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This talk is intended to present the main results of my PhD Thesis concerning the theory
of biharmonic maps.

A natural generalization for harmonic maps and minimal immersions is obtained by con-
sidering the variational problem associated to the integral of the squared norm of the tension
field. More precisely, in their first paper on harmonic maps (see [10]), Eells and Sampson
suggested a generalization for harmonic maps by defining the biharmonic maps as the critical
points of the bienergy functional

E2 : C∞(M, N) → R, E2(φ) =
1
2

∫

M

|τ(φ)|2 vg,

where τ(φ) = trace∇dφ is the tension field of φ which vanishes for harmonic maps. The
Euler-Lagrange equation corresponding to E2 (see [12]) is given by the vanishing of the
bitension field

τ2(φ) = −Jφ(τ(φ)) = −∆τ(φ)− trace RN
(
dφ, τ(φ)

)
dφ,

where Jφ is formally the Jacobi operator of φ. Since Jφ is linear, any harmonic map is
biharmonic and we call proper biharmonic the non-harmonic biharmonic maps.

Equation τ2(φ) = 0 is called the biharmonic equation and, in local coordinates, yields a
4-th order non-linear system of PDE’s. The goal of the thesis was that of investigating this
equation in three different geometrical contexts.

A series of non-existence results (see [6, 12]) encouraged the search of examples of proper
biharmonic maps. We propose here several new methods, inspired by the Baird-Kamissoko
method [1], for constructing proper biharmonic maps starting with harmonic maps and using
warped product manifolds (see [3]). The main results are:

i. the condition for the biharmonicity of the inclusion of a Riemannian manifold N
into the warped product M ×f2 N and of the projection π : M ×f2 N → M ;

ii. the construction of two new classes of non-harmonic biharmonic maps using products
of harmonic maps φ = 1M ×ψ : M ×N → M ×N and warping the metric on their
domain or codomain;

iii. the study of axially symmetric biharmonic maps, using the warped product setting.

The biharmonic submanifolds of a non-positive sectional curvature space that have been
considered so far (see, for example, [6, 8, 9, 11]) turned out to be trivial (that is minimal),
and the attempts that have been made have led to the following
Generalized Chen Conjecture: biharmonic submanifolds of a non-positive sectional cur-
vature manifold are minimal.

On the contrary, the class of proper biharmonic submanifolds of the sphere is rather rich
(see [6, 7, 13]), but a full understanding of their geometry has not yet been achieved. Our
contribution in this direction (see [2, 4]) consists in:

i. the study of the type, in the sense of B-Y. Chen, of compact proper biharmonic
submanifolds with constant mean curvature in spheres;

ii. the complete classification of proper biharmonic hypersurfaces with at most two
distinct principal curvatures in space forms;

iii. the classification of compact proper biharmonic hypersurfaces of S4;
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iv. some rigidity properties for pseudo-umbilical biharmonic submanifolds of codimen-
sion 2 and for biharmonic surfaces with parallel mean curvature vector field in Sn;

v. the characterization and classification of proper biharmonic products of spheres in
spheres.

Ever since the characterization result obtained by E. Ruh and J. Vilms in [14] and the
remarkable link with constant mean curvature hypersurfaces the study of submanifolds with
associated harmonic Gauss map in Euclidean spaces has been a classical problem in harmonic
maps theory. We propose a generalization of this problem in [5] and obtain:

i. the characterization of submanifolds of the Euclidean space with biharmonic Gauss
map;

ii. examples of hypersurfaces of the Euclidean space with biharmonic Gauss map.
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