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In [8], even if they took the main interest in harmonic maps, Eells and
Sampson also envisaged some generalizations and defined biharmonic

maps ϕ : (M, g) → (N, h) between Riemannian manifolds as critical
points of the bienergy functional E2(ϕ) = 1

2

∫
M
|τ(ϕ)|2 vg, where τ(ϕ)

is the tension field of ϕ. Biharmonic maps are a natural extension of
harmonic maps (τ(ϕ) = 0) and they are solutions of the biharmonic
equation:

τ 2(φ) = −J(τ(φ)) = −∆τ(φ)− trace RN(dφ, τ(φ))dφ

= 0,

where J is the Jacobi operator of φ, ∆ is the rough Laplacian defined
on section of φ−1(TN).

Although E2 has been on the mathematical scene since the early ’60
(when some of its analytical aspects have been discussed) and regularity
of its critical points is nowadays a well-developed field, a systematic
study of the geometry of biharmonic maps has started only recently.

If ϕ : I ⊂ R → (N, h) is a curve the biharmonic equation reduces to
the fourth order differential equation

∇3

ϕ′ϕ
′ −RN (ϕ′,∇ϕ′ϕ′)ϕ′ = 0.

This equation has been studied intensively in the last decade (see, for
examples, [1, 2, 3, 4, 5, 6, 7]) and several constructions and classifica-
tions of biharmonic curves have been obtained. In particular, proper
biharmonic curves are classified in: surfaces, space forms and three
dimensional homogeneous spaces.

In this lecture we shall focus our attention on biharmonic curves on
CP 2 and we shall give the complete classification of these curves.

We shall relate the notion of proper biharmonic curves of CP n with
that of holomorphic helices, that is curves with constant complex tor-
sions in the sense of S. Maeda and Y. Ohnita [9].
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