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Gauss-Bonnet Theorem

Let M = (M, g) be a compact oriented surface. Then,

2πχ(M) =
∫
M

Kdvg ,

where χ(M), K and dvg are the Euler number, the Gaussian curvature and the

volume element of M, respectively.

Here, K = τ
2 , where τ is the scalar curvature of M.
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Let M = (M, g) be a compact oriented surface. Then,

2πχ(M) =
∫
M

Kdvg ,

where χ(M), K and dvg are the Euler number, the Gaussian curvature and the

volume element of M, respectively.

Here, K = τ
2 , where τ is the scalar curvature of M.

g(t) : any one-parameter deformation of the metric g

2πχ(M) =
1

2

∫
M

τ(t)dvg (t)

0 =
d

dt

∣∣∣
t=0

∫
M

τ(t)dvg (t) =
∫
M

(
− ρij +

τ

2
g ij
)
hijdvg

for any symmetric (0, 2)-tensor field hij = d
dt

∣∣
t=0

g(t)ij .

ρ =
τ

2
g

The equality holds for any surface.
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Question

Does the same phenomenon occur for any 2n(n = 2)-dimensional Rieman-

nian manifold?

Can we deduce a curvature identity from the generalized

Gauss-Bonnet theorem for a 2n-dimensional compact oriented

Riemannian manifold?

Is this identity valid for any 2n-dimensional Riemannian manifold?
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M = (M, g) : 2n-dim. compact oriented Riemannian manifold

h2k : Gauss-Bonnet curvature tensor determined by the complete

contraction of the Gauss-Kronecker curvature Rk of order 2k .

h2k =
1

(2k)!
c2kRk (1 5 k 5 n),

where c is the contraction map. Here, Rk is defined by the exterior

product of the curvature tensor R with itself k-times in the ring of

curvature structures on M.

[1] O. Kowalski, On the Gauss-Kronecker curvature tensors, Math. Ann. 203

(1973), 335–343.
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H2k(g) =
∫
M

h2kdvg
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H2k(g) =
∫
M

h2kdvg

H2(g) =
1

2

∫
M

τdvg (k = 1),

H4(g) =
∫
M

{
|R |2 − 4|ρ|2 + τ2

}
dvg (k = 2),
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∫
M

τdvg (k = 1),

H4(g) =
∫
M

{
|R |2 − 4|ρ|2 + τ2

}
dvg (k = 2),

It is well-known that the following equailty holds:

χ(M) = αH2n(g) (k = n)

for some constant α, which is called the generalized Gauss-Bonnet formula.
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∫
M

τdvg (k = 1),

H4(g) =
∫
M

{
|R |2 − 4|ρ|2 + τ2

}
dvg (k = 2),

It is well-known that the following equailty holds:

χ(M) = αH2n(g) (k = n)

for some constant α, which is called the generalized Gauss-Bonnet formula.

For example, if n = 2, the generalized Gauss-Bonnet formula is given by

χ(M) =
1

32π2
H4(g).
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Berger proved that the gradient of the functional H4 depends only on the curvature

tensor not including its covariant derivatives from the variational theoretic viewpoint

for 4-dimensional case.
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Berger proved that the gradient of the functional H4 depends only on the curvature

tensor not including its covariant derivatives from the variational theoretic viewpoint

for 4-dimensional case.

Berger, 1970

Let M = (M, g) be a 4-dimensional compact oriented Riemannian manifold. Then,

Ř − 2ρ̌− Lρ + τρ− 1

4
(|R |2 − 4|ρ|2 + τ2)g = 0

holds on M.

Here,

Ř : Řij = ∑
a,b,c

RabciR
abc

j , ρ̌ : ρ̌ij = ∑
a

ρai ρ
a
j , L : (Lρ)ij = 2 ∑

a,b

Riabj ρ
ab,

where R is the curvature tensor of M defined by R(X , Y )Z = [∇X ,∇Y ]Z −∇[X ,Y ]Z

(∇ : Levi-Civita connection) and ρ is the Ricci tensor of M.

[2] M. Berger, Quelques formules de variation pour une structure riemannienne,

Ann. Sci. École Norm. Sup. 4e Serie 3 (1970), 285–294.
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Labbi, 2008

Let M = (M, g) be a 2n-dimensional compact oriented Riemannian mani-

fold. Then,

h2ng − 1

(2n− 1)!
c2n−1Rn = 0.

[3] M.-L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var.

32 (2008), 175–189.
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Question
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Theorem A

Theorem A

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then,

Ř − 2ρ̌− Lρ + τρ− 1

4
(|R |2 − 4|ρ|2 + τ2)g = 0 (1)

holds on M.

Here,

Ř : Řij = ∑
a,b,c

RabciR
abc

j , ρ̌ : ρ̌ij = ∑
a

ρai ρ
a
j , L : (Lρ)ij = 2 ∑

a,b

Riabj ρ
ab.
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Proof of Theorem A

Let {ei} be an orthonormal basis of TpM. Then, we rewrite equation (1)

as

∑
a,b,c

RabciRabcj − 2 ∑
a

ρai ρaj − 2 ∑
a,b

Riabjρab

+ τρij −
1

4

(
|R |2 − 4|ρ|2 + τ2

)
δij = 0.

(2)

We choose a Chern basis of TpM at any point p ∈ M, namely, an orthonormal

basis of TpM satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.
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Step 1. Set i = j in (2), then

∑
a,b,c

Rabci
2 − 2 ∑

a

ρai
2 − 2 ∑

a,b

Riabi ρab

+ τρii −
1

4
|R |2 + |ρ|2 − τ2

4
= 0 (1 5 i 5 4).
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Step 1. Set i = j in (2), then

∑
a,b,c

Rabci
2 − 2 ∑

a

ρai
2 − 2 ∑

a,b

Riabi ρab

+ τρii −
1

4
|R |2 + |ρ|2 − τ2

4
= 0 (1 5 i 5 4).

Step 2. Set i 6= j in (2), then

∑
a,b,c

RabciRabcj − 2 ∑
a

ρai ρaj − 2 ∑
a,b

Riabjρab + τρij = 0 (1 5 i , j 5 4)
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Step 1. Set i = j in (2), then

∑
a,b,c

Rabci
2 − 2 ∑

a

ρai
2 − 2 ∑

a,b

Riabi ρab

+ τρii −
1

4
|R |2 + |ρ|2 − τ2

4
= 0 (1 5 i 5 4).

Step 2. Set i 6= j in (2), then

∑
a,b,c

RabciRabcj − 2 ∑
a

ρai ρaj − 2 ∑
a,b

Riabjρab + τρij = 0 (1 5 i , j 5 4)

Since this is a tensor equation, it is valid for any orthonormal basis. �
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From Theorem A, we can prove the following classical theorem [4].

Corollary

M ′ = (M ′, g ′) : 3-dimensional Riemannian manifold

{e ′a} : orthonormal basis of Tp′M
′ at any point p′ ∈ M ′

The following equality

R ′abcd =ρ′adδbc − ρ′acδbd + δadρ′bc − δacρ′bd −
τ

2
(δadδbc − δacδbd )

(1 5 a, b, c, d 5 3) holds.

sketch of proof. M = M ′ ×R

Setting i = j = 4 in (2), 1
4

(
|R ′|2 − 4|ρ′|2 + τ′2

)
= 0.

[4] H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), 384–411.
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Corollary

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then the

following curvature condition

W̌ =
1

4
|W |2g

holds on M. Here, W is the Weyl curvature tensor of M and

W̌ : W̌ij = WabciW
abc

j .
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Corollary

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then the

following curvature condition

W̌ =
1

4
|W |2g

holds on M. Here, W is the Weyl curvature tensor of M and

W̌ : W̌ij = WabciW
abc

j .

sketch of proof. We substitute the following equality

Rijkl = Wijkl −
1

2

(
ρilgjk − ρikgjl + gil ρjk − gikρjl

)
+

τ

6

(
gilgjk − gikgjl

)
into the equality (2) in Theorem A.
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Corollary

A 4-dimensional Einstein manifold satisfies the condition

Ř =
1

4
|R |2g . (3)

sketch of proof. ρij = τ
4 gij in (2).

However, the converse of the above is not necessarily valid.

Remark, Corollary can be also proved by making use of a Singer-Thorpe

basis of a 4-dimensional Einstein manifold.

[5] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces,

Global Analysis, (Papers in Honor of K. Kodaira) Princeton University Press,

Princeton, 1969, 355–365.
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An n-dimensional Einstein manifold is called super-Einstein if the following

curvature identity is satisfied

Ř =
1

n
|R |2g . (4)

Remark. The constancy of |R |2 follows from (4) automatically in dimensions

n > 4 (see [6], Lemma 3.3). For a 4-dimensional super-Einstein manifold, the

constancy of |R |2 is not automatically satisfied but it is usually required (see [7]).

[6] E. Boeckx and L. Vankecke, Unit Tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51

(126) (2001), 523–544.

[7] A. Gray and T. J. Willmore, Mean-value theorems for Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 92

(1982), 343–364.

We shall call a 4-dimensional Riemannian manifold satisfying the curvature

condition (4) (i.e., Ř = 1
4 |R |2g) weakly Einstein.
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By the definition, a weakly Einstein manifold is a generalization of a

4-dimensional Einstein manifold.

The following examples show that a weakly Einstein manifold is not

necessarily Einstein.

Example (1)

Let M be a Riemannian product manifold of 2-dim. Riemannian manifolds

M1(c) and M2(−c) of constant Gaussian curvatures c and −c (c 6= 0),

respectively. Then M satisfies (3) but it is not Einstein.
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Example (2)

Let g = spanR{e1, e2, e3, e4} be a 4-dimensional real Lie algebra equipped with

the following Lie bracket operation:

[e1, e2] = ae2, [e1, e3] = −ae3 − be4, [e1, e4] = be3 − ae4,

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

where a( 6= 0), b are constant. <, > on g is defined by < ei , ej >= δij . Let G be

a connected and simply connected solvable Lie group with the Lie algebra g of G

and g the G -invariant Riemannian metric on G determined by <, >. By direct

calculations, we have

R1212 = a2, R1313 = a2, R1414 = a2,

R2323 = −a2, R2424 = −a2, R3434 = a2,

and otherwise being zero up to sign. From these, G is not Einstein since the

Ricci curvature components satisfy ρ11 = −3a2 but ρ22 = a2.

However G satisfies (3), thus G is weakly Einstein.
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Proposition

Let M = (M, g) be a weakly Einstein manifold and {ei} an orthonormal Ricci

eigenbasis of TpM corresponding to the eigenvalues λi (1 5 i 5 4) at any point

p ∈ M. Then, the following equalities

R 2
1212 = R 2

3434 , R 2
1313 = R 2

2424 , R 2
1414 = R 2

2323

hold and the following cases (a) ∼ (d) never occur:

(a) λ1 = λ2 = λ3( 6= 0), λ4 = 0,

(b) λ1 = λ2 = λ4( 6= 0), λ3 = 0,

(c) λ1 = λ3 = λ4( 6= 0), λ2 = 0,

(d) λ2 = λ3 = λ4( 6= 0), λ1 = 0.

Especially, if M is Einstein, then the following holds:

R1212 = R3434, R1313 = R2424, R1414 = R2323.
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By Proposition, we see that the following examples are not weakly Einstein

manifolds.

Example (3)

M = M2(c1)×M2(c2), (c1, c2 : constant, c2
1 6= c2

2 )

Example (4)

M = M3(c)×R, (c( 6= 0) : constant)

Remark. The statement “any 4-dimensional Riemannian manifold satisfies

the curvature condition (3)” (in [8] p. 165) seems a printing mistake.

[8] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math.

Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
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Let M = (M, g) be a 4-dimensional Riemannian manifold.

We here introduce some special kinds of orthonormal basis of TpM at any point

p ∈ M and explain their intermediate relationships.

A Singer-Thorpe basis {ei} is an orthonormal basis satisfying the following

conditions

R1212 = R3434, R1313 = R2424, R1414 = R2323,

Rijjk = 0 (i 6= k).

Theorem (2.1)

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then, M is an Einstein

manifold if and only if M admits a Singer-Thorpe basis at each point of M.

[5] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global Analysis, (Papers in Honor of

K. Kodaira) Princeton University Press, Princeton, 1969, 355–365.
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A Chern basis {ei} is an orthonormal basis of TpM at any point p ∈ M satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.

A Ricci eigenbasis {ei} is an orthonormal basis of TpM corresponding to the

Ricci eigenvalues λi (1 5 i 5 4) at p, namely, satisfying the following condition

Qei = λiei (1 5 i 5 4).

Here, we assume that an orthonormal basis {ei} of TpM is a Ricci eigenbasis and

at the same time a Chren basis. Then, we have

R2434 = R2334 = R1434 = R1334 = R2324 = R1424 = 0.

Rijjk = 0 (i 6= k), (1 5 i , j , k 5 4).

Conversely, if (5) holds with respect to an orthonormal basis {ei}, then the basis

{ei} is a Ricci eigenbasis and Chern basis at the same time.
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Question. Can we always choose the orthonormal basis which is a Ricci

eigenbasis and at the same time a Chern basis?

The following example shows that an orthonormal Ricci eigenbasis is not

necessarily a Chern basis.

Example (5)

Let g = spanR{e1, e2, e3, e4} be a 4-dimensional real Lie algebra equipped

with the following Lie bracket operation:

[e1, e2] = 2e2, [e1, e3] = −e3, [e1, e4] = 2e3 − e4,

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

and <, > the inner product on g given by < ei , ej >= δij .
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Question. Can we always choose the orthonormal basis which is a Ricci

eigenbasis and at the same time a Chern basis?

The following example shows that an orthonormal Ricci eigenbasis is not

necessarily a Chern basis.

Example (5)

Let g = spanR{e1, e2, e3, e4} be a 4-dimensional real Lie algebra equipped

with the following Lie bracket operation:

[e1, e2] = 2e2, [e1, e3] = −e3, [e1, e4] = 2e3 − e4,

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

and <, > the inner product on g given by < ei , ej >= δij .
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Let G be a connected and simply connected solvable Lie group with the Lie

algebra g of G and g the G -invariant Riemannian metric on G determined

by <, >. Then, we have

R1212 = 4, R1414 = 4, R2323 = −2,

R2424 = −2, R1314 = −2, R2324 = 2,
(6)

and otherwise being zero up to sign. Then, the orthonormal basis {ei} is

a Ricci eigenbasis satisfying Qei = λiei (1 5 i 5 4), where λ1 = −8,

λ2 = 0, λ3 = 2, λ4 = −2. However, from (6), the basis {ei} does not

satisfy (5). This means that the basis {ei} is a Ricci eigenbasis but not a

Chern basis.
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Let M = (M, g) be a 4-dimensional Riemannian manifold and {ei} an

orthonormal basis of the tangent space TpM at a point p ∈ M. If the

basis {ei} satisfies

R 2
1212 = R 2

3434 , R 2
1313 = R 2

2424 , R 2
1414 = R 2

2323 (7)

and

Rijjk = 0 (i 6= k), (1 5 i , j , k 5 4) (8)

then we shall call the orthonormal basis a generalized Singer-Thorpe basis.
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The result of Singer and Thorpe [5] is well-known as a characterization of a

4-dimensional Einstein manifold. The following theorem is a generalization

of their result, which is a characterization of a weakly Einstein manifold.

Theorem (2.2)

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then,

M is a weakly Einstein manifold if and only if M admits a generalized

Singer-Thorpe basis at each point of M.
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M = (M, g) : a compact oriented weakly Einstein manifold.

Then, from Theorem (2.2), we can choose a generalized Singer-Thorpe

basis {ei} of TpM at any point p ∈ M compatible with the orientation of

M.

We set

α′1 = R1212, α′2 = R1313, α′3 = R1414,

α′′1 = R3434, α′′2 = R2424, α′′3 = R2323,

β1 = R1234, β2 = R1342, β3 = R1423.

(9)

Set a′ = (α′1, α′2, α′3), a′′ = (α′′1 , α′′2 , α′′3 ) and b = (β1, β2, β3) and denote

the canonical inner product by <, > on the 3-dimensional Euclidean space

R3.
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Set |x| =
√

< x, x > for any x ∈ R3. Then, |a′| = |a′′| by virtue of (7).

Now, we denote the Euler number and the first Pontrjagin number of M

by χ(M) and p1(M), respectively.

Then, from (9), applying the similar arguments as in [9], we have the

following equalities:

χ(M) =
1

4π2

∫
M
{< a′, a′′ > +|b|2}dvg

and

p1(M) =
1

2π2

∫
M

< a′ + a′′, b > dvg ,

where dvg is the volume element of M. Now, we set

a =
1

2
(a′ + a′′). (10)

[9] N. Hitchin, Compact four-diemensional Einstein manifolds, J. Differential

Geometry 9 (1974), 435–441.
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By taking account of (10),

χ(M) =
1

4π2

∫
M

{
2|a|2 − |a′|2 + |b|2

}
dvg ,

p1(M) =
1

2π2

∫
M

2 < a, b > dvg .

Then, we have the following:

2χ(M)± p1(M)

=
1

2π2

∫
M

{
|a|2 + |b|2 ± 2 < a, b > +|a|2 − |a′|2

}
dvg

=
1

2π2

∫
M

{
|a± b|2 + |a|2 − |a′|2

}
dvg

=
1

2π2

∫
M

{
|a|2 − |a′|2

}
dvg .
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Theorem (2.3)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the following

inequality holds on M:

2χ(M)± p1(M) = C , (11)

where C = 1
2π2

∫
M{|a|

2 − |a′|2}dvg 5 0.

Remark. Since p1(M) = 3σ(M) (σ(M) is the Hirzebruch signature of M), from

Theorem (2.3), the inequality (11) reduces to the Hitchin inequality [9]

2χ(M) = 3|σ(M)|, (12)

for the case where M is Einstein. Thus, (11) in Theorem (2.3) is regarded as the

generalization of the Hitchin inequality (12).
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Theorem (2.4)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the

following inequality holds on M:

2χ(M)± p1(M) = − 1

16π2

∫
M
|R |2dvg , (13)

where χ(M) and p1(M) are denoted the Euler number and the first

Pontrjagin number of M, respectively.

sketch of proof. In Theorem (2.3) the constant C satisfies the inequality

C = − 1
16π2

∫
M |R |

2dvg .
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The following example illustrates Theorems (2.3) and (2.4).

Example (6)

Let M1 and M2 be a unit 2-sphere and a compact oriented surface of genus m

(m = 2) with constant Gaussian curvature −1, respectively, and further, M be

the Riemannian product of M1 and M2, M = M1 ×M2. Then, M is a compact,

oriented weakly Einstein manifold which is a special case of Example 1. Then, by

taking account of the Künneth formula, the Gauss-Bonnet formula and the

formulas in [9], we have

χ(M) = 4(1−m), p1(M) = 0 (thus, σ(M) = 0),

Vol(M) = 16(m− 1)π2, C = 8(1−m).
(14)

Therefore, from (14), the equality signs of the inequalities (11) and (13) in

Theorems (2.3) and (2.4) hold for M respectively, but M does not satisfy the

Hitchin inequality (12).
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Let M be a 4-dimensional oriented smooth manifold and M = M(M) be

the space of all Riemannian metrics on M. We denote the squared

L2-norm functionals of the curvature tensor, the Ricci tensor and the

scalar curvature by A, B and C, respectively.

It is well-known that the Euler number χ(M) of a 4-dimensional compact,

oriented Riemannian manifold M = (M, g) is given by the following

generalized Gauss-Bonnet formula:

32π2χ(M) = A(g)− 4B(g) + C(g). (15)
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A metric g ∈M is A-critical if and only if g satisfies A(g) < +∞ and the

following equation

RabciR
abc

j + 2∇a∇aρij −∇j∇i τ − 2ρiaρ a
j + 2ρabRiabj −

1

4
|R |2gij = 0. (16)

A metric g ∈M is called B-critical if and only if g satisfies B(g) < +∞ and the

following equation

2ρabRiabj +
1

2
(4τ)gij +∇a∇aρij −∇j∇i τ −

1

2
|ρ|2gij = 0. (17)

A metric g ∈M is C-critical if and only if g satisfies C(g) < +∞ and the

following equation

τρij −∇j∇i τ + (4τ)gij −
1

4
τ2gij = 0. (18)
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Remark. In general, although critical Riemannian metrics were first defined on a

compact case, it is easy to generalize the definition when M is not compact by

considering variations of Riemannian metrics with compact support.

Remark. If g ∈M is A-critical, B-critical or C-critical then 4τ = 0.

Especially, if M is compact oriented and g is a critical metric of one of the

functionals A, B or C, the scalar curvature τ is constant since τ is a harmonic

function on M.

Theorem (2.5)

Let M = (M, g) be a 4-dimensional compact oriented Riemannain manifold. If

g ∈M is C-critical, then the scalar curvature τ vanishes everywhere on M or M

is Einstein.

[10] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer

Grenzgebiete (3), 10, Springer-Verlag, 1987.
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Lemma

If g ∈M satisfies A(g) < +∞ (B(g) < +∞, respectively), then B(g) < +∞

and C(g) < +∞ (C(g) < +∞, respectively).

Since the Euler number is the topological invariant for the case where M is

compact and oriented, from (15), if g is both B-critical and C-critical then g is

also A-critical. This is also valid for the case where M is not compact.

From (16)∼(18) and taking account of (1) and the above Lemma,

Theorem (2.6)

(1) If g ∈M with A(g) < +∞ is B-critical and C-critical, then g is A-critical.

(2) If g ∈M is A-critical and B-critical, then g is C-critical.

(3) If g ∈M is A-critical and C-critical, then g is B-critical.

[11] M. Berger, P. Gauduchon and E. Mazet, Le specte d’une varieté

Riemannianenne, Lecture Notes in Math., 194, Springer-Verlag, Berlin-New York,
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Denote the traceless Ricci tensor G of M by

G = ρ− τ

4
g . (19)

Lemma

Let M = (M, g) be a 4-dimensional Riemannian manifold with parallel

Ricci tensor. If G abRiabjG
ij = 0 everywhere on M, then M is Einstein or

locally a product of 2-dimensional Riemannian manifolds of constant

Gaussian curvatures c and −c (c 6= 0).
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Theorem (2.7)

Let g be a B-critical metric on a 4-dimensional smooth manifold M. If the

scalar curvature τ of g is non-positive constant and the square norm of

the Ricci tensor ρ of g is constant and the inequality G abRiabjG
ij 5 0

holds on M, then (M, g) is Einstein or locally a product of 2-dimensional

Riemannian manifolds of constant Gaussian curvatures c and −c (c 6= 0).

Theorem (2.8)

Let g be a B-critical metric on a 4-dimensional compact oriented manifold

M. If the scalar curvature τ of g is non-positive and the inequality

G abRiabjG
ij 5 0 holds on M then (M, g) is Einstein or locally a product of

2-dimensional Riemannian manifolds of constant Gaussian curvatures c

and −c (c 6= 0).
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Theorem (2.9)

Let g be an A-critical metric on a 4-dimensional smooth manifold M. If the

scalar curvature τ of g and the square norm of the Ricci tensor ρ of g are

constant and the inequality GabRiabjG
ij 5 0 holds on M, then (M, g) is Einstein

or locally a product of 2-dimensional Riemannian manifolds of constant Gaussian

curvatures c and −c (c 6= 0).

Theorem (2.10)

Let g be an A-critical metric on a 4-dimensional compact oriented manifold M.

If the inequality GabRiabjG
ij 5 0 holds on M then (M, g) is Einstein or locally a

product of 2-dimensional Riemannian manifolds of constant Gaussian curvatures

c and −c (c 6= 0).
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Remark. Ogiue and Tachibana proved that if the inequality

uabR iabjuij < 0 (at any point where u 6= 0) holds for any traceless

symmetric (0,2)-tensor field u = (uij ) on an n-dimensional compact

oriented Riemannian manifold (M, g) then M is a real homology n-sphere.

[12] K. Ogiue and S. Tachibana, Les variétés riemanniennes dont l’opérateur de

courbure restreint est positif sont des sphères d’homologie réelle, C. R. Acad. Sci.

Paris Sér. 289 (1979), A29–A30.
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Theorem (2.9) is related to the following result.

Theorem (2.11)

A complete locally homogeneous A-critical metric with finite volume on a

four-manifold is locally isometric to either an Einstein symmetric space or

the product of the standard two-sphere with constant curvature c and the

two-dimensional hyperbolic plane with curvature −c.

[13] Y. Kang, Locally homogeneous critical metrics on four-dimensional manifolds,

J. Korean Math. Soc. 44 (2007), 109–127.
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The weakly Einstein manifold in Example 1 is zero-scalar-curved conformally flat.

In general, a 4-dimensional zero-scalar-curved conformally flat manifold is weakly

Einstein. The following example is a special case of Example 1 whose metric is

A-critical.

Example (7)

Let S2 and H2 be a unit 2-sphere and a upper hyperbolic 2-plane with constant

Gaussian curvature −1, respectively. It is well-known that the group SL(2, R)

acts on H2 transitively as the automorphism group of the canonical Kähler

structure H2. Let M = (M, g) be the Riemannian product of S2 and Γ\H2,

where Γ is the Fuchsian group of the first kind.
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For example, if Γ is a modular group and Γ = SL(2, Z), where Z is the set of all

integers, then Γ\H2 is a non-compact Riemann surface which is contractible, and

further, Vol(Γ\H2)= π
3 . Therefore, M is non-compact and Vol(M, g) = 4

3π2,

χ(M) = 2, and hence A(g) = 8
3π2χ(M). On the other hand, let Γ′\H2 be

a compact Riemann surface with genus m(= 2) and (M ′, g ′) be the Riemannian

product of S2 and Γ′\H2. Then, A(g) = −32π2χ(M) holds for all m(= 2)

(Example 6.)

Remark. From Example 7, we see that the following statement is wrong:

4.82 Proposition (ii) conformally flat metrics with zero scalar curvature give an

absolute minimum for A; this minimum is −8π2χ(M) ([10] p. 136).

[10] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer

Grenzgebiete (3), 10, Springer-Verlag, 1987.
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Question

Does there exist a (not conformally flat) half-conformally flat

non-Einstein, weakly Einstein manifold with zero-scalar-curvature?
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Question

Does there exist a (not conformally flat) half-conformally flat

non-Einstein, weakly Einstein manifold with zero-scalar-curvature?

Question

Classify simply connected homogeneous weakly Einstein manifolds.
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Question

Does the same phenomenon occur for any 2n(n = 2)-dimensional Rieman-

nian manifold?

Can we deduce a curvature identity from the generalized

Gauss-Bonnet theorem for a 2n-dimensional compact oriented

Riemannian manifold?

Is this identity valid for any 2n-dimensional Riemannian manifold?
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Theorem B

Theorem

M = (M, g) : an n-dimensional Riemannian manifold

Sn = (Sn, g ′) ⊂ En+1 : an round unit n-sphere

Then, for each fixed point p ∈ M

∃ a Riemannian metric g̃ on Sn

∃ neighborhoods U of p

∃ V of the north pole of Sn

such that (V , g̃) u
isometry

(U, g).
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From Theorem B,

Corollary

A curvature identity which holds on any compact Riemannian manifolds is

also valid without compactness as it is.

Corollary ([3])

Let M = (M, g) be any 2n-dimensional Riemannian manifold. Then,

h2ng − 1

(2n− 1)!
c2n−1Rn = 0.

[3] M.-L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var.

32 (2008), 175–189.
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Thank you for your attention!
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