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It is known that a 2 × 2 quaternionic matrix has one, two or an infinite number
of left eigenvalues, but the available algebraic proofs are difficult to generalize to
higher orders. In this paper, a different point of view is adopted by computing the
topological degree of a characteristic map associated to the matrix and discussing
the rank of the differential. The same techniques are extended to 3 × 3 matrices,
which are still lacking a complete classification.
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1. Introduction
In 1985, Wood [1] proved that any n×n quaternionic matrix A has at least one left eigenvalue,
that is, a quaternion λ ∈ H such that the matrix A − λ Id is singular. However, even for
matrices of small size, the left spectrum is not fully understood yet (see Zhang’s papers [2,3]
for a survey). For instance, it was only in 2001 when Huang and So [4] proved that a 2 × 2
matrix may have one, two or an infinite number of left eigenvalues; a different proof was
presented by the authors in [5]. While Wood used topological techniques, namely homotopy
groups, the last two papers are of algebraic nature and seemingly difficult to generalize for
n > 2.

In this article we try a different approach. The basic ideas will be those of characteristic
map, linearization and topological degree. In the simplest case n = 2, we associate to each
matrix A a polynomial µA whose roots are the left eigenvalues; computing the rank of its
differential allows us to classify the different types of spectra.

In the second part of the paper, we extend those techniques to 3 × 3 matrices. This time
the characteristic map may not be a polynomial but a rational map, usually with a point of
discontinuity. This seems to require the use of a local version of degree, although a closer
look allows us to reduce the problem to the global theory. In particular, this gives a new
proof of the existence of left eigenvalues.

Unlike the 2 × 2 case, where the linear equations that appear correspond to the well-
known Sylvester equation, the 3 × 3 situation is much more complex. Then for n = 3 a

∗Corresponding author. Email: quique.macias@usc.es

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f S

an
tia

go
 d

e 
Co

m
po

ste
la

], 
[E

. M
ac

ía
s-

V
irg

ós
] a

t 0
9:

22
 2

5 
Fe

br
ua

ry
 2

01
3 



2 E. Macías-Virgós and M.J. Pereira-Sáez

complete classification of spectra is still unknown. Nevertheless, our method allows to deal
with specific examples and opens the way for a better understanding of the general case.

The paper is organized as follows. In Section 2, we recall some topological and algebraic
preliminaries. Although our ideas are closely related to the theory of quasideterminants
[6], we have preferred a development based on Study’s determinant which parallels the
commutative setting. Section 3 is devoted to a notion of characteristic map for the left
eigenvalues of a quaternionic matrix A, that is, a map µA : H → H such that µA(λ) = 0 if
and only if the matrix A−λ Id is not invertible. In Section 4, we give a complete classification
of the left spectra of 2 × 2 matrices, depending on the rank of the characteristic map. In
Section 5, we prove that any 3 × 3 matrix A has a characteristic map µA which is either a
polynomial (when some of the entries outside the diagonal is null) or a rational function with
a distinguished point πA called its pole. When µA is continuous it has topological degree
3. However, πA may be a point of discontinuity; in this case the matrix B = A − πA Id
turns out to be invertible and we prove that B and B−1 have diffeomorphic spectra and
that B−1 admits a polynomial characteristic map. The last section offers several illustrative
examples.

2. Preliminaries
2.1. Topological degree
The topological degree (or Brouwer degree) of a map can be defined by techniques either
from algebraic topology [7] or from functional analysis [8–10]. We want to apply the
following global result (cf. [11, p.101]):

Theorem 2.1 Let M be a connected closed oriented manifold, let µ : M → M be a
differentiable map of degree k. Let m ∈ M be a regular value such that the differential µ∗λ

preserves the orientation for any λ in the fiber µ−1(m). Then µ−1(m) is a finite set with k
points.

Sometimes one has to deal with a local notion of degree. The main result is the following
one [8, p.38].

Theorem 2.2 Let # be a bounded open set in Rn. Let µ : # → Rn be a map which is
continuous on the closure # and differentiable on #. Suppose that 0 is a regular value of
µ and that 0 /∈ µ(∂#). Then

deg(µ,#, 0) =
∑

λ∈µ−1(0)

sgn[Jµ(λ)]

where we denote by Jµ the Jacobian of µ.

A well-known consequence is that if deg(µ,#, 0) &= 0 then the equation µ(λ) = 0
has at least one solution in #. In fact, for maps from the sphere into itself, the existence
of solutions only depends on the continuity, by the following result [12, Ch. VIII, Ex. 2.5,
p.191]:

Proposition 2.3 Let µ : S4 → S4 be a continuous map whose degree is nonzero. Then
µ is surjective.
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Linear and Multilinear Algebra 3

2.2. Linearization
We consider the space of quaternions H as a differentiable manifold diffeomorphic to R4.
Then the differential µ∗λ : H → H at the point λ ∈ H of the differentiable map µ : H → H
can be computed by means of the formula

µ∗λ(X) = d
dt |t=0

µ(λ + t X) = lim
t→0

1
t

(µ(λ + t X) − µ(λ)).

Lemma 2.4 (1) Let f, g : H → H be two differentiable maps. Then the differential of the
product is given by

( f · g)∗λ(X) = f∗λ(X) · g(λ) + f (λ) · g∗λ(X);
(2) Assume that f (λ) &= 0 for all λ ∈ H. Let 1/ f : H → H be the map given by

(1/ f )(λ) = f (λ)−1. Then

(1/ f )∗λ(X) = − f (λ)−1 f∗λ(X) f (λ)−1.

2.3. Sylvester equation
Let P, Q, R ∈ H be three quaternions. We are interested (see formula (6)) in the rank of
R-linear maps % : H → H of the form %(X) = P X + X Q. The equation %(X) = R has
been widely studied, sometimes under the name of Sylvester equation [13].
Lemma 2.5 (1) Let P = t + x i+ yj+ zk. Then the matrix associated to the R-linear map
X '→ P X with respect to the basis {1, i, j, k} is L(P) = ((P) Id + A(P), where ((P) is
the real part of P and

A(P) =





0 −x −y −z
x 0 −z y
y z 0 −x
z −y x 0



 ;

(2) Analogously, if Q = s +ui+vj+wk then the matrix associated to the right translation
X '→ X Q is R(Q) = ((Q) Id + B(Q), where

B(Q) =





0 −u −v −w

u 0 w −v

v −w 0 u
w v −u 0



 .

Next Theorem is a reformulation of the results by Janovská and Opfer in [14], see also
[15].

Theorem 2.6 (1) The rank of % is even, namely 0, 2 or 4;
(2) rank % < 4 if and only if P and −Q are similar quaternions, i.e. they have the same

norm and the same real part;
(3) rank % = 0 if and only if P is a real number and Q = −P.

Proof The matrix associated to % is

J =





t + s −x − u −y − v −z − w

x + u t + s −z + w y − v

y + v z − w t + s −x + u
z + w −y + v x − u t + s



 .
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4 E. Macías-Virgós and M.J. Pereira-Sáez

Since

det J =(t + s)4 + 2(t + s)2(x2 + y2 + z2 + u2 + v2 + w2)

+ (x2 + y2 + z2 − u2 − v2 − w2)2 ≥ 0, (1)

the matrix J has rank 4 except when t +s = 0 and x2 + y2 + z2 = u2 +v2 +w2. In this case
J is skew-symmetric, hence its rank is even. If rank % = 0 it follows that x = y = z = 0
and u = v = w = 0. !

2.4. Resolution of arbitrary linear equations
More generally, let us consider a linear equation of the form

P1 X Q1 + · · · + Pn X Qn = R, with Pi , Qi , R ∈ H. (2)

For each bilateral term X '→ P X Q, the matrices L(P) and R(Q) commute, because
P(X Q) = (P X)Q. Then A(P) and B(Q) commute too. This implies that the quaternionic
linear Equation (2) is equivalent to the real linear system M X = R, where X, R ∈ R4 and
M is the 4 × 4 real matrix

M =
∑

i

L(Pi )R(Qi ) =
∑

i

ai bi Id +
∑

i

(ai Bi + bi Ai ) +
∑

i

Ai Bi

with ai = ((Pi ), bi = ((Qi ), Ai = A(Qi ) and Bi = B(Qi ). Contrary to the case n = 2,
when n ≥ 3 the rank of M may be odd.

Example 2.7 The rank of the matrix associated to the bilateral linear equation kX + X
(2 − i) − 2jX j = 0 is 3.

2.5. Determinants
It is possible to generalize to the quaternion the norm | det | (that is, with real values) of
the complex determinant. Papers [16,17] are surveys of the general theory of quaternionic
determinants. For the relationship between Study’s determinant and quasideterminants see
[6, p.76–85].

Definition 2.8 Let the quaternionic matrix A ∈ Mn×n(H) be decomposed as A = X + jY
with X, Y ∈ Mn×n(C). We shall call Study’s determinant of A the non-negative real
number

Sdet(A) := (det c(A))1/2,

where c(A) is the complex matrix c(A) =
[

X −Y
Y X

]
∈ M2n×2n(C).

Remark 1 Up to the exponent, this is the same determinant which appears in Theorem
8.1 of [2], as well as others considered in [16]. We have normalized the exponent to 1/2 in
order to ensure that Sdet(D) = |q1 . . . qn| for diagonal matrices D = diag(q1, . . . qn).

Proposition 2.9 ([17]) Sdet is the only functional that verifies the properties:

(1) Sdet(AB) = Sdet(A) · Sdet(B);
(2) If A is a complex matrix then Sdet(A) = | det(A)|.
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Linear and Multilinear Algebra 5

The following immediate consequences are very useful for computations.

Corollary 2.10 (1) Sdet(A) > 0 if and only if the matrix A is invertible;
(2) Let A and B = P AP−1 be similar matrices, then Sdet(A) = Sdet(B);
(3) Sdet(A) does not change when a (right) multiple of one column is added to another

column;
(4) Sdet(A) does not change when a (left) multiple of one row is added to another row;
(5) Sdet(A) does not change when two columns (or two rows) are permuted.

We shall need the following result too (we have not found it explicitly in the literature):

Proposition 2.11 For any matrix with two submatrices A, B of order m and n, respec-

tively, it holds that Sdet
[

A 0
∗ B

]
= Sdet(A) · Sdet(B).

2.6. Jacobi identity
Let C be a complex n × n matrix. Let I = {i1, . . . , i p} and J = { j1, . . . , jp} be the two
subsets of {1, . . . , n} with the same size p. Let us denote by CI,J the submatrix formed by
the rows with index in I and the columns with index in J . On the other side, let us denote by
C I,J the complementary matrix obtained by suppressing the rows in I and the columns in J .

The following Jacobi identity is attributed to Kronecker in [18].

Lemma 2.12 Assume that the complex matrix C is invertible. Then

det (C−1)I,J = (−1)I+J det C J,I / det C,

where I + J means i1 + · · · + i p + j1 + · · · + jp.

A generalization to quasideterminants appears in [6, Theorem 1.5.4, p.74], see also
Section 3.2. We shall use Study’s determinant to establish an analogous result in the
quaternionic setting.

Proposition 2.13 Let A be an invertible quaternionic matrix. Then

Sdet (A−1)I,J = Sdet AJ,I / Sdet A.

Proof If I = {i1, . . . , i p} we denote I ′ = I + n = {i1 + n, . . . , i p + n}; analogously
J ′ = J + n. The result follows from Lemma 2.12 because

c
(
(A−1)I,J

)
= c(A−1)I∪I ′,J∪J ′ =

(
c(A)−1

)

I∪I ′,J∪J ′

and
c(AJ,I ) = c(A)J∪J ′,I∪I ′

.

!

3. Characteristic equation
The problem we are proposing here is to find a characteristic map for the left eigenvalues
of a given matrix A, that is, to find a map µA : H → H such that µA(λ) = 0 if and only
if λ is a left eigenvalue of A. Notice that the function Sdet(A − λ Id) is real-valued, so it
is not of interest from the point of view of the topological degree, nor it is solvable in any
obvious way.
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6 E. Macías-Virgós and M.J. Pereira-Sáez

3.1. Left eigenvalues
Let A be a n × n matrix with quaternionic coefficients.

Definition 3.1 The quaternion λ ∈ H is a left eigenvalue of A if the matrix A − λ Id is not
invertible, or equivalently Sdet(A − λ Id) = 0.

Let σl(A) be the left spectrum, i.e. the set of left eigenvalues, of the matrix A.

Proposition 3.2 The spectrum σl(A) is compact.

Proof The spectrum is a closed set because it is given by the equation Sdet(A−λ Id) = 0. It
is bounded because λ ∈ σl(A) if and only if there exists v ∈ Hn , v &= 0, such that Av = λv;
then

|λ| = |λv|
|v| ≤ sup

w &=0

|Aw|
|w| = |A|.

In fact, all the left eigenvalues of A are located in the union of n Geršgorin balls [3, Theorem
6, p.146]. !

Proposition 3.3 Let B be an invertible matrix. Then λ ∈ σl(B) if and only if λ−1 ∈
σl(B−1).

Proof If Bv = λv then B−1(λv) = B−1 Bv = v = λ−1(λv). !

3.2. Background
When the matrix A is hermitian, all left eigenvalues are real numbers so they coincide with
the right eigenvalues [19]. Moreover, it is possible to define a true determinant for hermitian
matrices [2,20], which allows to construct a characteristic polynomial p(t) = det(A − t Id)

with real variable.
For the general case, Sdet(A) equals, up to an exponent, the determinant of AA∗. On

the other hand, Zhang [2] pointed out that if the quaternionic matrix is decomposed as
A = X + jY , with X, Y ∈ Mn×n(C), then its left eigenvalues λ = x + jy, with x, y ∈ C,
are the roots of the function σ : C × C → R given by

σ(x, y) = det
[

X − x Id −Y + y Id
Y − y Id X − x Id

]
. (3)

This is equivalent to the equation Sdet(A − λ Id) = 0.
Another approach is due to Gelfand et al. [6]. These authors associated with each

matrix A ∈ Mn×n(H) the n2 functions – that we shall call quasicharacteristic functions –,
defined by

fi j (λ) = |λ Id − A|i j , 1 ≤ i, j ≤ n,

where | · |i j is the (i, j)−quasideterminant. Let us denote by Ai, j the submatrix of order
(n − 1) obtained by suppressing the row i and the column j in the matrix A ∈ Mn×n(H).
Then quasideterminants are defined inductively by the formula

|A|i j = ai j −
∑

aiq(|Ai, j |pq)−1apj ,
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Linear and Multilinear Algebra 7

where the sum is taken over the indices p, q ∈ {1, . . . , n} with p &= i, q &= j , such that the
quasideterminant of lower order |Ai, j |pq is defined and it is non-null (see Proposition 1.5
of [21]).

When the matrix A is invertible, the entries of the inverse matrix A−1 are exactly
ai j = |A|−1

j i . In the commutative case, this gives the well-known formula ai j = (−1)i+ j

det A j,i/ det A. For quaternionic matrices, the norm of the quasideterminant |A|i j of A ∈
Mn×n(H) verifies

∣∣|A|i j
∣∣ · Sdet(Ai, j ) = Sdet(A). (4)

This is a particular case of Jacobi identity for quaternions (Proposition 2.13).

Remark 2 From Equation (4) it follows that the roots of the quasicharacteristic functions
are left eigenvalues. However, none of those functions gives the complete spectrum, as
shown in the next Example. Also notice that the definition of noncommutative left eigenvalue
considered in [6, Subsection 8.2, p.128] does not correspond to the notion we are discussing
here.

Example 3.4 Let A =




i 0 0
k j 0

−3i 2k k



. Then σl(A) = {i, j, k}. The quasi-characteristic

functions are

f11(λ) = λ − i,
f12(λ) = −(λ − i)k(λ − j),

f13(λ) = −(λ − i)
(

3i − 2k(λ − j)−1k
)−1

(λ − k),

f22(λ) = λ − j,

f23(λ) = −1
2
(λ − j)k(λ − k),

f32(λ) = −2k − (λ − k)k(λ − j),
f33(λ) = λ − k,

while f21(λ) and f31(λ) are not defined.

3.3. Characteristic map
We now introduce the notion of a characteristic map whose roots are the left eigenvalues,
thus generalizing the usual characteristic polynomial in the real and complex settings. As
we shall see, this notion fits naturally with the equation of order 2 given by Wood [1], as
well as with the procedure proposed by So [22] in order to compute the left eigenvalues of
3 × 3 matrices.

Definition 3.5 The map µ : H → H is a characteristic map of the matrix A ∈ Mn×n(H)

if, up to a constant, its norm verifies |µ(λ)| = Sdet(A − λ Id) for all λ ∈ H.

Example 3.6 Let D = diag(q1, . . . , qn) be a diagonal matrix. Then µ(λ) = (q1 − λ) · · ·
(qn − λ) is a characteristic map for D. The same result holds for triangular matrices.
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8 E. Macías-Virgós and M.J. Pereira-Sáez

Let us start with the 2 × 2 matrix A =
[

a b
c d

]
. If A is a diagonal matrix, then σl(A)

reduces to the elements in the diagonal. Otherwise, we can always suppose that b &= 0 (see
Remark 4). Moreover, Sdet(A − λ Id) does not change after elementary transformations
(Corollary 2.10), for instance

Sdet
[

a − λ b
c d − λ

]
= Sdet

[
0 b

c − (d − λ)b−1(a − λ) d − λ

]
.

Then, as pointed out by Wood, computing the left spectrum is equivalent to finding the roots
of a characteristic map like

µ(λ) = c − (d − λ)b−1(a − λ). (5)

Remark 3 Huang [23] proposed another map when c &= 0, namely (λ−a)c−1(λ−d)−b.
This polynomial is obtained by adding (λ − a)c−1 by the second row to the first row. This
expression is equivalent to b − (a − λ)c−1(d − λ), which is the one given by Wood at the
end of [1] (there is a misprint in the original paper).

The left spectrum is not invariant by similarity. However, we shall use the following
fact:

Proposition 3.7 If P is an invertible real matrix then Sdet(A − λ Id) = Sdet(P AP−1

−λ Id). Hence A and P AP−1 have the same characteristic maps.

Remark 4 Let A be a matrix of order n ≥ 2, let Pαβ be the real matrix obtained by
interchanging the rows α and β in the identity matrix In . Left (resp. right) multiplication by
the matrix Pαβ switches two rows (resp. columns) of A. Now let i &= j be two indices and
let π be any permutation of {1, . . . , n} sending i to 1 and j to n. Then π can be written as
a composition of transpositions, so by taking the product P of the corresponding matrices
Pαβ , we obtain the matrix P AP−1 where the initial entry ai j of A has moved to the place
(1, n).

4. Spectrum of matrices of order 2
In the next paragraphs, we shall classify the different possible spectra of 2 × 2 quaternionic
matrices depending on the rank of the differential µ∗λ of a characteristic map.

4.1. Preliminaries
The characteristic map µ : H → H given in (5) verifies that lim |µ(λ)| = ∞when |λ| → ∞.
Then µ can be extended to a continuous (or even differentiable) map µ : S4 → S4 on the
sphere S4 = H∪{∞}, the 1-point compactification of R4. A rigorous proof of the following
result can be found in Eilenberg–Steenrod’s book [24, p.304–310]:

Proposition 4.1 A polynomial map like µ and the power map λ2 are homotopic, hence
they have the same topological degree, which equals 2.

From Lemma 2.4 it follows that the differential of µ is given by

µ∗λ(X) = Xb−1(a − λ) + (d − λ)b−1 X. (6)
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Linear and Multilinear Algebra 9

4.2. Classification of left spectra
Now we are in a position to reformulate the following result from Huang and So [4], see

also [5,25]. Let A =
[

a b
c d

]
be a quaternionic matrix with b &= 0, and denote

a0 = −b−1c, a1 = b−1(a − d), ) = a2
1 − 4a0.

Theorem 4.2 ([4]) The matrix A has one, two or infinite left eigenvalues. The last case
is equivalent to the following conditions: a0, a1 are real numbers such that a0 &= 0 and
) < 0.

Remark 5 We shall call the infinite case spherical, because the spectrum σl(A) = {(1/2)

(a + d + bq) : q2 = )} is diffeomorphic to the sphere S2 ⊂ H0 = 〈i, j, k〉.

Let λ ∈ H be an eigenvalue of A, that is, µ(λ) = 0 for the map µ in (5). In the next
Propositions we shall apply Theorem 2.6 to the differential % = µ∗λ computed in (6).
Accordingly to the notation of Sylvester equation in Section 2.3, we denote

P = (d − λ)b−1, Q = b−1(a − λ).

First, we study the two non-generic cases.

Proposition 4.3 If rank µ∗λ = 0, then a0, a1 are real numbers and ) = 0. Moreover λ

equals (a + d)/2 and this is the only left eigenvalue of the matrix.

Proof We know from Theorem 2.6 that P = t ∈ R and Q = −t , then a1 = −2t and
2λ = a + d . From µ(λ) = 0 it follows that a0 = +t2, then ) = 0. Now it is easy to check
(using for instance Theorem 2.3 in [4]) that λ = a + tb is the only left eigenvalue of A. !

Lemma 4.4 Let A, B be two similar quaternions that do not commute. Then the equation
λ2 − (A + B)λ + AB = 0 has the unique solution λ = B.

Proof If λ &= B is a solution, it follows from (λ − B)λ = A(λ − B) that λ and A are
similar, then ((λ) = ((A) = ((B) and |λ| = |A| = |B|. By substituting in the equation
we see that the real parts and norms disappear, so we can suppose that A, B, λ are pure
imaginary quaternions with norm 1. Hence λ2 = −1 = B2 so the equation reduces to
(A + B)λ = (A + B)B, which implies λ = B, a contradiction.

Alternatively, the uniqueness of λ can be proved by using Theorem 2.3, case 4.1, of the
solution of quadratic equations in [26]. !

Proposition 4.5 If rank µ∗λ = 2 two things may happen:

(1) either the spectrum is spherical and all the eigenvalues have rank 2;
(2) or the matrix has just one eigenvalue.

Proof By using the diffeomorphism a + bσl(A′) = σl(A), we can substitute A by the so-

called ‘companion matrix’ A′ =
[

0 1
−a0 −a1

]
. Since the rank is 2, we have from Theorem

2.6 that P = t + α and Q = −t + β with α, β ∈ H0 = 〈i, j, k〉, |α| = |β| &= 0. Then
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10 E. Macías-Virgós and M.J. Pereira-Sáez

a1 = −2t + β − α. The first possibility is that β = α, then a1 = −2t . It follows from
µ(λ) = 0 that a0 = t2 + |β|2 &= 0 and ) = −4|β|2 < 0. Then we have the spherical case.
In particular λ = (−a1 − 2β)/2. The other eigenvalues have the form (−a1 + q)/2 with
q2 = −4|β|2, then the differential of µ verifies P = t − q/2 and Q = −t − q/2, and
so they have rank 2 too. The second possibility is that β &= α. Then a1 = −2t + β − α,
a0 = (t + α)(t − β), and Lemma 4.4 shows that the only eigenvalue is λ = t − β. !

Now we consider the generic case.

Proposition 4.6 If rank µ∗λ = 4 then the matrix has two different eigenvalues.

Proof Since the differential has maximal rank at the eigenvalue λ, the matrix A cannot
correspond to Propositions 4.3 or 4.5, hence, all its eigenvalues are of rank 4. Then by
the inverse function theorem the fiber µ−1(0) is discrete (in fact compact) and its cardinal
equals (Theorem 2.1) the degree of the map µ, which is 2 by Proposition 4.1. Notice that
the Jacobian is nonnegative by formula (1). !

Remark 6 In [27], Janovská and Opfer show that for quaternionic polynomials there are
several types of zeros accordingly to the rank of some real 4 × 4 matrix, but their procedure
does not seem to have an immediate geometrical meaning.

5. Characteristic maps of 3 × 3 matrices
The only known results about the left spectrum of 3 × 3 matrices are due to So [22],
who did a case by case study, depending on some relationships among the entries of the
matrix. He showed that when n = 3 left eigenvalues could be found by solving quaternionic
polynomials of degree not greater than 3. In general, there is not any known method for
solving the resulting equations.

In the following paragraphs, we shall develop a method for matrices of order 3 which
is analogous to that of Section 4, that is, we shall find a map µA such that |µA(λ)| =
Sdet(A − λ Id). This time, however, the characteristic map µA will be in most cases a
rational function instead of a polynomial (the latter occurs when the matrix A has some null
entry outside the diagonal).

Let us consider the quaternionic matrix A =




a b c
f g h
p q r



 ∈ M3×3(H).

5.1. Polynomial case
We start studying the simplest situation, when there exists some zero entry outside the
diagonal.

First, suppose that the matrix has the zero entry c = 0, that is,

Sdet(A − λ Id) = Sdet




a − λ b 0

f g − λ h
p q r − λ



 .

There are three possibilities:
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Linear and Multilinear Algebra 11

(1) if b, h = 0, we have a triangular matrix, so we can take

µ(λ) = (r − λ)(g − λ)(a − λ); (7)

(2) if b = 0 but h &= 0, then Proposition 2.11 allows us to reduce to the 2 × 2 case
and we obtain

µ(λ) =
(

q − (r − λ)h−1(g − λ)
)

(a − λ); (8)

(3) finally, if b &= 0, we can proceed as follows. We create a zero in the first row by
substracting to the first column C1 the multiple C2b−1(a − λ) of the second column:

Sdet(A − λ Id) = Sdet




0 b 0

f − (g − λ)b−1(a − λ) g − λ h
p − qb−1(a − λ) q r − λ



 ,

then we permute the two last columns in order to reduce to the 2×2 case. In this way
we can take as a characteristic map the polynomial of degree 3

µ(λ) = p − qb−1(a − λ) − (r − λ)h−1
(

f − (g − λ)b−1(a − λ)
)

. (9)

Theorem 5.1 If the matrix A ∈ M3×3(H) has some zero entry outside the diagonal,
then A admits a polynomial characteristic map.

Proof Let the entry be ai j = 0, with i &= j . Then according to Remark 4 there is a real
invertible matrix P such that the transformation P AP−1 does not change the characteristic
maps and gives a matrix with a13 = 0. !

5.2. Rational case
In the more general situation, when c &= 0, we can compute the Study’s determinant of the
matrix A by creating zeroes in the first row. Then

Sdet(A) = Sdet




0 0 c

f − hc−1a g − hc−1b h
p − rc−1a q − rc−1b r



 .

From Proposition 2.11 and the results for 2 × 2 matrices it follows:

Proposition 5.2 If c &= 0, then Sdet(A) is given:

(1) when g − hc−1b &= 0, by

|c| · |g−hc−1b| · |p − rc−1a

− (q − rc−1b)(g − hc−1b)−1( f − hc−1a)|;
(2) otherwise, by

|c| · |q − rc−1b| · | f − hc−1a|.

Definition 5.3 We call the point πA = g − hc−1b a pole of the matrix A ∈ M3×3(H).

Notice that πA is the quasideterminant |A3,1|21 (see page 7).
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12 E. Macías-Virgós and M.J. Pereira-Sáez

By applying Proposition 5.2 to the matrix A−λ Id we obtain the following characteristic
map for A (we omit the term |c|).

Proposition 5.4 Let A be a matrix of order 3 such that c &= 0. A characteristic map can
be defined as follows:

(1) if πA = g − hc−1b is the pole of A, then

µ(πA) =
(

q − (r − πA)c−1b
) (

f − hc−1(a − πA)
)

;

(2) for λ &= πA we define

µ(λ) = (πA − λ)
[

p − (r − λ)c−1(a − λ) − (10)
(

q − (r − λ)c−1b
)

(πA − λ)−1
(

f − hc−1(a − λ)
)]

.

Remark 7 The map in (10) is exactly the same formula given by So in [22, p.563], even if
our method is completely different. This is why we chose to compute determinants starting
from the right bottom corner.

5.3. Continuity at the pole
Up to now we have defined maps which verify |µ(λ)| = Sdet(A − λ Id) in norm. Since
Sdet is a continuous map we have lim

λ→πA
|µ(λ)| = |µ(πA)|. However, the following example

shows that µ may not be continuous at the pole πA.

Example 5.5 Let A =




0 i 1

3i − k 0 1
k −1 + j + k 0



. The pole πA = −i is not a left eigen-

value; in fact

µ(πA) = (−1 + j + k + 1)(3i − k − i) = 1 − i + 2j − 2k.

We observe that the directional limits

lim
ε→0

µ(−i + εq) = −q(j + k)q−1(2i − k)

depend on q ∈ H, hence lim
λ→πA

µ(λ) does not exist.

Theorem 5.6 The characteristic rational map µA is continuous if and only if the pole
πA is a left eigenvalue of A.

Proof Assume that πA is a left eigenvalue. Let (qn)n be a sequence converging to πA. Then
|µ(qn)| = Sdet(A−qn Id) converges to Sdet(A−πA Id) = 0, that is, µ(qn) → 0 = µ(πA).

Now we shall prove the converse. The map µ defined in Proposition 5.4 is of the form

µ(λ) = (πA − λ)
[

p(λ) − q(λ)(πA − λ)−1 f (λ)
]
, λ &= πA, (11)
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Linear and Multilinear Algebra 13

while µ(πA) = q(πA) f (πA). Let us assume that limλ→πA µ(λ) exists and equals
µ(πA). We must check that µ(πA) = 0. If f (πA) = 0 we have finished. Otherwise we
deduce from (11) that

lim
λ→πA

(λ − πA)q(λ)(λ − πA)−1 = −q(πA). (12)

From Lemma 5.7 it follows that the limit on the left side equals q(πA), hence q(πA) = 0,
which ends the proof. !

Lemma 5.7 Let Q = Q(λ) be a continuous map and suppose that there exists the limit
l0 = limλ→0 λQ(λ)λ−1. Then l0 = Q(0).

Proof Take a sequence of real numbers (εn)n → 0. Then

l0 = lim εn Q(εn)ε−1
n = lim Q(εn) = Q(0).

!
Notice that the differentiability of µ at the pole πA is not ensured.
It is an open question whether it is always possible or not to find a polynomial, or at

least a continuous characteristic map for a given matrix A.

5.4. Extension to the infinite point
Each of the characteristic maps we have introduced up to now can be extended to the sphere
S4 = H ∪ {∞}.

Proposition 5.8 The polynomial maps µ defined in Subsection 5.1 verify that
lim|λ|→∞ |µ(λ)| = ∞.

Proof When b = 0, the result follows from formulae (7) and (8); when b &= 0, the expression
of µ is that of formula (9), so

|µ(λ)|
|λ|2 ≥ |(r − λ)h−1(g − λ)b−1(a − λ)|

|λ|2 − | − p + qb−1(a − λ) + (r − λ)h−1 f |
|λ|2 .

!

Proposition 5.9 The rational map µ defined in the c &= 0 case by formula (10) can be
extended to S4 = H ∪ {∞} (maybe with a discontinuity at the pole πA).

Proof We have

µ(λ) = (πA − λ)p2(λ) − (πA − λ)q1(λ)(πA − λ)−1 f1(λ)

with polynomials

p2(λ) = p − (r − λ)c−1(a − λ), (13)

q1(λ) = q − (r − λ)c−1b,

f1(λ) = f − hc−1(a − λ).
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14 E. Macías-Virgós and M.J. Pereira-Sáez

Then
|µ(λ)| ≥ |(πA − λ)p2(λ)| − |q1(λ) f1(λ)|

and

lim
|λ|→∞

|µ(λ)|
|λ|3 ≥ lim

|λ|→∞
|(πA − λ)p2(λ)|

|λ|3 ≥ lim
|λ|→∞

|c−1| |r − λ|
|λ|

|a − λ|
|λ| = |c−1|.

!

5.5. Discontinuous case
Let us now assume that the characteristic map µA defined in Proposition 5.4 is not continuous
at the pole πA, or equivalently that πA is not a left eigenvalue of A (Theorem 5.6). Then the
matrix B = A −πA Id is invertible and its pole is πB = 0. Moreover, σl(A) = σl(B)+πA.
On the other hand, from Proposition 3.3, we know that the spectra of B and B−1 are
diffeomorphic, because σl(B−1) = σl(B)−1.

Theorem 5.10 Let A be a matrix such that the pole πA is not a left eigenvalue. Let
B = A − πA Id. Then the matrix B−1 has a polynomial characteristic map.

Proof According to formula (4) the norm of the entry (1, 3) of the matrix B−1 equals

Sdet(B3,1)/ Sdet(B) = |πB |/ Sdet(B) = 0,

then Theorem 5.1 applies. !
Here is an alternative proof of Theorem 5.10. Let µB(λ) = −λR(λ), with

R(λ) = p(λ) + q(λ)λ−1 f (λ), λ &= 0,

be the characteristic map given in Proposition 5.4 (we assume πB = 0.) Then it is immediate
that λR(λ−1)λ is a polynomial in λ (of degree 3 and independent term −c−1) and we only
have to apply the following result.

Proposition 5.11 Let µB be a characteristic map of the invertible matrix B = A−πA Id,
with a discontinuity at the pole πB = 0. Then

µB−1(λ) = Sdet(B)−1λ2µB(λ−1)λ, λ &= 0,

is a characteristic map for B−1.

Proof From Proposition 2.9 we have

Sdet(λ−1 Id) · Sdet(B−1 − λ Id) · Sdet(B) = Sdet(λ−1 Id − B)

then
|λ−3| · Sdet(B−1 − λ Id) · Sdet(B) = |µB(λ−1)|.

!

Remark 8 The idea that a rational map like R(λ) can be converted into a polynomial
λ−1 R(λ)λ−1 with variable λ−1 is due to So (see [22, Lemma 3.5, p.558]).
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Linear and Multilinear Algebra 15

6. Topological study of the 3 × 3 case
We shall consider separately the polynomial, rational continuous and discontinuous cases
considered in Section 5.

6.1. Polynomial case
Let us start with matrices having some null entry outside the diagonal (as we have seen this
case can be reduced to the case c = 0). We know that the characteristic map is a polynomial
of degree 3 which can be extended in a continuous way to the sphere S4. Then since there
is a unique term of higher degree 3, the map µA is homotopic to λ3, so it has topological
degree 3.

Proposition 6.1 Let λ be a left eigenvalue of the matrix A with c = 0. Then the
differential of the polynomial characteristic map µA in Subsection 5.1 is given by

(1) if b, h = 0 then

µ∗λ(X) = −X (g − λ)(a − λ) − (r − λ)(g − λ)X − (r − λ)X (a − λ);

(2) if b = 0, h &= 0 then

µ∗λ(X) =Xh−1(g − λ)(a − λ) −
(

q − (r − λ)h−1(g − λ)
)

X

+ (r − λ)h−1 X (a − λ);

(3) otherwise,

µ∗λ(X) =
(

qb−1 − (r − λ)h−1(g − λ)b−1
)

X

+Xh−1
(

f − (g − λ)b−1(a − λ)
)

− (r − λ)h−1 Xb−1(a − λ).

The proof is a direct application of the derivation rules given in Lemma 2.4.
The expressions obtained are of the form P X + X Q + RX S = 0, whose rank can be

computed with the method given in Section 2.4.

Example 6.2 Let A =




a 0 0
f g 0
p q r



 be a triangular matrix. The differential µ∗λ(X) of the

characteristic map
µ(λ) = (r − λ)(g − λ)(a − λ),

at the eigenvalues λ = a, g, r is given, respectively, by (a − r)(g − a)X , (g − r)X (a − g)

and X (r − g)(a − r). Hence, unlike the case n = 2, the rank depends on the multiplicity
of each eigenvalue, and can be either 0 or 4.

6.2. Rational case
When none of the entries outside the diagonal is zero, the characteristic map is a rational
function, with a distinguished point πA.
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16 E. Macías-Virgós and M.J. Pereira-Sáez

Let us first suppose that the pole πA is a left eigenvalue. We know from Theorem 5.6
and (10) that µA is a continuous map on S4 of the form

(πA − λ)
[

p(λ) − q(λ)(πA − λ)−1 f (λ)
]
.

By examining formulae (13) it is clear that p(λ) is homotopic to −λ2 by the homotopy

tp − (tr − λ)(1 − t + tc−1)(ta − λ), t ∈ [0, 1].

Analogously q(λ) ∼ λ and f (λ) ∼ λ, so µA(λ) is homotopic to

(πA − λ)
[
−λ2 − λ(πA − λ)−1λ

]

(notice that this map is continuous at λ = 0), which in turn is homotopic to λ3 − λ2 by the
homotopy

(tπA − λ)
[
−λ2 − λ(tπA − λ)−1λ

]
.

Finally, the homotopy λ2(λ − t) shows that the map µA is homotopic to λ3. All these
homotopies can be extended to the infinity.

Hence we have proved

Proposition 6.3 When the rational characteristic map µA is continuous it has topolog-
ical degree 3.

On the other hand, suppose that πA is not a left eigenvalue. Then the polynomial case
applies to (A − πA Id)−1 by Theorem 5.10. So we do not have to use the local theory of
degree, whose main difficulty is the need of considering homotopies which are admissible
with respect to the domain # of definition, see [8, p.28].

Corollary 6.4 Any 3 × 3 quaternionic matrix has at least one left eigenvalue.

Proof In all cases the eigenvalues (or its inverses) can be computed as the roots of a
continuous map µ of degree 3; then, µ−1(0) is not void (see Section 2). !

6.3. Final remarks
In order to simplify the computation of the rank, by taking B = A − πA Id, we can always
assume that the pole is πB = 0.

Proposition 6.5 For a 3 × 3 matrix with c &= 0 the differential of the characteristic map
µ given in formula (10) at the point λ &= πB = 0 is

µ∗λ(X) =
X

[
−p + (r − λ)c−1(a − λ) + (q − (r − λ)c−1b)(−λ)−1( f − hc−1(a − λ))

]

+ (−λ)Xc−1(a − λ) − (−λ)Xc−1b(−λ)−1( f − hc−1(a − λ))

− (−λ)(q − (r − λ)c−1b)(−λ)−1 X (−λ)−1( f − hc−1(a − λ))

+
[
(−λ)(r − λ)c−1 − (−λ)(q − (r − λ)c−1b)(−λ)−1hc−1

]
X.
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Linear and Multilinear Algebra 17

When µA is continuous but not differentiable at the pole πA the rank at πA could be
computed by taking a different characteristic map µP AP−1 . In particular, by moving around
the entries outside the diagonal of a given matrix (see Remark 4 of Section 3.3) one can
obtain up to six different characteristic maps, each one with a different pole.

It is an open question whether there exists a matrix A verifying that all the poles of the
matrices P AP−1, with P real, are eigenvalues. If such an example does not exist then the
non-polynomial case would not be necessary.

7. Examples
Here are some miscellaneous examples.

Example 7.1 Discontinuous map. Let A be the matrix given in Example 5.5. Then

B = A − πA Id =




i i 1

3i − k i 1
k −1 + j + k i





is an invertible matrix with pole πB = 0. By computing the quasideterminants we obtain
the inverse matrix

B−1 = 1
10




4i − 2k −4i + 2k 0

−1 − 3i + 8j − 6k 1 + 3i − 3j + k −5j − 5k
11 + i − 8j − 8k −1 − i + 3j + 3k −5j + 5k



 .

Its polynomial characteristic map is

µB−1(λ) =10 − λi − 2iλ (14)

− 1
10

iλ(2i − k)λ − 1
10

λ(1 + j + 2k)λ − 1
100

λ(j + k)λ(2i − k)λ.

On the other hand, the rational characteristic map for B is

µB(λ) = −λR(λ) = −λ
[
1 + k + iλ + λi − λ2 + (j + k + λi)λ−1(2i − k + λ)

]

and one can check that λR(λ−1)λ equals (up to a constant) the map (14).

Example 7.2 An eigenvalue of rank 3. Let

A =




j 1 0
2i −k 1

2 − i − 2j −1 − j + k −i − k



 .

The characteristic map is

µ(λ) = 2 − i − 2j + (1 + j − k)(j − λ) + (i + k + λ) (2i + (k + λ)(j − λ)) .

For the left eigenvalue λ = 0 the differential is

µ∗0(X) = kX + X i + (i + k)X j,
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18 E. Macías-Virgós and M.J. Pereira-Sáez

whose real associated matrix M =





0 −2 0 0
0 0 −2 0
0 0 0 0
2 0 −2 0



 has rank 3.

Example 7.3 A matrix which can not be reduced to the polynomial case c = 0. We shall
exhibit a matrix A ∈ M3×3(H) such that for any real invertible matrix P all entries in
the matrix P AP−1 outside the diagonal are not null. Let A = T + iX + jY + kZ , with
T, X, Y, Z ∈ M3×3(R). Then

P AP−1 = PT P−1 + iP X P−1 + jPY P−1 + kP Z P−1,

which means that the matrix P AP−1 has a null entry if and only if the same happens for the
real matrices PT P−1, P X P−1, PY P−1 and P Z P−1. Moreover, from Remark 4 we can
suppose that the null entry is at the place (1, 3). Now, recall that A is the matrix associated to
a linear map H3 → H3 with respect to the canonical basis e1, e2, e3 and that the real matrix
P = (pi j ) represents the change to another basis v1, v2, v3, that is, v j = ∑

i pi j ei where
P−1 = (pi j ). Assume that T, X are the matrices associated to two rotations R3 → R3

with the same rotation axis L and rotation angles +π/2 and −π/2, respectively. Then the
nullity of the entry (1,3) means that T v3, Xv3 ∈ 〈v2, v3〉, which implies that either v3 is
in the direction of the axis, i.e. L = 〈v3〉, or it is orthogonal to the axis, in which case
〈v2, v3〉 = L⊥ (otherwise it is impossible that v3, T v3 and Xv3 lie in the same plane). Now,
suppose that Y, Z are two other rotations with axis L′ and rotation angles ±π/2. If L and
L′ are different and not perpendicular, then it is impossible that Yv3, Zv3 ∈ 〈v2, v3〉.

Example 7.4 A continuous rational characteristic map. The pole πA = 1 + j is an
eigenvalue of the matrix

A =




0 −j i

−1 + j j k
p q r



 ,

with p, q, r ∈ H arbitrary, p, q &= 0. In fact,

µ(πA) = (q − (r − 1 − j)k) (−1 + j + j(−1 − j)) = 0.

Example 7.5 Generic polynomial case. Let

A =




k 0 0

3i − j −i i
1 − 2k j −j



 .

The characteristic map is µ(λ) = (−1 − k + λi)λ(k − λ) hence σl(A) = {k, 0,−i − j}.
The differential of µ at each eigenvalue is

µ∗k(X) = (−1 − i + k)X,

µ∗0(X) = −(1 + k)Xk,

µ∗(−i−j)(X) = X (1 + 2i + k).

Then the matrix A has three different eigenvalues, all of them with maximal rank.
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Example 7.6 Two eigenvalues, one of null rank, the other one of maximal rank. Let

A =




−i − j 0 0

k −i i
1 − i j −j



 .

This time µ(λ) = (1 + k − λi)λ(i + j + λ) so σl(A) = {0,−i − j}. We have

µ∗0(X) = (1 + k)X (i + j),
µ∗(−i−j)(X) = 0.
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