HOMOTOPY INVARIANCE OF GEOMETRICALLY TAUTNESS OF RIEMANNIAN FLOWS WITH APPLICATION TO SASAKIAN GEOMETRY

HIRAKU NOZAWA (UNIVERSITY OF TOKYO)

In this talk, we will discuss homotopy invariance of geometrically tautness of 1-dimensional Riemannian foliations (Riemannian flows) and its application to deformation theory of Sasakian metrics.

A foliated manifold (M, \mathcal{F}) is called geometrically taut if there exists a Riemannian metric g on M such that every leaf of \mathcal{F} is a minimal submanifold of (M, g). In the case that (M, \mathcal{F}) is Riemannian, Alvarez Lopez showed that this property is equivalent to triviality of a basic cohomology class determined by (M, \mathcal{F}) . We will mention that the cohomology class defined by Alvarez Lopez is algebraic if \mathcal{F} is 1-dimensional and transversely parallelizable. Then, the following theorem follows from this fact immediately:

Theorem 1. (Homotopy invariance of geometrically tautness of Riemannian flows) Let T be a connected open set of a Euclidean space \mathbb{R}^L and $\{\mathcal{F}_t\}_{t\in T}$ be a smooth family of Riemannian flows on a closed manifold. Then one of the following two cases occurs:

- (1) For every t in T, \mathcal{F}_t is geometrically taut.
- (2) For every t in T, \mathcal{F}_t is not geometrically taut.

We will discuss an application of this theorem to Sasakian geometry. The Reeb flows of Sasakian manifolds are Riemannian and have a transversely holomorphic structure naturally. We consider the following question: If we deform the Reeb flow of a Sasakian manifold as a transversely holomorphic flow, when does there exist a Sasakian metric of which the Reeb flow is isomorphic to the deformed transversely holomorphic flow? This question is concerned with a stability property of Sasakian metrics with respect to deformation of transversely holomorphic flows. In the case of Kähler metrics which have many similar geometric properties to Sasakian metrics, a theorem of Kodaira and Spencer claims Kähler metrics have such stability with respect to deformation of complex structures.

We will explain that a key is the relation of basic Euler classes of Riemannian flows to transverse complex structures and the following theorem holds:

Theorem 2. Let T be an open neighborhood of 0 in \mathbb{R}^L and $\{(\tau_t, I_t)\}_{t\in T}$ be a smooth family of transversely holomorphic flows on a closed manifold M. Assume that (τ_0, I_0) has a compatible Sasakian metric \tilde{g} . We write g for the transverse metric of τ_0 induced by \tilde{g} . Then the following are equivalent:

- (1) There exists an open neighborhood U of 0 in T and a smooth family of Riemannian metrics $\{\tilde{g}_t\}_{t\in U}$ on M such that \tilde{g}_t is a compatible Sasakian metric to (τ_t, I_t) for every t in U and $\tilde{g}_0 = \tilde{g}$.
- (2) There exists an open neighborhood U of 0 in T such that $\{\tau_t\}_{t\in U}$ has a smooth family of transverse metrics $\{g_t\}_{t\in U}$ which satisfies $g_0 = g$ and the (0,2)-part of the basic Euler class of (τ_t, I_t) vanishes for every t in U.

The total space of the circle bundle associated to a positive line bundle over a compact complex manifold M has a Sasakian metric of which the Reeb flow is the foliation \mathcal{F}_0 formed by circle fibers. By Theorem 2, small deformation of \mathcal{F}_0 as a transversely holomorphic Riemannian flow has a compatible Sasakian metric if M is Fano.