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Outline

@ Introduction

@ Motivation

Kouei Sekigawa (Niigata University) Curvature identity and its applications December 13-17, 2010



Gauss-Bonnet Theorem
Let M = (M, g) be a compact oriented surface. Then,

2 (M) = /M Kdvg.

where x(M), K and dvg are the Euler number, the Gaussian curvature and the

volume element of M, respectively.
Here, K = % where T is the scalar curvature of M.
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Gauss-Bonnet Theorem

Let M = (M, g) be a compact oriented surface. Then,

2 (M) = /M Kdvg.

where x(M), K and dvg are the Euler number, the Gaussian curvature and the
volume element of M, respectively.
Here, K = % where T is the scalar curvature of M.

g(t) : any one-parameter deformation of the metric g
1
2nx(M) = 5 /M T(t)dvg(y)
d

I
0= a‘t:o /M (Vg = /M (_PU + Egu)hijdvg

for any symmetric (0, 2)-tensor field h;; = %‘tzog(t),-j.
T
p=58

The equality holds for any surface.
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Does the same phenomenon occur for any 2n(n = 2)-dimensional Rieman-
nian manifold?

@ Can we deduce a curvature identity from the generalized
Gauss-Bonnet theorem for a 2n-dimensional compact oriented

Riemannian manifold?

@ Is this identity valid for any 2n-dimensional Riemannian manifold?
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M = (M, g) : 2n-dim. compact oriented Riemannian manifold
ho : Gauss-Bonnet curvature tensor determined by the complete

contraction of the Gauss-Kronecker curvature R¥ of order 2k.

— 1 2k pk <
h2k—(2k)!c R (1:/(

A

n),

where c is the contraction map. Here, R¥ is defined by the exterior
product of the curvature tensor R with itself k-times in the ring of
curvature structures on M.

@ [1] O. Kowalski, On the Gauss-Kronecker curvature tensors, Math. Ann. 203
(1973), 335-343.
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Hai(g) = /M hokdvg
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Halg) = [ {IRE—4lpP+72}dy (k=2),
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Halg) = [ {IRE—4lpP+72}dy (k=2),

It is well-known that the following equailty holds:

X(M) = aHzn(g) (k= n)

for some constant &, which is called the generalized Gauss-Bonnet formula.
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Halg) = [ {IRE—4lpP+72}dy (k=2),

It is well-known that the following equailty holds:

X(M) = aHzn(g) (k= n)

for some constant &, which is called the generalized Gauss-Bonnet formula.

For example, if n = 2, the generalized Gauss-Bonnet formula is given by

X(M) = 2 Ma(s).
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Berger proved that the gradient of the functional H4 depends only on the curvature
tensor not including its covariant derivatives from the variational theoretic viewpoint

for 4-dimensional case.
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Berger proved that the gradient of the functional H4 depends only on the curvature

tensor not including its covariant derivatives from the variational theoretic viewpoint

for 4-dimensional case.

Berger, 1970

Let M = (M, g) be a 4-dimensional compact oriented Riemannian manifold. Then,
L 1
R—2p—Lp+7p— (IR —4lp]* + *)g =0

holds on M.

Here,

R:Rj= Y RaciR® p:05=Y paie% L:(Lp)j=2) Riapjp™,
a a,b

a,b,c

where R is the curvature tensor of M defined by R(X,Y)Z = [Vx,Vy]Z =V x y)Z

(V : Levi-Civita connection) and p is the Ricci tensor of M.

ﬁ [2] M. Berger, Quelques formules de variation pour une structure riemannienne,

Ann. Sci. Ecole Norm. Sup. 4¢ Serie 3 (1970), 285-294.
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Labbi, 2008

Let M = (M, g) be a 2n-dimensional compact oriented Riemannian mani-

fold. Then, )

2n—1 pn
= _2n-lpn g,
(2n—1)1° 0

h2ng -

ﬁ [3] M.-L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var.
32 (2008), 175-189.
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Does the same phenomenon occur for any 2n(n = 2)-dimensional Rieman-
nian manifold?

@ Can we deduce a curvature identity from the generalized
Gauss-Bonnet theorem for a 2n-dimensional compact oriented

Riemannian manifold?

@ Is this identity valid for any 2n-dimensional Riemannian manifold?
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Outline

© On a 4-dimensional Riemannian manifold

@ Theorem A
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Theorem A

Theorem A

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then,

. 1
R—2p—Lp+7p— (IR~ 4lp|* +7%)g =0 1

holds on M.

Here,

R:Rj= Y RapciR?® p:pi =Y pair% L:(Lp)j =2 Riapjp®
a a,b
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Proof of Theorem A

Let {e;} be an orthonormal basis of T,M. Then, we rewrite equation (1)

as

Y RabciRabej —2)_ Paifaj — 2 ) _ RiabjPab
a,b,c a a,b

(2)
1
+70;5 = 7 (IRI> = 4lp* + 7%)8; = 0.
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Proof of Theorem A

Let {e;} be an orthonormal basis of T,M. Then, we rewrite equation (1)

as

Y RabciRabej —2)_ Paifaj — 2 ) _ RiabjPab
a,b,c a a,b

(2)
1
+70;5 = 7 (IRI> = 4lp* + 7%)8; = 0.

We choose a Chern basis of T,M at any point p € M, namely, an orthonormal
basis of T, M satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.
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Step 1. Set i = in (2), then

Z Rabci2 - 2Zpai2 -2 Z Riabipab
a a,b

a,b,c
T2

4

1
+TPII_Z|R|2+|P’2_ =0

Kouei Sekigawa (Niigata University) Curvature identity and its applications

1<i<a).

December 13-17, 2010



Step 1. Set i = in (2), then

Z Rabci2 - 2Zpai2 -2 Z Riabipab
a a,b

a,b,c
1,5 , T2 :
+Tpii_Z|R| + |pl —7 =0 (1=iz4).

Step 2. Set i # j in (2), then

Y RabciRabej =2 ) paifaj —2)_ Riabjpar + Tpj =0 (1 =4,j < 4)
a

a,b,c a,b
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Step 1. Set i = in (2), then

Z Rabci2 - 2Zpai2 -2 Z Riabipab
a a,b

a,b,c
T2

1
+1pi = L IRI> + |ol* =
Step 2. Set i # j in (2), then

Y RabciRabej =2 ) paifaj —2)_ Riabjpar + Tpj =0 (1 =4,j < 4)
a,b,c a a,b

Since this is a tensor equation, it is valid for any orthonormal basis.
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From Theorem A, we can prove the following classical theorem [4].

Corollary

M' = (M', g'") : 3-dimensional Riemannian manifold
{e}} : orthonormal basis of Ty M’ at any point p' € M’
The following equality

T
sbcd =PadObe — PacObd + adPbec — acPby — 5 (Jaddbe — dacObd)

(1< a,b,c,d=3) holds.

& [4] H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), 384-411.

Kouei Sekigawa (Niigata University) Curvature identity and its applications December 13-17, 2010 14 / 53



From Theorem A, we can prove the following classical theorem [4].

Corollary

M' = (M', g'") : 3-dimensional Riemannian manifold
{el} : orthonormal basis of Ty M’ at any point p' € M’
The following equality

T
sbcd =PadObe — PacObd + adPbec — acPby — 5 (Jaddbe — dacObd)

(1< a,b,c,d=3) holds.

sketch of proof. M = M’ x R
Setting i = j =4in (2), z(|R'|*> —4[p'|> + 7?) =0.

& [4] H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), 384-411.
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Corollary

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then the

following curvature condition

L1
W= Z|wW|?
4| g

holds on M. Here, W is the Weyl curvature tensor of M and
W : Wi = Wape W3PS
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Corollary
Let M = (M, g) be a 4-dimensional Riemannian manifold. Then the

following curvature condition
. 1
W= "|w|?
2IWl'e

holds on M. Here, W is the Weyl curvature tensor of M and
W : Wy = Wape W3Pe).

sketch of proof. We substitute the following equality

1
Rijkr = Wiji — 5 (0iigjk — pik&ji + &ilPjk — 8ikPji)

"1

—+ 5 (gi/gjk — gik&ji)

into the equality (2) in Theorem A.
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A 4-dimensional Einstein manifold satisfies the condition

. 1
R =,IR%. (3)

sketch of proof. p; = ;g in (2).

However, the converse of the above is not necessarily valid.
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A 4-dimensional Einstein manifold satisfies the condition

v 1
R =,IR%. (3)

sketch of proof. p; = ;g in (2).

However, the converse of the above is not necessarily valid.

Remark, Corollary can be also proved by making use of a Singer-Thorpe

basis of a 4-dimensional Einstein manifold.

D [5] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces,

Global Analysis, (Papers in Honor of K. Kodaira) Princeton University Press,
Princeton, 1969, 355-365.
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An n-dimensional Einstein manifold is called super-Einstein if the following
curvature identity is satisfied

. 1
R=IRI%. *)

Remark. The constancy of |R|? follows from (4) automatically in dimensions
n > 4 (see [6], Lemma 3.3). For a 4-dimensional super-Einstein manifold, the

constancy of |R|? is not automatically satisfied but it is usually required (see [7]).

@ [6] E. Boeckx and L. Vankecke, Unit Tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51
(126) (2001), 523-544.

D [7] A. Gray and T. J. Willmore, Mean-value theorems for Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 92
(1982), 343-364.
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An n-dimensional Einstein manifold is called super-Einstein if the following
curvature identity is satisfied

. 1
R=IRI%. *)

Remark. The constancy of |R|? follows from (4) automatically in dimensions
n > 4 (see [6], Lemma 3.3). For a 4-dimensional super-Einstein manifold, the

constancy of |R|? is not automatically satisfied but it is usually required (see [7]).

@ [6] E. Boeckx and L. Vankecke, Unit Tangent sphere bundles with constant scalar curvature, Czechoslovak Math. J. 51
(126) (2001), 523-544.

D [7] A. Gray and T. J. Willmore, Mean-value theorems for Riemannian manifolds, Proc. Roy. Soc. Edinburgh Sect. A 92
(1982), 343-364.

We shall call a 4-dimensional Riemannian manifold satisfying the curvature

condition (4) (i.e., R = }|R|2g) weakly Einstein.
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By the definition, a weakly Einstein manifold is a generalization of a

4-dimensional Einstein manifold.

The following examples show that a weakly Einstein manifold is not

necessarily Einstein.

Let M be a Riemannian product manifold of 2-dim. Riemannian manifolds
Mi(c) and Mx(—c) of constant Gaussian curvatures ¢ and —c (¢ # 0),

respectively. Then M satisfies (3) but it is not Einstein.
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Example (2)

Let g = spang{e1, e, e3, 4} be a 4-dimensional real Lie algebra equipped with
the following Lie bracket operation:
[e1, e2] = aep, [e1, e3] = —ae3 — bey, [e1, ea] = bes — aeq,
[e2, &3] =0, [e2,€1] =0, [e3, e2] =0,
where a(# 0), b are constant. <,> on g is defined by < e;, e >=0jj. Let G be
a connected and simply connected solvable Lie group with the Lie algebra g of G
and g the G-invariant Riemannian metric on G determined by <, >. By direct
calculations, we have
Ri2i2 =2a°, Riziz=a°, R =a°
Roso3 = —a?, Rosos = —a%, Rz = a7,

and otherwise being zero up to sign. From these, G is not Einstein since the

Ricci curvature components satisfy p11 = —3a2 but 022 = a2,

However G satisfies (3), thus G is weakly Einstein.
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Outline

© On a 4-dimensional Riemannian manifold

@ Application 1
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Proposition

Let M = (M, g) be a weakly Einstein manifold and {e;} an orthonormal Ricci
eigenbasis of TpM corresponding to the eigenvalues A; (1 < i < 4) at any point
p € M. Then, the following equalities

2 _ 2 2 _ 2 2 _ 2
R1212 - R3434' R1313 - R2424' R1414 - R2323

hold and the following cases (a) ~ (d) never occur:
(a) M =22=2A3(#0), A4 =0,
(b) A1 = A2 =A4(#0), A3 =0,
() A1 =A3=M(#0), A2 =0,
(d) A2 =A3=2A(#0), A1 =0.
Especially, if M is Einstein, then the following holds:

R1212 = R3434, FR1313 = Roana, Ri414 = Ra303.
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By Proposition, we see that the following examples are not weakly Einstein

manifolds.

M = M?(c1) x M?(cz), (c1,co : constant, ¢ # c3)

Example (4)

M= M3(c) xR, (c(#0) : constant)
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By Proposition, we see that the following examples are not weakly Einstein

manifolds.

M = M?(c1) x M?(cz), (c1,co : constant, ¢ # c3)

Example (4)

M= M3(c) xR, (c(#0) : constant)

Remark. The statement “any 4-dimensional Riemannian manifold satisfies
the curvature condition (3)" (in [8] p. 165) seems a printing mistake.

@ [8] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math.
Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
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Let M = (M, g) be a 4-dimensional Riemannian manifold.

We here introduce some special kinds of orthonormal basis of T,M at any point
p € M and explain their intermediate relationships.

A Singer-Thorpe basis {¢;} is an orthonormal basis satisfying the following

conditions

R1212 = R3434, Ri1313 = Ro424, Ri414 = R2323,

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then, M is an Einstein

manifold if and only if M admits a Singer-Thorpe basis at each point of M.

@ [5] I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global Analysis, (Papers in Honor of
K. Kodaira) Princeton University Press, Princeton, 1969, 355-365.

Kouei Sekigawa (Niigata University) Curvature identity and its applications December 13-17, 2010 23 /53



A Chern basis {e;} is an orthonormal basis of T,M at any point p € M satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.
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A Chern basis {e;} is an orthonormal basis of T,M at any point p € M satisfying
R1213 = Ri214 = R1223 = Ri224 = R1314 = R1323 = 0.

A Ricci eigenbasis {e;} is an orthonormal basis of T,M corresponding to the
Ricci eigenvalues A; (1 =7 = 4) at p, namely, satisfying the following condition
Qe =Aigi (L= i< 4).

December 13-17, 2010 24 /53
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A Chern basis {e;} is an orthonormal basis of T,M at any point p € M satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.

A Ricci eigenbasis {e;} is an orthonormal basis of T,M corresponding to the
Ricci eigenvalues A; (1 =7 = 4) at p, namely, satisfying the following condition
Qe =Aigi (L= i< 4).

Here, we assume that an orthonormal basis {e;} of T,M is a Ricci eigenbasis and

at the same time a Chren basis. Then, we have

R2434 = R2334 = R1434 = R1334 = R2304 = R1424 = 0.
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A Chern basis {e;} is an orthonormal basis of T,M at any point p € M satisfying

R1213 = R1214 = R1223 = R1224 = R1314 = R1323 = 0.

A Ricci eigenbasis {e;} is an orthonormal basis of T,M corresponding to the
Ricci eigenvalues A; (1 =7 = 4) at p, namely, satisfying the following condition
Qe =Aie (L= i< 4).

Here, we assume that an orthonormal basis {e;} of T,M is a Ricci eigenbasis and

at the same time a Chren basis. Then, we have

R2434 = R2334 = R1434 = R1334 = R2304 = R1424 = 0.

Ryk =0 (i#k), (1=ijk=4). (5)

Conversely, if (5) holds with respect to an orthonormal basis {e;}, then the basis

{e;} is a Ricci eigenbasis and Chern basis at the same time.
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Question. Can we always choose the orthonormal basis which is a Ricci

eigenbasis and at the same time a Chern basis?
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Question. Can we always choose the orthonormal basis which is a Ricci

eigenbasis and at the same time a Chern basis?

The following example shows that an orthonormal Ricci eigenbasis is not

necessarily a Chern basis.

Example (5)

Let g = spang{e1, e, €3, €4} be a 4-dimensional real Lie algebra equipped

with the following Lie bracket operation:

[e1, &] = 2e, [e1, &3] = —e3, le1, e4] = 2e3 — ey,

(2, €3] =0, [e2, &) =0, [e3, ) =0,

and <, > the inner product on g given by < e;, & >= 0j;.
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Let G be a connected and simply connected solvable Lie group with the Lie
algebra g of G and g the G-invariant Riemannian metric on G determined

by <,>. Then, we have

Ri212 = 4, Ria14 = 4, Ra323 = —2, (6)
Roaoq = =2, Rizia = —2, FRozq =2,
and otherwise being zero up to sign. Then, the orthonormal basis {e;} is
a Ricci eigenbasis satisfying Qe; = Aje; (1 < i < 4), where Ay = —8,
Ay =0, A3 = 2, Ay = —2. However, from (6), the basis {e;} does not

satisfy (5). This means that the basis {e;} is a Ricci eigenbasis but not a

Chern basis.
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Let M = (M, g) be a 4-dimensional Riemannian manifold and {e;} an
orthonormal basis of the tangent space T,M at a point p € M. If the

basis {e;} satisfies
2 2 2 2 2 2
Riois = R3434 ' R1313 = Rosos  Rind = R2323 (7)

and
Rijk =0 (i£k), (1=ijk=4) (8)

then we shall call the orthonormal basis a generalized Singer-Thorpe basis.
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The result of Singer and Thorpe [5] is well-known as a characterization of a

4-dimensional Einstein manifold. The following theorem is a generalization

of their result, which is a characterization of a weakly Einstein manifold.

Let M = (M, g) be a 4-dimensional Riemannian manifold. Then,
M is a weakly Einstein manifold if and only if M admits a generalized

Singer-Thorpe basis at each point of M.
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M = (M, g) : a compact oriented weakly Einstein manifold.

Then, from Theorem (2.2), we can choose a generalized Singer-Thorpe
basis {ej} of T,M at any point p € M compatible with the orientation of
M.

We set
/ / /
x1 = Rio12, &y = Ri313, &3 = Ria14,

&) = R34, &5 = Rasoa, a3 = Rp33, (9)
B1 = Ri23a, B2 = Rizao, B3 = Riaos.
Set @’ = (af,ah,af), a” = (af, af,af) and b = (B1, B2, B3) and denote
the canonical inner product by <, > on the 3-dimensional Euclidean space

R3.
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Set |x| = /< x,x > for any x € R3. Then, |a’| = |a”| by virtue of (7).
Now, we denote the Euler number and the first Pontrjagin number of M
by x(M) and p1(M), respectively.

Then, from (9), applying the similar arguments as in [9], we have the

following equalities:

1
(M) = 2 /M{< a’,a" > +|b|2}dv,
and
(M) = ﬁ/m <a'+a’,b> dy,,

where dvg is the volume element of M. Now, we set

a= %(a’ +a”). (10)

@ [9] N. Hitchin, Compact four-diemensional Einstein manifolds, J. Differential
Geometry 9 (1974), 435-441.
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By taking account of (10),
1 2 2 2
(M) = - /M{zwar — [a/[2 + [b [} du,

pi(M) = /2<a b > dv,.

2772
Then, we have the following:
2x(M) £+ p1(M)

27T2/ {la]2+ b2 £2 < a,b > +]a]? — [a/|*} dvg

“ g J, {2 b 42l — oy

1 2 2
EF/M{M — || }dVg-
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Theorem (2.3)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the following
inequality holds on M:

2x(M) £ p1(M) = C,

where C = 55, [,,{|al*> — |a/[*}dvg < 0.

(11)
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Theorem (2.3)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the following
inequality holds on M:
2x(M) £ p1(M) = C, (11)

where C = 55, [,,{|al*> — |a/[*}dvg < 0.

Remark. Since p1(M) = 30(M) (c(M) is the Hirzebruch signature of M), from
Theorem (2.3), the inequality (11) reduces to the Hitchin inequality [9]

2x(M) = 3[c(M)], (12)

for the case where M is Einstein. Thus, (11) in Theorem (2.3) is regarded as the

generalization of the Hitchin inequality (12).
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Theorem (2.4)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the
following inequality holds on M:

1
— | |R|?dv,,
16n2/M| [“ve

where x(M) and p1(M) are denoted the Euler number and the first

2x(M) £ p1(M) 2 —

Pontrjagin number of M, respectively.

(13)
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Theorem (2.4)

Let M = (M, g) be a compact weakly Einstein manifold. Then, the
following inequality holds on M:

1

where x(M) and p1(M) are denoted the Euler number and the first

2x(M) £ p1(M) 2 —

Pontrjagin number of M, respectively.

sketch of proof. In Theorem (2.3) the constant C satisfies the inequality
CZ —1z= [y |RI?dvg.
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The following example illustrates Theorems (2.3) and (2.4).

Example (6)

Let My and My be a unit 2-sphere and a compact oriented surface of genus m
(m 2 2) with constant Gaussian curvature —1, respectively, and further, M be
the Riemannian product of My and My, M = My X My. Then, M is a compact,
oriented weakly Einstein manifold which is a special case of Example 1. Then, by
taking account of the Kiinneth formula, the Gauss-Bonnet formula and the

formulas in [9], we have
x(M) =4(1—m), p1(M) =0 (thus, c(M) = 0),
Vol(M) = 16(m — 1)1, C =8(1—m).

Therefore, from (14), the equality signs of the inequalities (11) and (13) in
Theorems (2.3) and (2.4) hold for M respectively, but M does not satisfy the

Hitchin inequality (12).
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Outline

© On a 4-dimensional Riemannian manifold

@ Application 2
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Let M be a 4-dimensional oriented smooth manifold and 9t = M (M) be
the space of all Riemannian metrics on M. We denote the squared
L2-norm functionals of the curvature tensor, the Ricci tensor and the
scalar curvature by A, B and C, respectively.

It is well-known that the Euler number x(M) of a 4-dimensional compact,
oriented Riemannian manifold M = (M, g) is given by the following

generalized Gauss-Bonnet formula:

2m°x (M) = A(g) —4B(g) +C(g). (15)
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A metric g € M is A-critical if and only if g satisfies A(g) < +o0 and the

following equation
1
RabciRabJC' +2VeV a0 — V;ViT = 2pi50;° + 20°P Rz — Z|R|2gij =0. (16)

A metric g € M is called B-critical if and only if g satisfies B(g) < +oc0 and the

following equation

1 1
20%° Rizpj + 5(8T)g +VVapj = ViViT — §|P\2gij =0. (17)

A metric g € M is C-critical if and only if g satisfies C(g) < 400 and the

following equation

1
T0ij = V;ViT+ (AT)gj — Zngij =0. (18)
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Remark. In general, although critical Riemannian metrics were first defined on a
compact case, it is easy to generalize the definition when M is not compact by

considering variations of Riemannian metrics with compact support.
Remark. If g € M is A-critical, B-critical or C-critical then At = 0.

Especially, if M is compact oriented and g is a critical metric of one of the

functionals A, B or C, the scalar curvature T is constant since T is a harmonic

function on M.

Let M = (M, g) be a 4-dimensional compact oriented Riemannain manifold. If
g € M is C-critical, then the scalar curvature T vanishes everywhere on M or M

is Einstein.

B [10] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), 10, Springer-Verlag, 1987.
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If g € M satisfies A(g) < +oo (B(g) < +o0, respectively), then B(g) < +o0
and C(g) < +oo (C(g) < +oo, respectively).

Since the Euler number is the topological invariant for the case where M is
compact and oriented, from (15), if g is both B-critical and C-critical then g is

also A-critical. This is also valid for the case where M is not compact.

From (16)~(18) and taking account of (1) and the above Lemma,
Theorem (2.6)

(1) If g € M with A(g) < +oo is B-critical and C-critical, then g is A-critical.
(2) If g € M is A-critical and B-critical, then g is C-critical.
(3) If g € M is A-critical and C-critical, then g is B-critical.

@ [11] M. Berger, P. Gauduchon and E. Mazet, Le specte d'une varieté

Riemannianenne, Lecture Notes in Math., 194, Springer-Verlag, Berlin-New York,
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Denote the traceless Ricci tensor G of M by

T
G=p- ;& (19)

Lemma

Let M = (M, g) be a 4-dimensional Riemannian manifold with parallel

Ricci tensor. If G2P R;abjGif = 0 everywhere on M, then M is Einstein or
locally a product of 2-dimensional Riemannian manifolds of constant

Gaussian curvatures ¢ and —c (¢ # 0).
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Theorem (2.7)

Let g be a B-critical metric on a 4-dimensional smooth manifold M. If the
scalar curvature T of g is non-positive constant and the square norm of
the Ricci tensor p of g is constant and the inequality GabR,-abjG <o
holds on M, then (M, g) is Einstein or locally a product of 2-dimensional

Riemannian manifolds of constant Gaussian curvatures ¢ and —c (c # 0).

Theorem (2.8)

Let g be a B-critical metric on a 4-dimensional compact oriented manifold
M. If the scalar curvature T of g is non-positive and the inequality

G Ria5;GY < 0 holds on M then (M, g) is Einstein or locally a product of
2-dimensional Riemannian manifolds of constant Gaussian curvatures c

and —c (c #0).
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Theorem (2.9)

Let g be an A-critical metric on a 4-dimensional smooth manifold M. If the
scalar curvature T of g and the square norm of the Ricci tensor p of g are
constant and the inequality GabR,-abj GY <0 holds on M, then (M, g) is Einstein
or locally a product of 2-dimensional Riemannian manifolds of constant Gaussian

curvatures ¢ and —c (c # 0).

Theorem (2.10)

Let g be an A-critical metric on a 4-dimensional compact oriented manifold M.
If the inequality GabR,-abjG"j < 0 holds on M then (M, g) is Einstein or locally a
product of 2-dimensional Riemannian manifolds of constant Gaussian curvatures

c and —c (¢ #0).

.
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Remark. Ogiue and Tachibana proved that if the inequality
uabRiabfu,-J- < 0 (at any point where u # 0) holds for any traceless
symmetric (0,2)-tensor field u = (uj;) on an n-dimensional compact

oriented Riemannian manifold (M, g) then M is a real homology n-sphere.

@ [12] K. Ogiue and S. Tachibana, Les variétés riemanniennes dont I'opérateur de
courbure restreint est positif sont des spheres d’homologie réelle, C. R. Acad. Sci.

Paris Sér. 289 (1979), A29-A30.

Kouei Sekigawa (Niigata University) Curvature identity and its applications December 13-17, 2010 44 / 53



Theorem (2.9) is related to the following result.

Theorem (2.11)

A complete locally homogeneous A-critical metric with finite volume on a
four-manifold is locally isometric to either an Einstein symmetric space or
the product of the standard two-sphere with constant curvature ¢ and the

two-dimensional hyperbolic plane with curvature —c.

@ [13] Y. Kang, Locally homogeneous critical metrics on four-dimensional manifolds,

J. Korean Math. Soc. 44 (2007), 109-127.
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The weakly Einstein manifold in Example 1 is zero-scalar-curved conformally flat.
In general, a 4-dimensional zero-scalar-curved conformally flat manifold is weakly
Einstein. The following example is a special case of Example 1 whose metric is

A-critical.

Example (7)

Let S? and H? be a unit 2-sphere and a upper hyperbolic 2-plane with constant
Gaussian curvature —1, respectively. It is well-known that the group SL(2,R)
acts on H? transitively as the automorphism group of the canonical Kihler

structure H?. Let M = (M, g) be the Riemannian product of S?> and T'\H?,

where T is the Fuchsian group of the first kind.

Kouei Sekigawa (Niigata University) Curvature identity and its applications December 13-17, 2010 46 / 53



For example, if T is a modular group and T = SL(2,Z), where Z. is the set of all
integers, then T\IH? is a non-compact Riemann surface which is contractible, and
further, Vol(T\IH2)=%. Therefore, M is non-compact and Vol(M,g) = 5n2,
x(M) = 2, and hence A(g) = §72x(M). On the other hand, let T"\H? be
a compact Riemann surface with genus m(= 2) and (M’,g") be the Riemannian
product of S? and T'\IH2. Then, A(g) = —32%x(M) holds for all m(= 2)
(Example 6.)

Remark. From Example 7, we see that the following statement is wrong:
4.82 Proposition (ii) conformally flat metrics with zero scalar curvature give an

absolute minimum for A; this minimum is —872x (M) ([10] p. 136).

@ [10] A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3), 10, Springer-Verlag, 1987.
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@ Does there exist a (not conformally flat) half-conformally flat
non-Einstein, weakly Einstein manifold with zero-scalar-curvature?
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@ Does there exist a (not conformally flat) half-conformally flat
non-Einstein, weakly Einstein manifold with zero-scalar-curvature?

@ Classify simply connected homogeneous weakly Einstein manifolds.
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Outline

© On a higher-dimensional Riemannian manifold

@ Theorem B
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Does the same phenomenon occur for any 2n(n = 2)-dimensional Rieman-
nian manifold?

@ Can we deduce a curvature identity from the generalized
Gauss-Bonnet theorem for a 2n-dimensional compact oriented

Riemannian manifold?

@ Is this identity valid for any 2n-dimensional Riemannian manifold?
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Theorem B

Theorem
M= (Mg):

: an n-dimensional Riemannian manifold
S"=(S",g') CE" : an round unit n-sphere
Then, for each fixed point p € M

e 1 a Riemannian metric g on S"

e 1 neighborhoods U of p

e 1 V of the north pole of S"

such that (V,g) = (U g).

isometry
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From Theorem B,

A curvature identity which holds on any compact Riemannian manifolds is

also valid without compactness as it is.

Corollary ([3])

Let M = (M, g) be any 2n-dimensional Riemannian manifold. Then,

hang — WCZ"_IR" = 0.

@ [3] M.-L. Labbi, Variational properties of the Gauss-Bonnet curvatures, Calc. Var.
32 (2008), 175-189.
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Thank you for your attention!
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