We study the transverse Lusternik-Schnirelmann category of a Riemannian foliation \mathcal{F} on a compact manifold M. We obtain necessary and sufficient conditions for when the transverse category $\operatorname{cat}_{\Uparrow}(M, \mathcal{F})$ is finite. We also introduce a variation on the concept of transverse LS category, the essential transverse category $\operatorname{cat}_{\Uparrow}^e(M, \mathcal{F})$, and show that this is finite for every Riemannian foliation. Also, $\operatorname{cat}_{\Uparrow}^e(M, \mathcal{F}) = \operatorname{cat}_{\Uparrow}(M, \mathcal{F})$ if $\operatorname{cat}_{\Uparrow}(M, \mathcal{F})$ is finite. A generalization of the Lusternik-Schnirelmann theorem is also given: the essential transverse category $\operatorname{cat}_{\Uparrow}^e(M, \mathcal{F})$ is a lower bound for the number of critical leaf closures of a basic C^1 -function on M.