The problem of a surface reconstruction by principal curvatures and directions

Vladimir Rovenski and Leonid Zelenko

Department of Mathematics, University of Haifa, Haifa, 31905, Israel

We formulate and study a problem of reconstruction of a C^2 -regular surface whose curvature lines form a regular net. Such investigations can also be motivated by possible applications in optics. We study the case of a surfacegraph z = f(x, y) over a rectangle, assuming that the projection of one of the principal directions is given in the rectangle and both principal curvatures are partially given on its sides. We formulate a boundary value problem for hyperbolic system of equations consisting of two coupled blocks: parametric Goursat Type Problem and so called Principal Curvature Transport Problem. We prove the existence and uniqueness of a solution f(x, y) for "small" boundary values of principal curvatures. Also we prove a stability of the solution w.r. to some variations of principal curvatures. We introduce a class of evolvent surfaces that have the property $\alpha(x, y) = const > 0$. In this case the problem can be solved by a simple procedure. Some illustrative solutions of the problem are obtained using appropriate implicit difference scheme.

Denote by
$$\Pi = [0, a] \times [0, b] \subset \mathbb{R}^2$$
 a rectangle, $A_- = \min_{(x,y) \in \Pi} \alpha, \ \bar{A} = \max_{(x,y) \in \Pi} \alpha,$

$$r_A = \min\{A_-, 1/\bar{A}\}, \qquad \rho_A = \frac{1}{16(a+b)} \left(1 - (1+2r_A)^{-2}\right).$$
 (1)

In the sequel we denote by k_1, k_2 the principal curvatures of a surface $M_f : z = f(x, y), (x, y) \in \Pi$, and assume that the function $\alpha(x, y) \in C^2(\Pi)$ is positive.

Problem 1. Given $\alpha \in C^2(\Pi)$ and $\varphi_1, \varphi_2 \in C^1([0,a]), \varphi_3, \phi_4 \in C^1([0,b])$, reconstruct a C^2 -surface $M : z = f(x, y), (x, y) \in \Pi$ by the data:

(i) the field of projections $\vec{l}_1(x,y) = (\alpha(x,y),1)$ on the plane XY of directions of the first principal curvature $k_1(x,y)$;

(ii) the principal curvatures k_1, k_2 on a part of the boundary $\partial \Pi$:

$$k_1(x,0) = \varphi_1(x), \ k_1(a,y) = \varphi_3(y), \ k_2(x,0) = \varphi_2(x), \ k_2(0,y) = \varphi_4(y), \ (2)$$

(iii) the zero values of $f, f_{,x}, f_{,y}$ at the origin (0,0).

1

Definition 1. For positive reals N, N', a, b denote by $\mathcal{B}_{N,N',a,b}$ the set of all sets of functions $\varphi_1, \varphi_2 \in C^1([0, a]), \varphi_3, \phi_4 \in C^1([0, b])$, satisfying the conditions:

 $\varphi_1(a) = \varphi_3(0), \quad \varphi_2(0) = \varphi_4(0),$

 $\max\{\|\varphi_1\|_{[0,a]}, \|\varphi_2\|_{[0,a]}, \|\varphi_3\|_{[0,b]}, \|\varphi_4\|_{[0,b]}\} < N,$

 $\max\{\|\varphi_1'\|_{[0,a]}, \|\varphi_2'\|_{[0,a]}, \|\varphi_3'\|_{[0,b]}, \|\varphi_4'\|_{[0,b]}\} < N'.$

Definition 2. Denote by $\mathcal{F}_{\alpha,a,b}$ the set of all C^2 -regular surfaces M_f : z = f(x,y) satisfying the conditions:

(a) $k_i \in C^{0,1}(\Pi)$ and $||k_i||_{\Pi} \le \rho_A$ for i = 1, 2;

(b) the field of projections on XY of directions of k_1 is given by $(\alpha(x, y), 1)$; (c) $f|_{\Omega_j(f)} \in C^3(\Omega_j(f))$ (j = 1, 2, ..., l(f)), where $\Omega_j(f)$ are the closures of connected components of the set $\Pi \setminus (\Gamma_1(f) \cup \Gamma_2(f))$, and $\Gamma_1(f), \Gamma_2(f)$ are projections on XY of the (first and second) curvature lines of M_f passing through the points (0, 0) and (0, a), respectively.

Theorem 1. (Existence and uniqueness of a solution) There exist positive numbers N, N' and L, M such that if a boundary data $\{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$ of Problem 1 belongs to the class $\mathcal{B}_{N,N',a,b}$, then Problem 1 has a unique solution $M_f: z = f(x, y)$ in the class $\mathcal{F}_{\alpha,a,b}$ and the following holds:

$$k_1, k_2 \in C_L^{0,1}(\Pi),$$
$$\nabla f \in C_M^{0,1}(\Pi, \mathbb{R}^2), \qquad \|\nabla f\|_{\Pi} \le r_A.$$

Theorem 2. (Stability of solution) Let N, N' be the positive constants from the assertion of Theorem 1. The solution of Problem 1 depends continuously on the boundary data in the following sense: for any $\epsilon > 0$ there exists $\delta > 0$ such that if the boundary data ($\varphi_{1,i}, \varphi_{2,i}, \varphi_{3,i}, \varphi_{4,i}$) (i = 1, 2) belong to the class $\mathcal{B}_{N,N',a,b}$ and satisfy the conditions

$$\begin{split} \|\varphi_{1,1} - \varphi_{1,2}\|_{[0,a]} < \delta, \quad \|\varphi_{2,1} - \varphi_{2,2}\|_{[0,a]} < \delta, \\ \|\varphi_{3,1} - \varphi_{3,2}\|_{[0,b]} < \delta, \quad \|\varphi_{4,1} - \varphi_{4,2}\|_{[0,b]} < \delta, \end{split}$$

then the corresponding solutions M_{f_i} : $z = f_i(x, y)$ (i = 1, 2) of Problem 1 (which exist in $\mathcal{F}_{\alpha,a,b}$ and are unique there by Theorem 1) have the properties:

$$\|f_1 - f_2\|_{\Pi} < \epsilon, \quad \|\nabla f_1 - \nabla f_2\|_{\Pi} < \epsilon,$$
$$\|k_{1,i} - k_{2,i}\|_{\Pi} < \epsilon \quad (i = 1, 2),$$

where $k_{1,i}$ and $k_{2,i}$ are the principal curvatures of the surface M_{f_i} .

2