀x ∈ K , ∃Ux ⊂ V convex with
∂+Ux ⊂ J+(St(x)+2δ) (where ∂+Ux := ∂Ux ∩ J+(x)).
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3. Steep temporal functions on glob. hyp. s.-t.

Slice J(p, S) in n strips, a0 < t(p) < a1 < · · · < an = a with
ai+1 − ai < δ/2
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3. Steep temporal functions on glob. hyp. s.-t.

If n = 1 strip suffices (otherwise, careful induction!):

τ = cjx on J−(S) for c large and some close x � p
τ is smoothed to 0 on V ∩ J+(S).

For n > 1 apply and inductive process.
Miguel Sánchez Lorentzian version of Nash’s theorem



3. Steep temporal functions on glob. hyp. s.-t.

(b) Steps of the proof

Step 1: for any a ∈ R and p′ � p, p, p′ ∈ J(Sa−1,Sa),
construct a steep forward cone function (SFC)
h+
a,p′,p : M → [0,∞) which satisfies:

1 supp(h+
a,p′,p) ⊂ J+(p′, Sa+2),

2 h+
a,p′,p > 1 on Sa+1 ∩ J+(p),

3 If x ∈ J−(Sa+1) and h+
a,p′,p(x) 6= 0 then ∇h+

a,p′,p(x) is timelike
and past-directed, and

4 g(∇h+
a,p′,p,∇h+

a,p′,p) < −1 on J(p, Sa+1).
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3. Steep temporal functions on glob. hyp. s.-t.

(this is straightforward from the above constructed steep funtions
on J(p, S)).
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3. Steep temporal functions on glob. hyp. s.-t.

Step 2: by using a fat cone covering {p′i � pi |i ∈ N} for
S = Sa, adjust a locally finite sum of SFC functions to obtain
some h+

a > 0 which satisfies:

1 supp(h+
a ) ⊂ J(Sa−1,Sa+2),

2 h+
a > |a|+ 1 Sa+1, [this will ensure that the finally obtained

temporal function is Cauchy]
3 If x ∈ J−(Sa+1) and h+

a (x) 6= 0 then ∇h+
a (x) is timelike and

past-directed, and
4 g(∇h+

a ,∇h+
a ) < −1 on J(Sa,Sa+1).
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3. Steep temporal functions on glob. hyp. s.-t.

Step 3:
1 given h+

a ≥ 0 ensure that h+
a+1 can be chosen such that

g(∇(h+
a + h+

a+1),∇(h+
a + h+

a+1)) < −1 on J(Sa+1,Sa+2)
(1)

So, h+
a + h+

a+1 is steep on all J(Sa,Sa+2)).
2 Inductively, construct a Cauchy steep function T + ≥ 0 on

J+(S0) with T +(Sa) ≥ a for a = 1, 2, . . . .
3 By reversing the time orientation and working on J−(S0),

obtain the Cauchy steep function T = T + − T − on all M.
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3. Steep temporal functions on glob. hyp. s.-t.

By construction this function not only is smooth, temporal and
steep, but also satisfies the abstract properties in Geroch’s proof
which ensure that the levels are Cauchy.
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