HAUSDORFFIZED LEAF SPACES

SZYMON M. WALCZAK

We introduce the notion of the Hausdorffized leaf space (shortly HLS) for an arbitrary foliation \mathcal{F} on a compact Riemannian manifold (M, g). Next, we discuss the connection between HLS, warped foliations, and Gromov-Hausdorff topology. Finally, some topological properties of HLS are presented.

1. HAUSDORFFIZED LEAF SPACE

Let (M, \mathcal{F}, g) be a compact foliated manifold. Let us set

$$\rho(L, L') = \inf\{\sum_{i=1}^{n-1} \operatorname{dist}(L_i, L_{i+1})\}\$$

where the infimum is taken over all finite sequences of leaves beginning at $L_1 = L$ and ending at $L_n = L'$. Let \sim be an equivalence relation in \mathcal{L} given by:

(1)
$$L \sim L' \Leftrightarrow \rho(L, L') = 0, \quad L, L' \in \mathcal{F}.$$

Let $\tilde{\mathcal{L}} = \mathcal{L}/_{\sim}$. Put

$$\tilde{\rho}([L], [L']) = \rho(L, L'),$$

where $[L], [L'] \in \tilde{\mathcal{L}}$. A metric space $(\tilde{\mathcal{L}}, \tilde{\rho})$ is called the Hausdorffized leaf space of the foliation \mathcal{F} , and is denoted by $HLS(\mathcal{F})$.

Now, let f be a basic function on M. We modify the Riemannian structure g to g_f in the following way: $g_f(v, w) = f^2 g(v, w)$ while both v, w are tangent to the foliation \mathcal{F} , but if at least one of vectors v, w is perpendicular to \mathcal{F} then we set $g_f(v, w) = g(v, w)$. Foliated Riemannian manifold (M, \mathcal{F}, g_f) is called the warped foliation and denoted by M_f . The function f is called the warping function.

Theorem 1. For an arbitrary compact foliated manifold (M, \mathcal{F}, g) and any sequence (f_n) of warping functions on M converging to zero on a dense subset $G \subset M$, the Gromov-Hausdorff limit of a sequence of warped foliations is coincides with $HLS(\mathcal{F})$.

2. Foliations with compact leaf

Let (M, \mathcal{F}) be a compact foliated manifold with a foliation of co-dimension q. Due to [3] one can consider a bad set B of a foliation \mathcal{F} . It is defined as follows:

Let $x \in M$ and let T be a q-dimensional transverse submanifold through x. Let us define $\sec_T : M \to \mathbb{N} \cup \{\infty\}$ as a map which assigns to $y \in M$ the cardinal of the set $L_y \cap T$, where L_y denotes the leaf through y. Now, let B denote the set of all $x \in M$ such that for any transversal T with $x \in \operatorname{int} T$ we have

$$\sup_{y \in M} \{ \sec_T(y) \} = \infty.$$

Date: April 13, 2008.

SZYMON M. WALCZAK

The set B is called the bad set of \mathcal{F} , while the set $G = M \setminus B$ is called the good set of \mathcal{F} .

Theorem 2. Let (M, \mathcal{F}, g) be a compact foliated Riemannian manifold. Let the good set G of \mathcal{F} contains a compact leaf. Then the Hausdorff dimension

 $\dim_H HLS(\mathcal{F}) = \operatorname{codim}(\mathcal{F}).$

Corollary 1. Let (M, \mathcal{F}, g) be a foliated Riemannian manifold and \mathcal{F} a foliation with all leaves compact. The Hausdorff dimension dim $HLS(\mathcal{F}) = \operatorname{codim}(\mathcal{F})$.

3. Co-dimension one foliations

Let (M, \mathcal{F}, g) be a compact foliated Riemannian manifold carrying an arbitrary co-dimension one foliation. Then we have the following characterization of the $HLS(\mathcal{F})$.

Theorem 3. If good set G of \mathcal{F} does not contains any compact leaf then $HLS(\mathcal{F})$ is a singleton, otherwise it is locally homeomorphic to an interval.

References

- [1] A. Candel and L. Conlon, Foliations I, American Mathematical Society, Providence 2000.
- [2] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser, Boston, 1999.
- [3] E. Vogt, Foliations with few non-compact leaves, Alg. Geom. Topol. Vol. 2 (2002), 257-284.
- [4] Sz. M. Walczak, Collapse of warped foliations, Diff. Geom. App. Vol 25/6, 649-654.
- [5] Sz. M. Walczak, Collapse of warped submersions, Ann. Pol. Mat. 89.2 (2006), 139-146.
- [6] Sz. Walczak, Warped compact foliations, sent for publishing.