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An Euclidean tiling is a partition of Rm into tiles, which are polyhedra
touching face to face. These tiles are obtained by translation from a finite set of
prototiles. A tiling is said to be aperiodic if it has no translation symmetries. It
is said to be repetitive if for any patch M , there exists R > 0 such that any ball
of radius R contains a translated copy of M . Let T(P) be the set of tilings T
obtained from a finite set of prototiles P. Then it is possible to endow T(P) with
the Gromov-Hausdorff topology [1, 2] generated by the basic neighbourhoods
Ur

ε,ε′ = {T ′ ∈ T(P) / ∃ v, v′ ∈ Rm : ‖ v ‖< ε, ‖ v′ ‖< ε′, R(T + v, T ′ + v′) > r}
where R(T , T ′) is the supremum of radii R > 0 such that T and T ′ coincide
on the ball B(0, R). Thus T(P) becomes a compact metrizable space which is
foliated by the orbits LT of the natural action of Rm. For each T ∈ T(P), let
DT be the Delone set associated to a choice of base points in the prototiles. Now
Σ = {T ∈ T(P)/0 ∈ DT } is a totally disconnected closed subspace which meets
all the leaves. For any aperiodic and repetitive tiling T ∈ T(P), the continuous
hull of T is the closure of its orbit. In the Euclidean case, any tiling in X = LT
is also aperiodic and repetitive and therefore X = Σ∩X is homeomorphic to the
Cantor set. In particular, X is a minimal saturated set having trivial holonomy.

The aim of this poster is to show that the transverse dynamics of X is re-
presented (up to orbital equivalence) by the tail equivalence relation on the
infinite path space of a Bratteli diagram. Such an equivalence relation is orbit
equivalent to a minimal action of Z on the Cantor set [3, 4]. In other words, we
prove:

Theorem.- Any equivalence relation R on a Cantor set X arising from the
continous hull X of an aperiodic and repetitive Euclidean tiling is affable in the
sense of [4].

This theorem generalizes a result of H. Matui [6] proved for a subclass of subs-
titution tilings. The proof is made up of three stages:

i) First, we construct an affable equivalence relation R∞ ⊂ R and we introduce
its boundary ∂R∞. It is a nowhere dense closed subset in which the R-classes
split into at least two R∞-classes. We use the inflation or zooming process
developed in [1] to define a sequence of decompositions B(n) of X in a finite
number of compact flow boxes. Now R∞ is the inductive limit of an increasing
sequence of compact discrete equivalence relations Rn.
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ii) Secondly we prove that ∂R∞ is R-thin [4], i.e. µ(∂R∞) = 0 for every
R-invariant probability measure µ. In [7], C. Series has proved that any foliation
with polynomial growth is hyperfinite . Here, we will use the same outline (which
reminds the proof of the Rohlin lemma).

iii) Finally, in the Euclidean case, we pove that R∞ is minimal and every R-class
split into a finite number of R∞-classes. This will allow us to conclude by
applying theorem 4.18 of [4].

In fact, this proof applies to the broader class of tilable laminations [1] and
we deduce the following result (which extends the main theorem of [5]):

Corollary.- Any free minimal action of Zm on the Cantor set is affable.
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