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Abstract

Let K be a compact subset in Euclidean space Rm, and let EK(t)
denote the total amount of heat in Rm\K at time t, if K is kept at fixed
temperature 1 for all t ≥ 0, and if Rm\K has initial temperature 0. For
two disjoint compact subsets K1 and K2 we define the heat exchange
HK1,K2(t) = EK1(t) + EK2(t) − EK1∪K2(t). We obtain the leading
asymptotic behaviour of HK1,K2(t) as t → 0 under mild regularity
conditions on K1 and K2.
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1 Introduction

Let K be a compact set in Rm, and let u : Rm \K × [0,∞) → [0,∞) be the
unique weak solution of the heat equation

∆u =
∂u

∂t
, x ∈ Rm\K, t > 0, (1)

with initial condition

u(x; 0) = 0, x ∈ Rm\K, (2)

and with boundary condition

u(x; t) = 1, x ∈ ∂K, t ≥ 0. (3)

Let

EK(t) =

∫

Rm\K
u(x; t)dx. (4)

Then EK(t) represents the total amount of heat in Rm\K at time t, if K is
kept at fixed temperature 1 for all t ≥ 0, while Rm\K has initial temperature
0.

In this paper we investigate the reduction of the heat flow from K in the
presence of a second disjoint compact subset. Let K1, K2, be a pair of disjoint
compact subsets in Rm, and define the heat exchange HK1,K2 : [0,∞) → R
by

HK1,K2(t) = EK1(t) + EK2(t)− EK1∪K2(t). (5)

It is well-known [1, 2], that if K1, and K2 have C∞ smooth boundaries ∂K1

and ∂K2 respectively, then there exists coefficients b
(1)
n , b

(2)
n , n ∈ N such that

for any N ∈ N

EKi
(t) =

N∑
n=1

b(i)
n tn/2 + O(t(N+1)/2), t → 0, i = 1, 2. (6)

Since the b
(i)
n are locally computable in terms of the curvature and its deriva-

tives we have that

EK1∪K2(t) =
N∑

n=1

2∑
i=1

b(i)
n tn/2 + O(t(N+1)/2), t → 0. (7)

It follows that for any N ∈ N
HK1,K2(t) = O(t(N+1)/2), t → 0. (8)
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The main result of this paper is a refinement and generalization of (8)
(Theorem 1). Let B(x; ε) denote the closed ball with centre x and radius ε,
and denote by Cap(K) the Newtonian capacity of a compact set K in Rm if
m ≥ 3. Let |A| denote the Lebesgue measure of a Borel set A in Rm. We
make the following hypotheses.

(i) If m = 2 then

|K ∩B(x; ε)| > 0, x ∈ K, ε > 0. (9)

(ii) If m ≥ 3 then

Cap(K ∩B(x; ε)) > 0, x ∈ K, ε > 0. (10)

Theorem 1. Let K1, K2 be disjoint compact subsets in Rm. Suppose that
both K1 and K2 satisfy (9) if m = 2 and (10) if m ≥ 3. Then

lim
t→0

t log HK1,K2(t) = −d2/4, (11)

where
d = min{|x1 − x2| : x1 ∈ ∂K1, x2 ∈ ∂K2}. (12)

Moreover, t → HK1,K2(t) is strictly increasing on [0,∞).

A classical theorem of F.Spitzer [10] asserts that if K is compact and
non-polar then

EK(t) = Cap(K)t + o(t), t →∞ (m ≥ 3), (13)

EK(t) =
4πt

log t
+ O

(
t

(log t)2

)
, t →∞ (m = 2). (14)

The large time behaviour of HK1,K2(t) can be read-off from (13) and (14)
respectively:

HK1,K2(t) = (Cap(K1) + Cap(K2)− Cap(K1 ∪K2))t + o(t), t →∞(m ≥ 3),
(15)

HK1,K2(t) =
4πt

log t
+ O

(
t

(log t)2

)
, t →∞, (m = 2). (16)

It is straight forward to read-off refinements to (15), (16) from the results in
[4, 5, 10].

The main motivation for proving Theorem 1 came from a conjecture [3]
on the asymptotic behaviour of the heat trace coefficients in the expansion of
the heat trace for a region in Rm. Let Ω be an open, bounded and connected
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set in Euclidean space Rm and let ∆Ω denote the Dirichlet Laplacian for Ω.
It is well-known that for any N ∈ N

trace(et∆Ω) = (4πt)−m/2

N∑
j=0

aj(Ω)tj/2 + O(t(N+1−m)/2), t → 0, (17)

where the aj(Ω), j = 0, 1, 2, . . . are locally computable geometric invariants
of Ω [6, 9]. Let `(Ω) denote the length of the shortest closed periodic geodesic
in Ω. It was conjectured that the behaviour of aj(Ω), j → ∞ is related to
`(Ω) by formulae (4), (19), (21) in [3]. To see that this cannot hold in general
we give two (counter) examples.

Example 2. Let m = 2, and let

Ωε = {(x1, x2) ∈ R2 : ε < |x| < 1}, (18)

Ωρ
ε = {(x1, x2) ∈ R2 : |x| < 1, |(x1 − ρ, x2)| > ε}, (19)

where 0 < ε < 1 and 0 < ρ < 1− ε. Since the coefficients aj(Ωε), aj(Ω
ρ
ε) are

locally computable invariants we have that

aj(Ωε) = aj(Ω
ρ
ε), j = 0, 1, 2, · · · . (20)

On the other hand

`(Ωε) = 2(1− ε), `(Ωρ
ε) = 2(1− ε− ρ). (21)

The second example goes back to Example 7.1 in [7].

Example 3. Let m = 2, and let

P̃ε = {(x1, x2) ∈ R2 : |x| < 1, |x2| < 1− ε}, (22)

Q̃ε = {(x1, x2) ∈ R2 : |x| < 1, x1 < 1− ε, x2 < 1− ε}, (23)

where 0 < ε < 1
5
. We smooth out the corners of ∂P̃ε at x2 = ±(1− ε) and of

∂Q̃ε at x1 = 1− ε, x2 = 1− ε isometrically to obtain convex open sets Pε, Qε

with C∞ boundary. We have that

aj(Pε) = aj(Qε), j = 0, 1, 2, · · · , (24)

and

`(Pε) = 2(1− ε), `(Qε) = 2(2− ε). (25)
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Since the Weyl series (17) are identical for the pair Ωε, Ω
ρ
ε, we have that the

difference of the heat traces cancels up to any order O(tN):

trace(e
t∆

Ω
ρ
ε )− trace(et∆Ωε ) = O(tN), t → 0. (26)

Theorem 5 in Section 3 shows that the left hand side of (26) is strictly positive
for all t sufficiently small and that

lim
t→∞

t log(trace(e
t∆

Ω
ρ
ε )− trace(et∆Ωε )) = −1

4
`(Ωρ

ε)
2. (27)

While the Weyl series for Ωρ
ε does not determine `(Ωρ

ε) comparison of the heat
traces for Ωρ

ε and Ωε does determine the shorter of the two closed periodic
geodesics. This is very similar to the result given in Theorem 1.

Similarly one can show that for all t sufficiently small

trace(et∆Qε )− trace(et∆Pε ) > 0, (28)

and that

lim
t→0

t log(trace(et∆Qε )− trace(et∆Pε )) = −1

4
`(Pε)

2. (29)

Instead of proving (27) for the pair Ωρ
ε, Ωε and (29) for the pair Qε, Pε

respectively, we prove in Section 3 a comparison result (Theorem 4) for the
heat contents of regions with isometric obstacles. There we also state the
analogous result and generalization of (27) (Theorem 5) for the heat traces
of regions with isometric obstacles. The proof of Theorem 1 will be given in
Section 2.

2 Proof of Theorem 1

Proof. Let (B(s), s ≥ 0;Px, x ∈ Rm) be a Brownian motion associated to the
parabolic operator −∆ + ∂

∂t
. For a closed set K in Rm we define the first

hitting time of K by

TK = inf{s ≥ 0 : B(s) ∈ K}. (30)

The solution of (1-3) is given by

u(x; t) = Px[TK ≤ t]. (31)
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Since K1 and K2 are disjoint we have by (4) and (31)

EK1∪K2(t)

=

∫

Rm

dx Px[TK1∪K2 ≤ t]− |K1 ∪K2|

=

∫

Rm

dx Px[TK2 ≤ t] +

∫

Rm

dx Px[TK1 ≤ t]−
∫

Rm

dx Px[TK1 ≤ t, TK2 ≤ t]

− |K1 ∪K2|
= EK1(t) + EK2(t)−

∫

Rm

dx Px[TK1 ≤ t, TK2 ≤ t].

(32)

By (5) and (32)

HK1,K2(t) =

∫

Rm

dx Px[TK1 ≤ t, TK2 ≤ t]. (33)

Since K1, K2 are non-polar, (33) is strictly increasing on [0,∞). To prove
(11) we first obtain an upper bound for HK1,K2(t). By (33)

HK1,K2(t) =

∫

Rm

dx Px[TK1 < TK2 ≤ t] +

∫

Rm

dx Px[TK2 < TK1 ≤ t], (34)

since the set of Brownian paths for which TK1 = TK2 has Wiener measure
zero. By the strong Markov property

Px[TK1 < TK2 ≤ t] = Ex[1lTK1
<t PB(TK1

)[TK2 < t− TK1 ]]

≤ Ex[1lTK1
<t PB(TK1

)[TK2 < t]].
(35)

It follows from Lemma 1.2 on p.2 in [8] that if C is a closed set then

Px[TC ≤ t] ≤ 2 Px[|x−B(t)| ≥ d(x, C)], (36)

where d(x,C) is the distance from x to C. Putting B(TK1) = x and C = K2

we obtain by (36)

PB(TK1
)[TK2 < t] ≤ 2(4πt)−m/2

∫

{y: |y|≥d}
e−|y|

2/(4t)dy. (37)

Hence by (35), (37)

Px[TK1 < TK2 ≤ t] ≤ 2Px[TK1 < t](4πt)−m/2

∫

{y:|y|>d}
e−|y|

2/(4t)dy. (38)
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Similarly we obtain that

Px[TK2 < TK1 ≤ t] ≤ 2Px[TK2 < t](4πt)−m/2

∫

{y:|y|>d}
e−|y|

2/(4t)dy. (39)

Integrating both sides of the inequalities (38), (39) with respect to x over
Rm we obtain by (34)

HK1,K2(t)

≤ 2(|K1|+ |K2|+ EK1(t) + EK2(t))(4πt)−m/2

∫

{y:|y|>d}
e−|y|

2/(4t)dy.
(40)

Let ε ∈ (0, 1) be arbitrary. Then

∫

{y:|y|>d}
e−|y|

2/(4t)dy ≤ e−d2(1−ε)/(4t)

∫

{y:|y|>d}
e−ε|y|2/(4t)dy

≤ e−d2(1−ε)/(4t)

∫

Rm

e−ε|y|2/(4t)dy

= (4πt/ε)m/2e−d2(1−ε)/(4t).

(41)

Let t0 = d2. Since K1, K2 are non-polar, EK1(t), EK2(t) are strictly increasing
on [0, t0]. Hence by (39), (40) we have for 0 < t ≤ t0

HK1,K2(t) ≤ 2(|K1|+ |K2|+ EK1(t0) + EK2(t0))ε
−m/2e−d2(1−ε)/(4t). (42)

Hence
lim sup

t→0
t log HK1,K2(t) ≤ −d2(1− ε)/4. (43)

Since ε ∈ (0, 1) was arbitrary we obtain

lim sup
t→0

t log HK1,K2(t) ≤ −d2/4. (44)

This proves the upper bound in (11).
To prove the lower bound we first consider the case m ≥ 3. Let x1 ∈

K1, x2 ∈ K2 be such that |x1 − x2| = d. Let ε ∈ (0, 1) be arbitrary. Then by
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(34) and the strong Markov property

HK1,K2(t) ≥
∫

Rm

dx Px[TK1 < TK2 ≤ t]

≥
∫

Rm

dx Px[TK1∩B(x1;εd) < TK2 ≤ t]

≥
∫

Rm

dx Ex[1lTK1∩B(x1;εd)<tPB(TK1∩B(x1;εd))[TK2 < t− TK1∩B(x1;εd)]]

≥
∫

Rm

dx Ex[1lTK1∩B(x1;εd)<εtPB(TK1∩B(x1;εd))[TK2 < t− TK1∩B(x1;εd)]]

≥
∫

Rm

dx Ex[1lTK1∩B(x1;εd)<εtPB(TK1∩B(x1;εd))[TK2 < t(1− ε)]]

≥
∫

Rm

dx Ex[1lTK1∩B(x1;εd)<εtPB(TK1∩B(x1;εd))[TK2∩B(x2;εd) < t(1− ε)]].

(45)

Define the last exit time from the compact set K by

LK = sup{s ≥ 0 : B(s) ∈ K}. (46)

By the results of Section 2 in Chapter 3 of [8]

Pz[0 < LK < t] =

∫

[0,t]

ds

∫

K

p(z, y; s)µK(dy), (47)

where
p(z, y; s) = (4πs)−m/2 e−|z−y|2/(4s), (48)

and where µK is the equilibrium measure for the compact set K. Recall that

∫
µK(dy) = Cap(K). (49)

For any 0 < ε < 1/2 we have that

Pz[TK2∩B(x2;εd) < t(1− ε)] ≥ Pz[t(1− 2ε) < LK2∩B(x2;εd) < t(1− ε)]

≥
∫

[t−2εt,t−εt]

ds

∫
p(z, y; s)µK2∩B(x2;εd)(dy).

(50)

For z ∈ B(x1; εd), y ∈ B(x2; εd) and s ∈ [t− 2εt, t− εt]

p(z, y; s) ≥ (4πt)−m/2e−d2(1+2ε)2/(4t(1−2ε)). (51)
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By (49-51) we have for z ∈ B(x1; εd)

Pz[TK2∩B(x2;εd) < t(1− ε)]

≥ εt(4πt)−m/2e−d2(1+2ε)2/(4t(1−2ε))Cap(K2 ∩B(x2; εd)).
(52)

By (45) and (52) we conclude that

HK1,K2(t) ≥
∫

Rm

dx Px[TK1∩B(x1;εd) < εt]

× εt(4πt)−m/2e−d2(1+2ε)2/(4t(1−2ε))Cap(K2 ∩B(x2; εd)).

(53)

It remains to find a lower bound for the integral in (53). By (46), (47) and
Fubini’s theorem∫

Rm

dx Px[TK1∩B(x,;εd) < εt] ≥
∫

Rm

dx Px[LK1∩B(x1;εd) < εt]

=

∫

Rm

dx

∫

[0,εt]

ds

∫
p(x, y; s)µK1∩B(x1;εd)(dy)

= εt Cap(K1 ∩B(x1; εd)).

(54)

Putting (53) and (54) together, we see that

HK1,K2(t) ≥ (εt)2(4πt)−m/2

× Cap(K1 ∩B(x1; εd))Cap(K2 ∩B(x2; εd))e−d2(1+2ε)2/(4t(1−2ε)).

(55)

By the regularity hypotheses in Theorem 1 we have that both capacities in
the right hand side of (55) are strictly positive for any ε > 0. It follows that

lim inf
t→0

t log HK1,K2(t) ≥ −d2(1 + 2ε)2

4(1− 2ε)
. (56)

Since ε ∈ (0, 1
2
) was arbitrary we conclude that

lim inf
t→0

t log HK1,K2(t) ≥ −d2/4. (57)

Theorem 1 follows for m ≥ 3 by (44) and (57).
To complete the proof of Theorem 1 we consider the case m = 2. Let

z = B(TK1∩B(x1;εd)) in (45). For any 0 < ε < 1/2 we have that

Pz[TK2∩B(x2;εd) < t(1− ε)] ≥ Pz[B(t(1− 2ε)) ∈ K2 ∩B(x2; εd)]

= (4πt)−1

∫

K2∩B(x2;εd)

e−|z−y|2/(4t(1−2ε))dy.
(58)
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For y ∈ K2 ∩B(x2; εd), |z− y| ≤ d(1+2ε). Hence the right hand side of (58)
is bounded from below by

(4πt)−1|K2 ∩B(x2; εd)|e−d2(1+2ε)2/(4t(1−2ε)). (59)

By (45)

HK1,K2(t)

≥ (4πt)−1|K2 ∩B(x2; εd)|e−d2(1+2ε)2/(4t(1−2ε))

∫

R2

dx Px[TK1∩B(x1;εd) < εt].

(60)

But
∫

R2

dxPx[TK1∩B(x1;εd) < εt] ≥
∫

K1∩B(x1;εd)

Px[TK1∩B(x1;εd) < εt]dx

≥
∫

K1∩B(x1;εd)

Px[B(εt/2) ∈ K1 ∩B(x1; εd)]dx

=

∫

K1∩B(x1;εd)

dx

∫

K1∩B(x1;εd)

dy(4πt)−1e−|x−y|2/(2εt)

≥
∫

K1∩B(x1;εd)

dx

∫

K1∩B(x1;εd)

dy(4πt)−1e−2d2ε/t

= (4πt)−1|K1 ∩B(x1; εd)|2e−2d2ε/t.

(61)

By (60) and (61)

HK1,K2(t) ≥ (4πt)−2|K1∩B(x1; εd)|2|K2∩B(x2; εd)|e−d2(1+2ε)2/(4t(1−2ε))−2d2ε/t.
(62)

Hence

lim inf
t→0

t log HK1,K2(t) ≥ −d2(1 + 2ε)2/(4(1− 2ε))− 2d2ε. (63)

Since ε ∈ (0, 1/2) was arbitrary we conclude that

lim inf
t→0

t log HK1,K2(t) ≥ −d2/4. (64)

This completes the proof of Theorem 1.
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3 Heat content for regions with an obstacle

In this section we compare the heat contents of regions D in Rm with compact
isometric obstacles C and C̃ respectively. Let C be a compact subset of an
open, bounded and connected set D in Rm. Let K = (∂D)∪C, and let u be
a solution of (1-3). We define the heat content of D\C by

QD\C(t) =

∫

D\C
u(x; t)dx. (65)

Let C̃ be a subset of D where C̃ is isometric to C, and put

d = min{|x1 − x2| : x1 ∈ ∂D, x2 ∈ C}, (66)

d̃ = min{|x1 − x2| : x1 ∈ ∂D, x2 ∈ C̃} (67)

Theorem 4. Suppose (Rm\D) ∪ C satisfies (9) if m = 2 or (10) if m ≥ 3.
Suppose that d < d̃. Then for all t sufficiently small

QD\C̃(t) > QD\C(t), (68)

and
lim
t→0

t log(QD\C̃(t)−QD\C(t)) = −d2/4. (69)

Proof. We apply Theorem 1 with

K1 = {x ∈ Rm\D : d(x, D) ≤ 1}, (70)

and K2 = C or K2 = C̃ respectively. Since C and C̃ are isometric we have
that EC(t) = EC̃(t). Hence

EK1∪C(t)− EK1∪C̃(t) = HK1,C̃(t)−HK1,C(t). (71)

Since
EK1∪C̃(t)− EK1∪C(t) = QD\C̃(t)−QD\C(t), (72)

we have that

QD\C̃(t)−QD\C(t) = HK1,C(t)

(
1− HK1,C̃(t)

HK1,C(t)

)
. (73)

By Theorem 1 we have

lim
t→0

t log
HK1,C(t)

HK1,C̃(t)
= (d̃2 − d2)/4. (74)
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Hence there exists t0 > 0 such that for 0 < t ≤ t0,

HK1,C̃(t)/HK1,C(t) ≤ e(d2−d̃2)/8t. (75)

Hence for 0 < t ≤ t0
(
1− e(d2−d̃2)/(8t)

)
HK1,C(t) ≤ QD\C̃(t) ≤ HK1,C(t). (76)

It follows that (68) holds for all 0 < t ≤ t0. Furthermore, by Theorem 1

lim sup
t→0

t log(QD\C̃(t)−QD\C(t)) ≤ lim sup
t→0

t log HK1,C(t) = −d2/4, (77)

and

lim inf
t→0

t log(QD\C̃(t)−QD\C(t)) ≥ lim inf
t→0

t log HK1,C(t)

+ lim inf
t→0

t log(1− e(d2−d̃2)/(8t)) = −d2/4.

(78)

This completes the proof of Theorem 4.

It is possible to prove a result analogous to Theorem 4 for the trace of
the Dirichlet heat semigroup. We omit the proof of the following.

Theorem 5. Suppose D,C and C̃ satisfy the conditions of Theorem 4. Then
for all t sufficiently small

0 < trace(et∆
D\C̃ ) < trace(et∆D\C ) < ∞, (79)

where ∆D\C , ∆D\C̃ are the Dirichlet Laplacians for the open sets D\C,D\C̃
respectively. Furthermore

lim
t→0

t log(trace(et∆D\C )− trace(et∆
D\C̃ )) = −d2. (80)

References

[1] M. van den Berg, J.- F. Le Gall, Mean curvature and the heat
equation, Math. Zeit. 215, 437–464 (1994).

[2] M. van den Berg, P. B. Gilkey, Heat content asymptotics of a
Riemannian manifold with boundary, J.Funct.Anal. 120, 48–71 (1994).

[3] M. V. Berry, C. J. Howls, High orders of the Weyl expansion for
quantum billiards: resurgence of periodic orbits, and the Stokes phe-
nomenon, Proc. Royal Soc. Lond. Ser A 447, 527–555 (1994).

12



[4] J.- F. Le Gall, Sur une conjecture de M.Kac, Probab. Theory Relat.
Fields 78, 389–402 (1988).

[5] J.-F. Le Gall, Wiener sausage and self-intersection local times, J.
Funct. Anal. 88, 299–341 (1990).

[6] P. Greiner, An asymptotic expansion for the heat equation, Arch. Ra-
tional Mech. Anal. 41, 163–218 (1971).

[7] S. A. Molchanov, Diffusion processes and Riemannian geometry,
Russian Math. Surveys 30, 1–63 (1975).

[8] S. S. Port, C. J. Stone, Brownian Motion and Classical Potential
Theory, Academic Press, New York, (1978).

[9] R. T. Seeley, Analytic extension of the trace associated with elliptic
boundary problems, Amer. J. Math. 91, 963–983 (1969).

[10] F. Spitzer, Electrostatic capacity, heat flow and Brownian motion, Z.
Wahrsch. Verw. Geb. 3, 120–121 (1964).

13


