KÄHLER MANIFOLDS WITH QUASI-CONSTANT HOLOMORPHIC CURVATURE.

WLODZIMIERZ JELONEK

0. Abstract. The aim of the present paper is to classify compact, simply connected Kähler manifolds (M, g, J) admitting global, 2-dimensional, *J*-invariant distribution \mathcal{D} satisfying the following property: The holomorphic curvature $K(\pi) = R(X, JX, JX, X)$ of any J-invariant 2-plane $\pi \subset T_x M$, where $X \in \pi$ and g(X, X) = 1 depends only on the point x and the number $|X_{\mathcal{D}}| = \sqrt{g(X_{\mathcal{D}}, X_{\mathcal{D}})}$, where $X_{\mathcal{D}}$ is an orthogonal projection of X on \mathcal{D} . In this case we have

$$R(X, JX, JX, X) = \phi(x, |X_{\mathcal{D}}|)$$

where $\phi(x,t) = a(x) + b(x)t^2 + c(x)t^4$ and a, b, c are smooth functions on M. Also $R = a\Pi + b\Phi + c\Psi$ for certain curvature tensors $\Pi, \Phi, \Psi \in \bigotimes^4 \mathfrak{X}^*(M)$ of Kähler type. The investigation of such manifolds, called QCH manifolds, was started by G. Ganchev and V. Mihova. In our paper we shall use their local results to obtain a global classification of such manifolds under the assumption that dim M = $2n \geq 6$. By \mathcal{E} we shall denote the $(\dim M - 2)$ -dimensional distribution which is an orthogonal complement of \mathcal{D} in TM. If $\{X, JX\}$ is any local orthonormal basis of \mathcal{D} then the function $\kappa = \sqrt{(div_{\mathcal{E}}X)^2 + (div_{\mathcal{E}}JX)^2}$ does not depend on the choice of X, JX. We classify QCH compact, simply connected Kähler manifolds satisfying the conditions int $B = \emptyset$ and $U \neq \emptyset$ where $B = \{x \in U : b(x) =$ 0, $U = \{x \in M : \kappa(x) \neq 0\}$. First we shall show that (M, g, J) admits a global holomorphic Killing vector field with a Killing potential, which is a special Kähler-Ricci potential. Next we use the results of Derdzinski and Mashler, who classified compact Kähler manifolds admitting special Kähler-Ricci potentials. As a corollary we prove that the only compact, simply connected QCH manifold with $\kappa \neq 0$ and analytic Riemannian metric g is a holomorphic \mathbb{CP}^1 -bundle over \mathbb{CP}^{n-1} (with \mathcal{D} being an integrable distribution whose leaves are the fibers \mathbb{CP}^1 of the bundle) or is \mathbb{CP}^n with metric of constant holomorphic sectional curvature (in this case \mathcal{D} is any J-invariant 2-dimensional distribution on \mathbb{CP}^n with $\kappa \neq 0$, however such distributions may not exist).

Typeset by \mathcal{AMS} -T_EX