Transverse Dirac operators on foliated manifolds and its applications

Yuri A. Kordyukov

We will discuss some problems related with transverse Dirac operators on foliated manifolds. Our main result is an analogue of the Kodaira vanishing theorem for a transverse Spin^c Dirac operator on a compact manifold endowed with a transversely almost complex Riemannian foliation. This result generalizes the famous Kodaira vanishing theorem for the cohomology of the sheaf of sections of a holomorphic vector bundle twisted by a large power of a positive line bundle, which was extended to symplectic manifolds by Borthwick-Uribe and Ma-Marinescu.

Let M be a compact manifold equipped with a smooth Riemannian foliation \mathcal{F} of even codimension q. Let g_M be a bundle-like metric on M and g_Q its restriction to the normal bundle $Q = TM/T\mathcal{F}$. Consider an almost complex structure J on Q, compatible with g_Q . The almost complex structure J defines canonically an orientation of Q and induces a splitting $Q \otimes \mathbb{C} = Q^{(1,0)} \oplus Q^{(0,1)}$, where $Q^{(1,0)}$ and $Q^{(0,1)}$ are the eigenbundles of J corresponding to the eigenvalues i and -i respectively. We also have the corresponding decomposition of the complexified conormal bundle $Q^* \otimes \mathbb{C} = Q^{(1,0)*} \oplus Q^{(0,1)*}$ and the decomposition of the exterior algebra bundles $\Lambda(Q^* \otimes \mathbb{C}) = \bigoplus_{p,q} \Lambda^{p,q}(Q^* \otimes \mathbb{C})$, where $\Lambda^{p,q}(Q^* \otimes \mathbb{C}) = \Lambda^p Q^{(1,0)*} \otimes \Lambda^q Q^{(0,1)*}$. The transverse Levi-Civita connection ∇ can be written as

$$\nabla = \nabla^{(1,0)} + \nabla^{(0,1)} + A,$$

where $\nabla^{(1,0)}$ and $\nabla^{(0,1)}$ are the canonical Hermitian connections on $Q^{(1,0)}$ and $Q^{(0,1)}$ respectively and $A \in C^{\infty}(T^*M \otimes \operatorname{End}(Q))$, which satisfies JA = -AJ.

Consider a self-adjoint transverse Clifford module

$$\Lambda^{0,*} = \Lambda^{\operatorname{even}} Q^{(0,1)*} \oplus \Lambda^{\operatorname{odd}} Q^{(0,1)*}.$$

The action of any $f \in Q$ with decomposition $f = f_{1,0} + f_{0,1} \in Q^{(1,0)} \oplus Q^{(0,1)}$ on $\Lambda^{0,*}$ is defined as

$$c(f) = \sqrt{2}(\varepsilon_{f_{1,0}^*} - i_{f_{0,1}}),$$

where $\varepsilon_{f_{1,0}^*}$ denotes the exterior product by the covector $f_{1,0}^* \in Q_x^*$ dual to $f_{1,0}$, $i_{f_{0,1}}$ the interior product by $f_{0,1}$. This module has a natural leafwise flat Clifford connection $\nabla^{\Lambda^{0,*}}$. Consider also a Hermitian vector bundle \mathcal{W} equipped with a leafwise flat Hermitian connection $\nabla^{\mathcal{W}}$. Then we get the twisted transverse Clifford module $\Lambda^{0,*} \otimes \mathcal{W}$ equipped with a product leafwise flat Hermitian connection $\nabla^{\Lambda^{0,*} \otimes \mathcal{W}}$.

The associated transverse Dirac operator $D_{\Lambda^{0,*}\otimes\mathcal{W}}$, which will be called the twisted transverse Spin^c Dirac operator, is the first order elliptic differential operator acting on smooth sections of $\Lambda^{0,*}\otimes\mathcal{W}$ as

$$D_{\Lambda^{0,*}\otimes\mathcal{W}} = \sum_{\alpha=1}^{q} (c(f_{\alpha})\otimes 1) \left(\nabla_{f_{\alpha}}^{\Lambda^{0,*}\otimes\mathcal{W}} - \frac{1}{2}g_{M}(\tau,f_{\alpha}) \right),$$

where f_1, \ldots, f_q is a local orthonormal frame for $T^H M = T \mathcal{F}^{\perp} \cong Q, \tau \in T^H M$ is the mean curvature vector of \mathcal{F} . The operator $D_{\Lambda^{0,*} \otimes \mathcal{W}}$ is a self-adjoint operator in the Hilbert space $L^2(M, \Lambda^{0,*} \otimes \mathcal{W})$.

Consider a Hermitian line bundle \mathcal{L} equipped with a leafwise flat Hermitian connection $\nabla^{\mathcal{L}}$. The curvature of $\nabla^{\mathcal{L}}$ is an imaginary valued 2-form $R^{\mathcal{L}} = (\nabla^{\mathcal{L}})^2$ on M. Since $\nabla^{\mathcal{L}}$ is leafwise flat, $R^{\mathcal{L}}$ vanishes on $T\mathcal{F}$, and, therefore, defines a 2-form $R^{\mathcal{L}}$ on Q. Assume that the 2-form $R^{\mathcal{L}}$ is non-degenerate and J-invariant on Q. Then it is a symplectic form on Q.

 Put

$$m = \inf_{u \in Q_x^{(1,0)}, x \in M} \frac{R_x^{\mathcal{L}}(u,\bar{u})}{|u|^2} > 0.$$

Let D_k denote the transverse Spin^c Dirac operator $D_{\Lambda^{0,*}\otimes\mathcal{W}\otimes\mathcal{L}^k}$, and D_k^- the restriction of D_k to the space $C^{\infty}(M, \Lambda^{odd}Q^{(0,1)*} \otimes \mathcal{W} \otimes \mathcal{L}^k)$.

Theorem 1. Under current assumptions, there exists C > 0 such that for $k \in \mathbb{N}$ we have

spec
$$D_k^2 \subset \{0\} \cup (2km - C, +\infty).$$

For sufficiently large k, we get $\operatorname{Ker} D_k^- = 0$.

Ma and Marinescu gave a proof of the Kodaira vanishing theorem for symplectic manifolds, which uses only the Lichnerowicz formula for the Spin^c Dirac operator. We follow their approach. So we also prove a Lichnerowicz type formula for a transverse Dirac operator on a compact foliated manifold (M, \mathcal{F}) , which has its own interest.

We will also discuss some applications of our results in transverse index theory and geometric quantization of foliations.