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Abstract A hypersurface of a Riemannian manifold is called homogeneous if it is an
orbit of an isometric action on the ambient manifold. Homogeneous hypersurfaces
have remarkable geometric properties, providing the simplest examples of hypersur-
faces with constant mean curvature. Thus, they are crucial for the investigation of
more general types of submanifolds in ambient spaces with large isometry groups.

In this survey article we present an introduction to some of the basic geometric,
topological, and algebraic features of homogeneous hypersurfaces, describing what
is known about their classification problem in symmetric spaces, and explaining the
main tools needed for their study in the context of symmetric spaces of noncompact
type.
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1 Introduction

Minimal, and more generally, constant mean curvature hypersurfaces play a funda-
mental role in Riemannian submanifold geometry. As solutions to variational prob-
lems involving areas and volumes, they arise naturally in various contexts such as
physics, biology or optimal design. Their mathematical investigation has a long his-
tory and constitutes one of the most important trends in current research in geometric
analysis. Some fundamental techniques in their study, such as the use of barriers, the
maximum principle, or bifurcation results, are based on the good knowledge that we
have of certain examples of hypersurfaces with constant mean curvature and with a
high degree of symmetry (hyperplanes, spheres, cylinders, catenoids, horospheres,
etc.). Thus, one of the first natural steps in the investigation of submanifolds of a
given Riemannian space is to determine some classes of constant mean curvature
hypersurfaces that are invariant under a large group of isometries of the ambient
space. When such group is large enough to act transitively on the hypersurface, the
latter is called a homogeneous hypersurface, and the isometric action on the ambient
space is said to be of cohomogeneity one. This is the case of hyperplanes, spheres,
and cylinders in the Euclidean space, or of horospheres in the hyperbolic space,
among other examples.

By definition, the investigation of homogeneous hypersurfaces only makes sense
in spaces with a large isometry group. Therefore, homogeneous spaces constitute the
natural context for this investigation. Indeed, apart from spaces of constant curvature,
the theory of surfaces with constant mean curvature in homogeneous 3-manifolds
has undergone important advances, see for example [71].

For arbitrary dimensions, a particularly elegant class of homogeneous manifolds
is that of symmetric spaces. Locally, symmetric spaces are characterized by the
property that curvature is invariant under parallel transport. Globally, the defining
property of symmetric spaces is the existence of isometric central inversions around
any point, which readily imply the existence of a transitive group of isometries.
Symmetric spaces were classified by Élie Cartan [21] into several infinite families,
some exceptional examples, and their products. Of course, this includes the space
forms, but also the isotropic (or two-point homogeneous) Riemannian manifolds,
various (compact and noncompact) Grassmannians, compact Lie groups with bi-
invariant metrics, and different moduli spaces of algebraic structures: real structures
of a complex vector space, complex structures on a real vector space, positive
definite symmetric matrices, etc. Symmetric spaces constitute a distinguished class
in Berger’s classification of holonomy groups [17], but also an appropriate setting
for several problems of geometric analysis [54]. Their study also arises naturally in
other areas such as number theory and algebraic geometry [58], [86], [101].

In view of the crucial role played by homogeneous hypersurfaces in the classical
submanifold theory of space forms, we believe that the investigation of homogeneous
hypersurfaces in symmetric spaces constitutes one of the first steps in the long-term
program of developing a submanifold theory of symmetric spaces. The centrality of
these spaces in Mathematics, along with their fascinating geometric, algebraic, and
analytic properties, gives us a glimpse of a field yet to be explored.
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The aim of this text is to provide a survey on homogeneous hypersurfaces, their
generalizations, and their classification problem in symmetric spaces, with focus
on the noncompact setting. Thus, we will start by discussing the definition, general
properties, and important topological and geometric properties of homogeneous hy-
persurfaces in Section 2. In Section 3 we will review the notion and fundamental
geometric and algebraic aspects of symmetric spaces (§3.1-3.2), mainly of those of
noncompact type (§3.3), and reviewing the algebraic theory of parabolic subalgebras
(§3.4). Section 4 will be devoted to report on the classification problem of homo-
geneous hypersurfaces in symmetric spaces of compact type. Here we will provide
an introductory discussion to the problem in spheres through various interesting
examples (§4.1), and then we will describe the classification on the other compact
symmetric spaces, focusing on the rank one case (§4.2). In Section 5 we will review
the classification problem in symmetric spaces of noncompact type of rank one (the
hyperbolic spaces over the normed division algebras), whereas in Section 6 we will
present what is known in the higher rank case. Finally, in Section 7 we provide a list
of open problems.

2 Homogeneous hypersurfaces

Let 𝑀 be a Riemannian manifold, and Isom(𝑀) its isometry group, which is known
to be a Lie group. A connected, injectively immersed submanifold 𝑃 of 𝑀 is called
(extrinsically) homogeneous if for any 𝑝, 𝑞 ∈ 𝑃 there exists an isometry 𝜑 of 𝑀 such
that 𝜑(𝑝) = 𝑞 and 𝜑(𝑃) = 𝑃. Note that if 𝑃 = 𝑀 we recover the standard notion
of (intrinsic) homogeneity of a Riemannian manifold. By considering the subgroup
of isometries of 𝑀 that leave the submanifold 𝑃 invariant, one easily sees that 𝑃
is homogeneous if and only if 𝑃 is an orbit of an isometric action on 𝑀 , that is,
there exists a subgroup 𝐻 of Isom(𝑀) such that 𝑃 = 𝐻 · 𝑝, for some (and hence,
for any) 𝑝 ∈ 𝑃. Hereafter, by 𝐻 · 𝑝 we denote the orbit of an action 𝐻 × 𝑀 → 𝑀

of a group 𝐻 through a point 𝑝 of 𝑀 , and by 𝐻𝑝 = {ℎ ∈ 𝐻 : ℎ · 𝑝 = 0} we denote
the isotropy group (or stabilizer) at 𝑝. Of course, 𝐻 · 𝑝 � 𝐻/𝐻𝑝 is a bijection,
which is indeed a diffeomorphism if the 𝐻-action on 𝑀 is smooth. Moreover, 𝑃
is properly embedded (equivalently, closed and embedded) in 𝑀 if and only if
𝐻 = {𝜑 ∈ Isom(𝑀) : 𝜑(𝑃) = 𝑃} is closed in Isom(𝑀) (in particular, an embedded
Lie subgroup of Isom(𝑀)); this in turn means that 𝑃 is an orbit of a proper isometric
smooth action on 𝑀 . See [65, Chapter 21], [69] and [72, §6] for further information
on smooth, proper, and isometric actions.

The family of orbits of a smooth isometric action of a connected Lie group 𝐻
on a Riemannian manifold 𝑀 determines what is called a singular Riemannian
foliation of 𝑀 . This is a decomposition of 𝑀 into connected, injectively immersed
submanifolds (leaves) that are locally equidistant to each other, and such that there is
a collection of smooth vector fields on 𝑀 spanning all tangent spaces to all leaves. In
the case of a smooth isometric 𝐻-action on 𝑀 , the collection {𝑋∗ : 𝑋 ∈ 𝔥} of Killing
fundamental vector fields on𝑀 , induced by elements 𝑋 in the Lie algebra 𝔥 of𝐻, span
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all tangent spaces to all orbits. Here 𝑋∗ is given by 𝑋∗
𝑝 = 𝑑

𝑑𝑡
|𝑡=0 Exp(𝑡𝑋) · 𝑝, where

Exp: 𝔥 → 𝐻 denotes the Lie group exponential map. Moreover, if 𝛾 is a geodesic in
𝑀 that is orthogonal at 𝛾(0) to one orbit, 𝐻 · 𝛾(0), then for any fundamental vector
field 𝑋∗ we have 𝑑

𝑑𝑡
〈 ¤𝛾, 𝑋∗〉 = 〈 ¤𝛾,∇ ¤𝛾𝑋∗〉 = 0, since ∇𝑋∗ is skew-adjoint as 𝑋∗ is

Killing. Hence, 〈 ¤𝛾, 𝑋∗〉 = 0, and thus, any geodesic orthogonal to one orbit, remains
orthogonal to any other orbit that it meets. This means that the orbits are locally
equidistant to each other. Orbit foliations, that is, singular Riemannian foliations
induced by isometric actions, are also called homogeneous foliations. See [1] for
more information on these concepts and properties.

Although Lie group theory plays a fundamental role in the analysis of homo-
geneous submanifolds and isometric actions, from a geometric perspective we are
ultimately interested in the orbit foliations of smooth isometric actions, and not so
much in the (possibly multiple) groups that give rise to the same orbit foliation. Thus,
when discussing isometric actions, we will usually consider actions to be equivalent
if they have the same orbits. More precisely, we will say that two isometric actions of
groups 𝐻1 and 𝐻2 on 𝑀 are orbit equivalent if there is an isometry 𝜑 of 𝑀 such that
𝜑(𝐻1 · 𝑝) = 𝐻2 · 𝜑(𝑝) for all 𝑝 ∈ 𝑀 , that is, 𝜑 maps the 𝐻1-orbits to the 𝐻2-orbits.
Thus, two smooth isometric actions are orbit equivalent if and only if their orbit
foliations are congruent in 𝑀 .

From now on, unless otherwise stated, isometric actions will be assumed to be
smooth and proper, and homogeneous submanifolds will be closed and embedded.

The cohomogeneity of an isometric action is the lowest codimension of its orbits.
Thus, a (proper) action has cohomogeneity zero precisely when it is transitive. An
orbit of an isometric action is called regular if its codimension agrees with the
cohomogeneity, and is called singular otherwise.

Remark 1 Among regular orbits we can distinguish two types: principal orbits and
exceptional orbits. Given an isometric 𝐻-action on 𝑀 , the 𝐻-orbit through 𝑝 is
principal if the isotropy group at 𝑝, 𝐻𝑝 = {ℎ ∈ 𝐻 : ℎ · 𝑝 = 𝑝}, is contained in any
other isotropy group 𝐻𝑞 , 𝑞 ∈ 𝑀 , up to conjugation in 𝐻. A nonprincipal regular
orbit is called exceptional. The union of all principal orbits constitutes an open dense
subset of 𝑀 . If 𝑀 is simply connected and complete, and 𝐻 is connected, then there
are no exceptional orbits. See [1, Chapter 3 and Corollary 5.35] for further details.

2.1 Homogeneous hypersurfaces and cohomogeneity one actions

A homogeneous hypersurface of 𝑀 is a regular orbit of a cohomogeneity one action
on 𝑀 . It is known that a cohomogeneity one action on a complete connected Rie-
mannian manifold has exactly zero, one, or two singular orbits. Indeed, the space of
orbits 𝑀/𝐻 = {𝐻 · 𝑝 : 𝑝 ∈ 𝑀} of a cohomogeneity one 𝐻-action is homeomorphic
to R, S1, [0,∞) or [0, 1], and nonprincipal orbits correspond to the boundary of
such spaces [3]. Depending on the geometry and topology of the ambient manifold
𝑀 , some of these possibilities may be excluded, see Remark 2.
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Example 1 The following items provide very simple examples of cohomogeneity one
actions with orbit spaces homeomorphic to R, S1, [0,∞) and [0, 1], respectively:

(a) The action of (R𝑛−1, +) onR𝑛 by translations: ℎ ·𝑝 = 𝑝+(ℎ, 0), where ℎ ∈ R𝑛−1,
𝑝 ∈ R𝑛. All orbits are regular (parallel hyperplanes).

(b) The action of SO2 on a torus of revolution around the 𝑧-axis in R3, given by
𝐴 · 𝑝 = (𝐴(𝑝1, 𝑝2), 𝑝3), where 𝐴 ∈ SO2 and 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ R3. All orbits
are regular (circles).

(c) The standard action of SO𝑛 on R𝑛 by rotations around the origin. The origin is
precisely the only singular orbit, whereas the concentric spheres about it are the
regular orbits.

(d) The action of SO𝑛 on the unit sphere S𝑛 ofR𝑛+1: 𝐴 · 𝑝 = (𝐴(𝑝1, . . . , 𝑝𝑛), 𝑝𝑛+1),
where 𝐴 ∈ SO𝑛 and 𝑝 = (𝑝1, . . . , 𝑝𝑛+1). The north and south poles of S𝑛 are
the two singular orbits, and the parallels are the regular orbits.

None of these actions has exceptional orbits (and hence the boundary points of
their orbit spaces correspond to singular orbits). Here we have three actions with
exceptional orbits:

(e) The action (d) above descends to a cohomogeneity one action of SO𝑛 on the
real projective space RP𝑛. This action has the same orbit space, namely [0, 1],
but only one singular orbit (the image of the poles under the projection map
𝜋 : S𝑛 → RP𝑛) and one exceptional orbit (the projection of the equator).

(f) The action of U1 on the infinite Möbius band R2/{(𝑥, 𝑦) ∼ (−𝑥, 𝑦 + 2𝜋)}, given
by 𝑒𝑖 \ · [(𝑥, 𝑦)] = [(𝑥, 𝑦 + 2\)], has orbit space [0,∞) and exceptional orbit
U1 · [(0, 0)].

(g) The action in (f) descends to a U1-action on the Klein bottle R2/{(𝑥, 𝑦) ∼
(−𝑥, 𝑦 + 2𝜋) ∼ (𝑥 + 2𝜋, 𝑦)} with orbit space [0, 1], two exceptional orbits
U1 · [(0, 0)] and U1 · [(𝜋, 0)], and no singular orbit.

As exemplified by the previous actions, the singular Riemannian foliation induced
by a cohomogeneity one action on a complete connected manifold 𝑀 is of a very
particular type. It is a decomposition of 𝑀 into mutually equidistant, properly em-
bedded leaves, all of them of codimension one (the regular orbits/leaves), except at
most two (the singular orbits/leaves). Each regular orbit is a tube around any of the
singular orbits. Here, by tube of radius 𝑟 around a submanifold 𝑃 of 𝑀 we mean the
subset of 𝑀 given by

𝑃𝑟 = {exp(𝑟b) : b ∈ a𝑃, |b | = 1},

where exp is the Riemannian exponential map of 𝑀 , and a𝑃 is the normal bundle
of 𝑃. If 𝑃 is a hypersurface, each connected component of 𝑃𝑟 is called a parallel or
equidistant hypersurface to 𝑃. Locally and for small enough 𝑟, a tube 𝑃𝑟 of radius 𝑟
around 𝑃 is a hypersurface. If 𝑄 is a hypersurface of 𝑀 , b is a smooth unit normal
vector field along𝑄, and𝑄𝑟

b
= {exp(𝑟b𝑝) : 𝑝 ∈ 𝑄} is a submanifold of codimension

higher than one in 𝑀 , then 𝑄𝑟
b

is said to be a focal submanifold of 𝑄. Thus, if 𝑃
is a submanifold of codimension greater than one, then 𝑃 is a focal submanifold of
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any of its codimension one, immersed tubes 𝑃𝑟 . Observe that a codimension one,
immersed tube around a submanifold 𝑃 of codimension 𝑘 in 𝑀 is diffeomorphic to
𝑃 × S𝑘−1.

Remark 2 The existence of a cohomogeneity one 𝐻-action on a complete connected
Riemannian manifold 𝑀 imposes some topological restrictions on 𝑀; we refer to [1,
§6.3], [20, Chapter IV, Theorems 8.1–8.2] and [6, §2.9.3] for more information. If
𝑀/𝐻 is R or S1, then all orbits are mutually diffeomorphic and principal, and 𝑀 is
a fiber bundle over 𝑀/𝐻 (which is trivial if 𝑀/𝐻 � R) and with fiber a principal
orbit. In particular, if 𝑀 is simply connected, 𝑀/𝐻 cannot be S1; indeed, if 𝑀 is a
Hadamard manifold, the only possibilities for 𝑀/𝐻 are R and [0,∞), see [5, p. 212].
If 𝑀/𝐻 � [0,∞), then 𝑀 is diffeomorphic to a tubular neighborhood of the only
nonprincipal 𝐻-orbit, say 𝐻 · 𝑝, and hence 𝑀 � (𝐻 · 𝑝) ×𝐻𝑝

𝑉 is a Euclidean space
bundle over such nonprincipal orbit 𝐻 · 𝑝. If 𝑀/𝐻 � [0, 1], then there are two
nonprincipal orbits, say 𝐻 · 𝑝+ and 𝐻 · 𝑝− , and 𝑀 admits a decomposition as a union
of two disk bundles

𝑀 � (𝐻 ×𝐻𝑝+ D−) ∪𝐻/𝐾 (𝐻 ×𝐻𝑝− D+),

where 𝐻𝑝± are the isotropy groups at 𝑝±, 𝐾 is the isotropy at a point of a principal
orbit 𝐻/𝐾 , D± are two disks centered at the origin of the normal spaces to 𝐻 · 𝑝±
at 𝑝±, respectively, and the union of the disk bundles is made along the principal
orbit 𝐻/𝐾 . This decomposition into two disk bundles is fundamental for various
constructions and classifications, see for instance [47], [50] and [80].

2.2 Geometric properties of homogeneous hypersurfaces

Homogeneous hypersurfaces, and in general, orbits of cohomogeneity one actions,
have some nice geometric properties. Since the shape operators (at different points)
of a homogeneous hypersurface 𝑃 of𝑀 are conjugate by isometries of𝑀 , their eigen-
values are independent of the point, that is, 𝑃 has constant principal curvatures. As
the orbits of an isometric action are locally equidistant, and nearby orbits to a regular
one are regular, the nearby (locally defined) equidistant hypersurfaces to a homo-
geneous hypersurface are also (open subsets of) homogeneous hypersurfaces, and
therefore also with constant principal curvatures. This implies that a homogeneous
hypersurface 𝑃 is isoparametric: the locally defined, nearby parallel hypersurfaces
to 𝑃 have constant mean curvature. Isoparametric hypersurfaces have a long history
arising from a problem in geometric optics, with contributions by Levi-Civita, Segre,
and Cartan in the 1930s, and with many beautiful results obtained over the last five
decades. We refer to [26], [27], [34], [90], [98], [99], and the references therein for
more information on this topic.

Actually, the classification of homogeneous hypersurfaces in Euclidean and real
hyperbolic spaces follows from the respective Segre’s [87] and Cartan’s [22] clas-
sifications of isoparametric hypersurfaces in such spaces. For Euclidean spaces R𝑛,
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this classification states that isoparametric hypersurfaces are open subsets of affine
hyperplanes R𝑛−1, spheres S𝑛−1, or cylinders S𝑘 × R𝑛−𝑘−1, 𝑘 = 1, . . . , 𝑛 − 2. Since
homogeneous hypersurfaces are always isoparametric, and the previous complete
hypersurfaces of R𝑛 are homogeneous, they also exhaust all homogeneous hyper-
surfaces in Euclidean spaces. Thus, up to orbit equivalence, the cohomogeneity one
actions on a Euclidean space R𝑛 are the standard actions of R𝑛−1 (Example 1 (a)), of
SO𝑛 (Example 1 (c)), and of SO𝑘+1 ×R𝑛−𝑘−1. Cartan’s classification for hyperbolic
spaces will be reviewed in Section 5.

We remark that, whereas in spaces of constant curvature a hypersurface is isopara-
metric if and only if it has constant principal curvatures, this is not true in general.
Examples of isoparametric hypersurfaces with nonconstant principal curvatures (and
hence, inhomogeneous hypersurfaces) have been found in several symmetric spaces,
such as complex and quaternionic projective spaces [36], [39], and many symmet-
ric spaces of noncompact type [29], [30], [35], [41]; see also Remarks 4, 5, 6, 7,
and 8. Conversely, we do not know of any nonisoparametric hypersurface with con-
stant principal curvatures in symmetric spaces, although there do exist examples for
some particular conformally flat metrics [81]. There are also important spaces where
isoparametric hypersurfaces are known to be homogeneous, such as the homoge-
neous 3-manifolds with 4-dimensional isometry group, or the product of two round
2-spheres [40], [100], besides Euclidean and real hyperbolic spaces.

There is, however, an important characterization of isoparametric hypersurfaces
that holds in any Riemannian manifold. Specifically, a hypersurface 𝑃 of 𝑀 is
isoparametric if and only if 𝑃 is (maybe only locally) a regular level set of an
isoparametric function on (an open subset of)𝑀 . Here, a smooth function 𝑓 : 𝑀 → R
is called isoparametric if 𝑓 is not constant on any open subset of 𝑀 and it satisfies
the system of partial differential equations

|∇ 𝑓 |2 = 𝑎 ◦ 𝑓 , Δ 𝑓 = 𝑏 ◦ 𝑓 , (1)

for some real functions 𝑎, 𝑏 of real variable, with 𝑎 smooth and 𝑏 continuous. In
other words, the norm of the gradient and the Laplacian of 𝑓 are constant along the
level sets of 𝑓 . The collection of level sets of an isoparametric function is called an
isoparametric family of hypersurfaces. We refer the reader to [1, §5.5], [6, §2.9.2]
and [48] for more information on isoparametric functions.

We would like to emphasize that, as homogeneous hypersurfaces are isoparamet-
ric, they are also given as level sets of isoparametric functions. This result, which
would be only local in principle, is indeed global. More precisely: given a cohomo-
geneity one action on a complete and simply connected Riemannian manifold 𝑀 , its
orbit foliation is recovered as the collection of level sets of an isoparametric function
on 𝑀 , as follows from [1, Theorem 5.68]. Of course, the converse is not true due
to the existence of inhomogeneous isoparametric families of hypersurfaces. If 𝑀 is
compact, any isoparametric family of hypersurfaces on 𝑀 has at least a minimal
hypersurface in the family, which is unique if 𝑀 has positive Ricci curvature [49].
In particular, any cohomogeneity one action on a compact Riemannian manifold 𝑀
has a minimal regular orbit.
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The fact that homogeneous hypersurfaces (or more generally, isoparametric hy-
persurfaces) arise as regular level sets of solutions to the equations (1) makes that
these geometric objects appear naturally in relation to certain overdetermined prob-
lems of partial differential equations; see [59] for a survey. These include parabolic
equations, as in the study of the heat flow [83], [84], [85] or of stationary isothermic
surfaces [82], [70], and elliptic equations, as in some problems in mathematical
physics [77], and in various overdetermined boundary value problems (including
generalizations of the outstanding Schiffer conjecture [89]). Indeed, the homogene-
ity (respectively, isoparametricity) of geodesic spheres plays a crucial role in a
partial symmetry result proved in [37] for overdetermined boundary value prob-
lems for semilinear elliptic equations on small domains of two-point homogeneous
spaces (resp. harmonic spaces). Here, by symmetry result we mean a Serrin type
theorem [88] showing that bounded solution domains to certain overdetermined
problems must be balls (in the case of [37], such domains are assumed to be small
perturbations of small geodesic balls).

Finally, we mention that not only homogeneous hypersurfaces have interesting
geometric properties, but also their focal submanifolds (i.e. the singular orbits of
the corresponding cohomogeneity one actions). It was stated by Wang [102] and
proved by Ge and Tang [49] that the focal submanifolds of an isoparametric family
of hypersurfaces are minimal. However, if the hypersurfaces of such an isopara-
metric family have, in addition, constant principal curvatures, each one of their
focal submanifolds has a stronger geometric property: their shape operators for all
unit normal vectors are isospectral, i.e. they have the same principal curvatures and
corresponding multiplicities [49]. This geometric property was called CPC (which
stands for “constant principal curvatures”) in [11]. In particular, focal submanifolds
of homogeneous hypersurfaces are CPC. Notice that any CPC submanifold is aus-
tere, that is, their principal curvatures counted with multiplicities are invariant under
change of sign. The notion of austere submanifold was introduced by Harvey and
Lawson [52, Definition 3.15]. Clearly, austere submanifolds are minimal. In spaces
of constant sectional curvature, CPC submanifolds of codimension higher than one
are precisely the focal submanifolds of isoparametric hypersurfaces (equivalently,
of hypersurfaces with constant principal curvatures). This is not true in general as,
in many spaces (e.g. nonflat complex space forms), tubes around certain totally
geodesic (and hence CPC) submanifolds are not isoparametric and have nonconstant
principal curvatures (cf. §5.3 and Remark 5). Recently, it was proved that focal
submanifolds of isoparametric hypersurfaces need not be austere [41].

3 Symmetric spaces

In this section we provide a short introduction to Riemannian symmetric spaces, with
special focus on those of noncompact type. There are several references for the reader
interested in obtaining further information on this topic. Two classical references are
Helgason’s book [53] and Loos’ books [67], [68]. As introductory texts, we refer to
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Eschenburg’s survey [45] and Ziller’s notes [105]. Some nice chapters on symmetric
spaces can be found in the books by Berndt, Console and Olmos [6], Besse [17],
O’Neill [75] and Wolf [103].

3.1 Definition and fundamental properties

Let 𝑀 be a connected Riemannian manifold. Given a point 𝑝 ∈ 𝑀 , we can consider
the geodesic ball 𝐵𝑝 (𝑟) centered at 𝑝 of radius 𝑟, for 𝑟 > 0 small enough. On such
ball we can define the smooth map 𝜎𝑝 : 𝐵𝑝 (𝑟) → 𝐵𝑝 (𝑟) that sends 𝑞 = exp𝑝 (𝑣) to
𝜎𝑝 (𝑞) = exp𝑝 (−𝑣), where 𝑣 ∈ 𝑇𝑝𝑀 , |𝑣 | < 𝑟. This map 𝜎𝑝 is nothing but a geodesic
reflection about 𝑝. It is clearly an involution, i.e., 𝜎2

𝑝 = id.
A Riemannian symmetric space is a connected Riemannian manifold 𝑀 such that,

for any 𝑝 ∈ 𝑀 , the geodesic reflection 𝜎𝑝 at 𝑝 is defined globally on 𝑀 and is an
isometry of 𝑀 . Thus, symmetric spaces are characterized by the existence of central
symmetries around any point. From this definition one can easily see that symmetric
spaces are complete (geodesics can be extended by using geodesic reflections) and
homogeneous (given 𝑝1, 𝑝2 ∈ 𝑀 , by completeness there is a geodesic segment
joining them, and if 𝑞 is its midpoint, then 𝜎𝑞 (𝑝1) = 𝑝2).

We fix from now on an arbitrary point 𝑜 ∈ 𝑀 , which is sometimes called the origin
or the base point of 𝑀 . The homogeneity and the connectedness of 𝑀 imply that the
Lie group 𝐺 = Isom(𝑀)0, the connected component of the identity of the isometry
group Isom(𝑀) of 𝑀 , acts transitively on 𝑀 . Let 𝐾 = {𝑔 ∈ 𝐺 : 𝑔(𝑜) = 𝑜} be the
isotropy group at the origin 𝑜, which can be shown to be a compact Lie group. Hence,
𝑀 is diffeomorphic to the set of left cosets𝐺/𝐾 = {𝑔𝐾 : 𝑔 ∈ 𝐺} endowed with some
natural differentiable structure. Note that under the diffeomorphism 𝑀 � 𝐺/𝐾 , the
origin 𝑜 corresponds to the coset 𝑒𝐾 , where 𝑒 is the identity of𝐺. See [65, Chapter 21]
for more information on homogeneous spaces.

The map 𝑠 : 𝐺 → 𝐺, 𝑠(𝑔) = 𝜎𝑜𝑔𝜎𝑜, is a well-defined involutive Lie group
automorphism of 𝐺. It satisfies 𝐺0

𝑠 ⊂ 𝐾 ⊂ 𝐺𝑠 , where 𝐺𝑠 = {𝑔 ∈ 𝐺 : 𝑠(𝑔) = 𝑔} and
𝐺0
𝑠 denotes its connected component of the identity. Its differential \ = 𝑠∗ : 𝔤 → 𝔤 is

an involutive Lie algebra automorphism, the so-called Cartan involution associated
with the symmetric space (of course, \ depends on the choice of 𝑜). The Lie algebra
𝔨 of the isotropy group 𝐾 is precisely the (+1)-eigenspace of \. If we denote by 𝔭 the
(−1)-eigenspace of \, then 𝔤 = 𝔨 ⊕ 𝔭 is the eigenspace decomposition of \, called
the Cartan decomposition of 𝔤. Since \ is an automorphism, it is easy to check that
[𝔨, 𝔨] ⊂ 𝔨, [𝔨, 𝔭] ⊂ 𝔭, and [𝔭, 𝔭] ⊂ 𝔨.

Consider the smooth map 𝜙 : 𝐺 → 𝑀 , 𝜙(𝑔) = 𝑔(𝑜). Its differential 𝜙∗𝑒 at the
identity element 𝑒 induces a vector space isomorphism 𝔭 � 𝑇𝑜𝑀 . Moreover, the
linearization of the isotropy action 𝐾 × 𝑀 → 𝑀 , 𝑘 · 𝑝 = 𝑘 (𝑝), at 𝑜 turns out to
be an isometric linear action 𝐾 × 𝑇𝑜𝑀 → 𝑇𝑜𝑀 , 𝑘 · 𝑣 = 𝑘∗𝑜𝑣. This is called the
isotropy representation of 𝑀 � 𝐺/𝐾 at 𝑜. The isotropy representation turns out to
be equivalent to the adjoint representation of 𝐾 on 𝔭, namely the action 𝐾 × 𝔭 → 𝔭
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given by 𝑘 · 𝑋 = Ad(𝑘)𝑋 . We will also call this action the isotropy representation
of 𝑀 .

The curvature tensor 𝑅 of a symmetric space 𝑀 at the base point 𝑜 admits a
simple description as

𝑅(𝑋,𝑌 )𝑍 = −[[𝑋,𝑌 ], 𝑍], 𝑋,𝑌 , 𝑍 ∈ 𝔭 � 𝑇𝑜𝑀. (2)

It turns out that the curvature tensor of a symmetric space is parallel with respect to
the Levi-Civita connection, ∇𝑅 = 0. Riemannian manifolds with this property are
called locally symmetric, and the complete ones turn out to be quotients of symmetric
spaces by discrete group actions.

Formula (2) leads to a very simple characterization of the totally geodesic subman-
ifolds of symmetric spaces: they are (up to congruence in 𝑀) of the form 𝑆 = exp𝑜 𝔰,
where 𝔰 is a subspace of 𝔭 � 𝑇𝑜𝑀 such that [[𝔰, 𝔰], 𝔰] ⊂ 𝔰. Such a subspace 𝔰 of 𝔭
is called a Lie triple system. However, determining such Lie triple systems is a very
difficult problem, and indeed the classification of totally geodesic submanifolds is
still an outstanding problem; see [9], [10] and [64] for important recent contribu-
tions. In the particular case when 𝔰 is abelian, then the associated totally geodesic
submanifold is flat by (2). Among all the abelian subspaces of 𝔭, the maximal ones
have the same dimension. The associated totally geodesic submanifolds are called
maximal flats of the symmetric space. The common dimension of such maximal
flats is called the rank of the symmetric space.

Remark 3 It is rather common to express symmetric spaces as quotient mani-
folds 𝐺/𝐾 where 𝐺 is not necessarily exactly Isom(𝑀)0. For instance the com-
plex hyperbolic space C𝐻𝑛 is usually presented as SU1,𝑛/S(U1U𝑛) instead of
(SU1,𝑛/Z𝑛+1)/(S(U1U𝑛)/Z𝑛+1). The common practice is to present a symmetric
space in terms of a so-called symmetric pair (𝐺, 𝐾), where 𝐾 is compact, there is an
involutive automorphism 𝑠 of 𝐺 such that 𝐺0

𝑠 ⊂ 𝐾 ⊂ 𝐺𝑠 , and 𝐺 acts almost effec-
tively on 𝑀 = 𝐺/𝐾 (i.e. there is at most a discrete subgroup of elements of𝐺 that act
trivially on𝐺/𝐾). Of course, if𝑀 is a symmetric space, then (Isom(𝑀)0, Isom(𝑀)0

𝑜)
is a symmetric pair. These subtleties will not play an important role in this article.

3.2 Types of symmetric spaces

A symmetric space 𝑀 � 𝐺/𝐾 is called (isotropy) irreducible if the restriction
of its isotropy representation to the connected component of the identity of 𝐾 is
irreducible. This is equivalent to the property that the Riemannian universal cover
𝑀 of 𝑀 (which is again a symmetric space) is not a nontrivial product of symmetric
spaces, unless 𝑀 = R𝑛 is a Euclidean space.

Recall that the Killing form of a Lie algebra 𝔤 is the symmetric bilinear form
B : 𝔤 × 𝔤 → R given by B(𝑋,𝑌 ) = tr(ad(𝑋) ◦ ad(𝑌 )), where ad(𝑋) = [𝑋, ·]. It
is not difficult to check that 𝔨 and 𝔭 are orthogonal subspaces with respect to B. A
symmetric space 𝑀 � 𝐺/𝐾 is said to be of compact type, of noncompact type, or
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of Euclidean type if B|𝔭×𝔭 is negative definite, positive definite, or identically zero,
respectively. If 𝑀 is irreducible, Schur’s lemma implies that B|𝔭×𝔭 is proportional to
the inner product on 𝔭 � 𝑇𝑜𝑀 induced by the symmetric metric of 𝑀 . According to
the sign of the proportionality constant, 𝑀 falls into one of the three possible types.
If 𝑀 is not irreducible, there is no guarantee that it is of one of the three types.

If 𝑀 is of compact type, then 𝐺 is a compact semisimple Lie group, and 𝑀 is
compact and has nonnegative sectional curvature. If 𝑀 is of noncompact type, then
it turns out that 𝐺 is a noncompact real semisimple Lie group (with no compact
factors), and 𝑀 is a Hadamard manifold (it is diffeomorphic to a Euclidean space
and has nonpositive sectional curvature). If 𝑀 is of Euclidean type, its Riemannian
universal cover is a Euclidean space R𝑛. In general, the Riemannian universal cover
of a symmetric space 𝑀 splits as a Riemannian product of symmetric spaces 𝑀 =

𝑀+ × 𝑀− × 𝑀0, where 𝑀+ is of compact type, 𝑀− is of noncompact type, and 𝑀0
is a Euclidean space.

There is a notion of duality between the classes of symmetric spaces of compact
type and of noncompact type. Specifically, there is a one-to-one correspondence
between symmetric spaces of noncompact type and simply connected symmetric
spaces of compact type. This duality can be made explicit in terms of the Lie
algebras and groups involved, although here we will not enter into details. Dual
symmetric spaces have the same rank and equivalent isotropy representations, and
hence, duality preserves irreducibility. However, it is important to remark that both
types of symmetric spaces have very different topological and geometrical properties.

Example 2 We illustrate the notion of duality through some examples:

(a) The real hyperbolic space R𝐻𝑛 � SO0
1,𝑛/SO𝑛 is of noncompact type, and has

two dual symmetric spaces of compact type: the sphere S𝑛 � SO𝑛+1/SO𝑛 and
the real projective space RP𝑛 � SO𝑛+1/O𝑛. These spaces have rank one.

(b) The other rank one (nonflat) symmetric spaces are the projective and the hyper-
bolic spaces over the division algebras of the complex numbers C, the quater-
nionsH, and the octonionsO. Thus, the complex spacesCP𝑛 = SU𝑛+1/S(U1U𝑛)
and CH𝑛 = SU1,𝑛/S(U1U𝑛), the quaternionic spaces HP𝑛 = Sp𝑛+1/Sp1Sp𝑛
and HH𝑛 = Sp1,𝑛/Sp1Sp𝑛, and the Cayley planes OP2 = F4/Spin9 and
OH2 = F−20

4 /Spin9 constitute three pairs of dual symmetric spaces of rank
one.

(c) Any compact Lie group 𝐾 endowed with a bi-invariant metric is a symmetric
space of compact type. An associated symmetric pair is (𝐾 × 𝐾,Δ𝐾), where
Δ𝐾 = {(𝑘, 𝑘) : 𝑘 ∈ 𝐾}. Its dual symmetric space of noncompact type is of the
form 𝐾C/𝐾 , where 𝐾C denotes the complexification of 𝐾 . For example, SO𝑛
(and also its universal cover Spin𝑛) and SO𝑛 (C)/SO𝑛 are dual to each other,
𝑛 ≥ 3.

(d) The compact space SU𝑛/SO𝑛 of Lagrangian subspaces of R2𝑛 is dual to the
noncompact space SL𝑛 (R)/SO𝑛 of all positive definite symmetric matrices of
determinant 1 and order 𝑛.
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For the complete list of irreducible symmetric spaces (up to coverings), we refer
to [53, pp. 516, 518]. See [103] for a discussion of locally symmetric spaces of
compact type.

3.3 Symmetric spaces of noncompact type. Root space and Iwasawa
decompositions

Symmetric spaces of noncompact type constitute a rich family of Hadamard mani-
folds that generalize the hyperbolic spaces. We refer to [4], [34], [44, Chapter 2], [53,
Chapter VI] and [60, Chapter VI, §4-5] for more information on different aspects of
these spaces.

Let 𝑀 � 𝐺/𝐾 be a (not necessarily irreducible) symmetric space of noncompact
type. Let 𝔤 = 𝔨⊕𝔭 be the Cartan decomposition of the Lie algebra 𝔤 of𝐺 determined
by the choice of a base point 𝑜 ∈ 𝑀 . The Killing form B of 𝔤 makes 𝔨 and
𝔭 orthogonal, restricts to a positive definite inner product on 𝔭 by definition of
noncompact type, and turns out to be negative definite when restricted to 𝔨. Thus,
by changing its sign on 𝔨, we get a positive definite inner product on 𝔤. This inner
product B\ can alternatively be defined by B\ (𝑋,𝑌 ) = −B(\𝑋,𝑌 ), for each 𝑋 ,
𝑌 ∈ 𝔤, where \ is the Cartan involution.

Let 𝔞 be an arbitrary maximal abelian subspace of 𝔭. Recall that dim 𝔞 is the
rank of 𝑀 . The endomorphisms ad(𝐻) = [𝐻, ·] of 𝔤, where 𝐻 ∈ 𝔞, turn out to
be self-adjoint with respect to B\ , and they commute with each other (since ad is
a Lie algebra homomorphism and 𝔞 is abelian). Thus, such endomorphisms of 𝔤
diagonalize simultaneously. Their common eigenspaces are called the restricted root
spaces, and their nonzero eigenvalues (which are linear in 𝐻 ∈ 𝔞) are called the
restricted roots of 𝔤. More precisely, for each linear functional _ ∈ 𝔞∗, consider the
subspace of 𝔤 given by

𝔤_ = {𝑋 ∈ 𝔤 : [𝐻, 𝑋] = _(𝐻)𝑋 for all 𝐻 ∈ 𝔞}.

Then any 𝔤_ ≠ 0 is a restricted root space, and any _ ≠ 0 with 𝔤_ ≠ 0 is a restricted
root. Note that 0 ≠ 𝔞 ⊂ 𝔤0. Let us denote by

Σ = {_ ∈ 𝔞∗ : _ ≠ 0, 𝔤_ ≠ 0}

the set of restricted roots of 𝔤. Hence, we can write the B\ -orthogonal direct sum
decomposition

𝔤 = 𝔤0 ⊕
(⊕
_∈Σ

𝔤_

)
,

known as the restricted root space decomposition of 𝔤. The multiplicity 𝑚_ of a
restricted root _ is the dimension of its root space, 𝑚_ = dim 𝔤_. In what follows, we
will omit the word “restricted”.

Roots and root space decompositions enjoy several nice properties, such as:
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(a) [𝔤_, 𝔤`] ⊂ 𝔤_+`, for any _, ` ∈ Σ ∪ {0}.
(b) \𝔤_ = 𝔤−_, for any _ ∈ Σ ∪ {0}. Hence _ ∈ Σ if and only if −_ ∈ Σ.
(c) 𝔤0 = 𝔨0 ⊕ 𝔞, where 𝔨0 = 𝔤0 ∩ 𝔨 = 𝑁𝔨 (𝔞) = 𝑍𝔨 (𝔞) is both the normalizer and the

centralizer of 𝔞 in 𝔨.

Moreover, the finite subsetΣ of 𝔞∗ formed by the roots has various symmetry prop-
erties. Firstly, we can endow 𝔞∗ with an inner product given by 〈_, `〉 = B\ (𝐻_, 𝐻`),
for any _, ` ∈ 𝔞∗, and where 𝐻_ ∈ 𝔞 is defined by the relation B\ (𝐻_, 𝐻) = _(𝐻)
for all 𝐻 ∈ 𝔞. With this inner product one can show that Σ is an abstract root system
on the Euclidean space (𝔞∗, 〈·, ·〉). This means (see [60, §II.5])):

(a) 𝔞∗ = spanΣ,
(b) the number 𝑎𝛼𝛽 = 2〈𝛼, 𝛽〉/〈𝛼, 𝛼〉 is an integer for any 𝛼, 𝛽 ∈ Σ,
(c) 𝛽 − 𝑎𝛼𝛽 𝛼 ∈ Σ, for any 𝛼, 𝛽 ∈ Σ.

This system is called nonreduced if there is _ ∈ Σ such that 2_ ∈ Σ. In this case,
2_ is called a nonreduced root. Root systems can be classified, and this is indeed the
basis for the classification of real semisimple Lie algebras and of symmetric spaces.

The information of a root system can be codified in a smaller set of roots. By
considering an open halfspace of 𝔞∗ containing exactly half of the roots in Σ (recall
that Σ is invariant under the reflection about the origin), we can declare as positive
those roots lying in such halfspace. If we denote by Σ+ this set of positive roots, we
then have Σ = Σ+ t (−Σ+). Among the elements of Σ+ there are some that cannot
be expressed as sum of exactly two positive roots. These are called the simple roots,
and we denote by Λ its collection. It turns out that Λ is a basis for 𝔞∗, and hence, its
cardinality |Λ| is precisely the rank of 𝑀 . Any root _ in Σ turns out to be a linear
combination of elements of Λ with integer coefficients, all of them nonnegative
(when _ ∈ Σ+) or all of them nonpositive (when _ ∈ −Σ+).

The set Λ of simple roots allows to construct the Dynkin diagram of Σ (and
ultimately, of the symmetric space 𝑀). This is a graph consisting in as many nodes as
elements in Λ. Two nodes are joined by a simple (respectively, double or triple) edge
whenever the angle between the corresponding simple roots is 2𝜋/3 (respectively,
3𝜋/4 or 5𝜋/6). Finally, if the system is nonreduced, any simple root whose double
is also a root is represented by a double node (two concentric circles). We refer
to [6, pp. 336-340] for a list of all possible connected Dynkin diagrams, together
with the multiplicities of the simple (and nonreduced) roots, and with the associated
irreducible symmetric spaces of noncompact type. There is also a theory of roots
for symmetric spaces of compact type, and both theories behave well under duality,
cf. [68, pp. 119, 146].

The sum of the root spaces associated with positive roots,

𝔫 =
⊕
_∈Σ+

𝔤_,

is a nilpotent Lie subalgebra of 𝔤, by the properties of the root space decomposition.
Since 𝔞 normalizes 𝔫, we have that 𝔞 ⊕ 𝔫 is a solvable Lie subalgebra of 𝔤. The
Iwasawa decomposition theorem for Lie algebras ensures that
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𝔤 = 𝔨 ⊕ 𝔞 ⊕ 𝔫

is a vector space direct sum (but it is not orthogonal, and none of the addends is an
ideal of 𝔤). Let 𝐴 and 𝑁 denote the connected subgroups of 𝐺 with Lie algebras 𝔞
and 𝔫, respectively. Then 𝐴𝑁 is the connected subgroup of𝐺 with Lie algebra 𝔞 ⊕𝔫.
The Iwasawa decomposition at the Lie group level states that the multiplication map

𝐾 × 𝐴 × 𝑁 → 𝐺, (𝑘, 𝑎, 𝑛) ↦→ 𝑘𝑎𝑛

is a diffeomorphism, and the Lie groups 𝐴, 𝑁 and 𝐴𝑁 are diffeomorphic to Euclidean
spaces.

Recall the smooth map 𝜙 : 𝐺 → 𝑀 , 𝜙(𝑔) = 𝑔(𝑜), from §3.1. By the Iwasawa
decomposition, its restriction to 𝐴𝑁 is a diffeomorphism 𝜙 |𝐴𝑁 : 𝐴𝑁 → 𝑀 . Let
us denote by g the symmetric Riemannian metric of 𝑀 , and consider its pullback
metric (𝜙|𝐴𝑁 )∗g on 𝐴𝑁 . This metric, which will be denoted by 〈·, ·〉 in what follows,
happens to be left-invariant on the Lie group 𝐴𝑁 . Therefore, we have that any
symmetric space of noncompact type 𝑀 is isometric to a certain solvable Lie group
𝐴𝑁 endowed with a particular left-invariant metric. This in particular implies,
as we had already advanced, that a symmetric space of noncompact type 𝑀 is
diffeomorphic to a Euclidean space. By the formula (2) one can actually show that
such an 𝑀 is nonpositively curved, and hence it is a Hadamard manifold. This
enables us to regard any of these spaces as an open ball endowed with certain metric,
similarly as with the ball model of the real hyperbolic space.

For certain problems it can be useful to regard a symmetric space of noncompact
type 𝑀 as an open dense subset of a larger compact topological space 𝑀 t 𝑀 (∞)
that is homeomorphic to a closed ball. The ideal boundary 𝑀 (∞) of 𝑀 is defined
to be the set of points at infinity of 𝑀 , namely, the equivalence classes of complete,
unit-speed geodesics of 𝑀 under the relation 𝛾1 ∼ 𝛾2 if {𝑑 (𝛾1 (𝑡), 𝛾2 (𝑡)) : 𝑡 ≥ 0}
is bounded. One can endow 𝑀 t 𝑀 (∞) with the so-called cone topology, so that
𝑀 t 𝑀 (∞) becomes homeomorphic to a closed ball whose interior corresponds
to 𝑀 and whose boundary is 𝑀 (∞). Two geodesics are called asymptotic if they
converge to the same point at infinity, i.e., if they belong to the same equivalence
class. If 𝑀 = 𝐺/𝐾 , the action of 𝐺 on 𝑀 can be naturally extended to 𝑀 (∞) by
taking 𝑔 · [𝛾] := [𝑔 · 𝛾].

Symmetric spaces of noncompact type, as particular instances of Hadamard man-
ifolds, admit certain codimension one foliations by so-called horospheres. Specifi-
cally, given any complete, unit-speed geodesic 𝛾 in 𝑀 , one can consider the Buse-
mann function 𝑓𝛾 : 𝑀 → R given by 𝑓𝛾 (𝑝) = lim𝑡→+∞

(
𝑑 (𝑝, 𝛾(𝑡)) − 𝑡

)
. The horo-

sphere foliation determined by 𝛾 is the regular Riemannian foliation of 𝑀 given by
the collection of level sets of the Busemann function 𝑓𝛾 . It is known that any horo-
sphere foliation of a symmetric space of noncompact type 𝑀 is homogeneous: it is
the orbit foliation of the cohomogeneity one action on 𝑀 given by the codimension
one subgroup of 𝐴𝑁 with Lie algebra (𝔞 	 ℓ) ⊕𝔫, for some specific one-dimensional
subspaces ℓ of 𝔞; see [42, Remark 5.4] for more information.
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By making use of the solvable model of a symmetric space of noncompact type,
one can provide an explicit formula for the Levi-Civita connection on 𝐴𝑁 � 𝑀 , and
also relate the left-invariant metric 〈·, ·〉 = (𝜙|𝐴𝑁 )∗g on 𝐴𝑁 to the inner product
B\ . These tools, along with a careful analysis of root space decompositions, are
very useful in the investigation of submanifold geometry of symmetric spaces of
noncompact type. We refer to [34] for further details.

3.4 Parabolic subgroups and subalgebras and boundary components

The investigation of cohomogeneity one actions on symmetric spaces of noncompact
type that we will review in Section 6 depends on a number of concepts and notation
related to the theory of the so-called parabolic subalgebras of real semisimple Lie
algebras. Here we present a quick introduction to this topic. We refer to [6, §13.2],
[18, §I.1], [44, §2.17], [60, §VII.7] for more information.

Geometrically speaking, we say that a Lie subgroup𝑄 of𝐺 is parabolic if𝑄 = 𝐺

or 𝑄 is the stabilizer 𝐺𝑥 of a point at infinity 𝑥 ∈ 𝑀 (∞). From the algebraic
viewpoint, it can be proved that a Lie subalgebra 𝔮 of 𝔤 is the Lie algebra of a
parabolic subgroup 𝑄 of 𝐺 precisely if it contains a subalgebra of 𝔤 conjugate to
𝔨0⊕𝔞⊕𝔫 (recall that 𝔨0 = 𝑁𝔨 (𝔞)). In this case, we say that 𝔮 is a parabolic subalgebra
of 𝔤.

Our interest in parabolic subalgebras arises from their explicit description in terms
of roots and root spaces, which we explain now. Up to conjugacy in 𝐺, a parabolic
subalgebra of 𝔤 can be constructed from the choice of a subset Φ ⊂ Λ of simple
roots of 𝔤. Let ΣΦ = Σ ∩ spanΦ be the root subsystem generated by Φ, and consider
the positivity notion on ΣΦ induced by that of Σ, that is, Σ+

Φ
= Σ+ ∩ ΣΦ. Define the

following subalgebras of 𝔤:

𝔩Φ = 𝔤0 ⊕
(⊕
_∈ΣΦ

𝔤_

)
, 𝔞Φ =

⋂
𝛼∈Φ

ker𝛼, 𝔫Φ =
⊕

_∈Σ+\Σ+
Φ

𝔤_,

which are reductive (in the sense of it being invariant with respect to a Cartan
involution of 𝔤, cf. [62]), abelian, and nilpotent, respectively. The subalgebra 𝔩Φ is
the centralizer and the normalizer of 𝔞Φ in 𝔤, and normalizes 𝔫Φ. Thus, 𝔮Φ = 𝔩Φ⊕𝔫Φ

is a subalgebra of 𝔤 containing 𝔨0 ⊕ 𝔞 ⊕ 𝔫. We say that 𝔮Φ is the parabolic subalgebra
of 𝔤 associated with the subset Φ ⊂ Λ. The decomposition 𝔮Φ = 𝔩Φ ⊕ 𝔫Φ is
known as the Chevalley decomposition of 𝔮Φ. The subalgebra 𝔪Φ = 𝔩Φ 	 𝔞Φ
(hereafter, 	 denotes orthogonal complement with respect to the inner productB\ ) is
a reductive subalgebra of 𝔤 that normalizes 𝔞Φ⊕𝔫Φ. Hence, we have a decomposition
𝔮Φ = 𝔪Φ ⊕ 𝔞Φ ⊕ 𝔫Φ, which is known as the Chevalley decomposition of 𝔮Φ. By
a result of Borel and Tits [19], any parabolic subalgebra of a real semisimple Lie
algebra 𝔤 is conjugate to one of the subalgebras 𝔮Φ, for some Φ ⊂ Λ.

The orthogonal projection 𝔨Φ = 𝜋𝔨 (𝔪Φ) of 𝔪Φ onto 𝔨 turns out to be a maximal
compact subalgebra of 𝔪Φ. It can be written as
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𝔨Φ = 𝔮Φ ∩ 𝔨 = 𝔩Φ ∩ 𝔨 = 𝔪Φ ∩ 𝔨 = 𝔨0 ⊕
©«
⊕
_∈Σ+

Φ

𝔨_
ª®¬ ,

where 𝔨_ = 𝜋𝔨 (𝔪_) = 𝔨 ∩ (𝔤_ ⊕ 𝔤−_). Similarly, the projection 𝔟Φ = 𝜋𝔭 (𝔪Φ) of 𝔪
onto 𝔭 is a Lie triple system, which is also given by

𝔟Φ = 𝔪Φ ∩ 𝔭 = 𝔞Φ ⊕ ©«
⊕
_∈Σ+

Φ

𝔭_
ª®¬ ,

where 𝔞Φ = 𝔞 	 𝔞Φ =
⊕

𝛼∈Φ R𝐻𝛼 and 𝔨_ = 𝜋𝔭 (𝔪_) = 𝔭 ∩ (𝔤_ ⊕ 𝔤−_). Associated
with 𝔟Φ one can consider the semisimple Lie algebra 𝔰Φ = [𝔟Φ, 𝔟Φ] ⊕ 𝔟Φ. The
previous decomposition is a Cartan decomposition for 𝔰Φ, and 𝔞Φ is a maximal
abelian subspace of 𝔟Φ. The root subsystem ΣΦ can be identified with a set of roots
for 𝔰Φ by restricting the roots of ΣΦ to 𝔞Φ. The corresponding root spaces of 𝔰Φ
coincide with those of 𝔤. More precisely, we have the root space decomposition

𝔰Φ = (𝔰Φ ∩ 𝔨0) ⊕ 𝔞Φ ⊕
(⊕
_∈ΣΦ

𝔤_

)
.

It is possible to give results analogous to the previous Lie algebra decompositions
for the group 𝐺 and the symmetric space 𝑀 . For this, consider the connected Lie
subgroups 𝐴Φ, 𝑁Φ, and 𝑆Φ of 𝐺 with Lie algebras 𝔞Φ, 𝔫Φ, and 𝔰Φ, respectively. If
we define 𝐿Φ = 𝑍𝐺 (𝔞Φ) as the centralizer of 𝔞Φ in 𝐺, then 𝐿Φ is a Lie subgroup
of 𝐺 that normalizes 𝑁Φ. The subgroup 𝑄Φ = 𝑁𝐺 (𝔮Φ) = 𝐿Φ𝑁Φ is the parabolic
subgroup of 𝐺 associated with Φ. The decomposition 𝑄Φ = 𝐿Φ𝑁Φ is known as the
Chevalley decomposition of 𝑄Φ.

Define 𝐾Φ = 𝑍𝐾 (𝔞Φ), which is a Lie subgroup of 𝐺 with Lie algebra 𝔨Φ. It is a
maximal compact subgroup of 𝐿Φ which normalizes 𝑆Φ. The subgroup 𝑀Φ = 𝐾Φ𝑆Φ
is a reductive subgroup of𝐺 with Lie algebra 𝔪Φ. Moreover, the multiplication map
𝐴Φ ×𝑁Φ ×𝑀Φ → 𝑄Φ is a diffeomorphism, known as the Langlands decomposition
of the parabolic subgroup 𝑄Φ.

Consider now the orbit 𝐵Φ of the isometric action of 𝑀Φ through 𝑜. Since 𝔟Φ is
a Lie triple system,

𝐵Φ = 𝑀Φ · 𝑜 = 𝑆Φ · 𝑜 � 𝑀Φ/𝐾Φ � 𝑆Φ/(𝐾Φ ∩ 𝑆Φ)

is a totally geodesic submanifold of 𝑀 , called the boundary component of 𝑀 associ-
ated with the subset of simple roots Φ. Intrinsically 𝐵Φ turns out to be a symmetric
space of noncompact type and rank |Φ|. In fact, since 𝑆Φ is a connected semisimple
Lie group and 𝐾Φ∩𝑆Φ a maximal compact subgroup of 𝑆Φ, (𝑆Φ, 𝐾Φ∩𝑆Φ) is a sym-
metric pair for 𝐵Φ. The Langlands decomposition of 𝑄Φ induces a diffeomorphism
at the manifold level, given by

𝐴Φ × 𝑁Φ × 𝐵Φ → 𝑀, (𝑎, 𝑛, 𝑚 · 𝑜) ↦→ (𝑎𝑛𝑚) · 𝑜.
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This diffeomorphism is known as the horospherical decomposition of the symmetric
space 𝑀 corresponding to the subset Φ ⊂ Λ of simple roots.

The horospherical decomposition can be restated in terms of an isometric action
on 𝑀 with some interesting geometric properties. The connected solvable Lie group
𝐴Φ𝑁Φ acts freely and isometrically on 𝑀 , and its orbits are mutually congruent min-
imally embedded submanifolds of 𝑀 . Moreover, the totally geodesic submanifold
𝐵Φ of 𝑀 intersects each 𝐴Φ𝑁Φ orbit exactly once and perpendicularly. These prop-
erties are fundamental in a geometric extension procedure of submanifolds from
𝐵Φ to 𝑀 called canonical extension, see [35]. Its application to the extension of
cohomogeneity one actions will be discussed in Section 6.

4 Homogeneous hypersurfaces in compact symmetric spaces

In this section we give an overview of the classification problem of homogeneous
hypersurfaces in compact symmetric spaces. We will mostly focus on the spherical
case (§4.1), since it admits a more elementary approach and showcases very inter-
esting geometric properties. Then, in §4.2 we will consider the case of the other
compact symmetric spaces, with special focus on the rank one setting.

4.1 Homogeneous hypersurfaces of round spheres

The classification of homogeneous hypersurfaces in round spheres had to wait more
than thirty years after Segre’s and Cartan’s works on Euclidean and real hyperbolic
spaces. The classification in round spheres was achieved by Hsiang and Lawson [55]
and revisited by Takagi and Takahashi [95], who calculated the principal curvatures
of such homogeneous hypersurfaces. Their works provide a very interesting family
of examples, which surprisingly turns out to be characterized by a subclass of
symmetric spaces, as we will comment on below. But before explaining their results,
let us consider some examples.

Recall that a homogeneous hypersurface is isoparametric with constant principal
curvatures, and hence, the multiplicities of such principal curvatures are constant.
We will denote by 𝑔 the number of distinct constant principal curvatures. Notice
also that cohomogeneity one actions on S𝑛, 𝑛 ≥ 2, must have orbit space of type
[0, 1], in view of Remark 2. The simplest example of cohomogeneity one action on
spheres was given in Example 1 (d) as the standard action of SO𝑛 on the unit sphere
S𝑛. Note that its regular orbits (the parallels) are totally umbilical (𝑔 = 1), and there
are exactly two singular orbits (the poles). Observe that a geodesic of S𝑛 normal to
one orbit (and hence to all orbits) intersects the singular orbits at points separated by
distance 𝜋. Let us see how this generalizes to more interesting examples.

Example 3 Consider the action of 𝐻 = U1 × U1 on C2 � R4 given by (𝑒𝑖 \1 , 𝑒𝑖 \2 ) ·
(𝑧1, 𝑧2) = (𝑒𝑖 \1 𝑧1, 𝑒

𝑖 \2 𝑧2). Since it is an isometric action for the Euclidean metric
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on R4, it leaves the unit sphere of R4 invariant, so it induces an isometric action
on the unit sphere S3. It is easy to calculate that the isotropy groups at points
of the form (𝑧1, 0) or (0, 𝑧2) are isomorphic to U1, whereas the stabilizers at any
other point are trivial. Thus, there are exactly two singular orbits, 𝐻 · (1, 0) and
𝐻 · (0, 1), which are totally geodesic circles in S3, and the remaining orbits are
principal and diffeomorphic to tori S1 × S1. Among these tori, exactly one turns
out to be minimal, namely 𝐻 ·

( 1√
2
, 1√

2

)
: the Clifford torus. The principal orbits

have 𝑔 = 2 distinct principal curvatures. Any normal geodesic to the orbit foliation
(e.g. 𝛾(𝑡) = (cos 𝑡, sin 𝑡) ∈ C2) intersects the singular orbits at 4 equidistributed
points ((±1, 0) and (0,±1)). This action of U1 × U1 � SO2 × SO2 on S3 can
easily be generalized to a cohomogeneity one action of SO𝑘+1 × SO𝑛−𝑘 on S𝑛,
𝑘 = 1, . . . , 𝑛 − 2, with totally geodesic singular orbits S𝑘 and S𝑛−𝑘−1, and principal
orbits S𝑘 × S𝑛−𝑘−1 with 𝑔 = 2.

Example 4 Let Herm0
3 (R) denote the vector space of real symmetric matrices of

order 3 and trace 0, endowed with the standard inner product 〈𝑋,𝑌〉 = tr 𝑋𝑌 .
Hence Herm0

3 (R) is a Euclidean space R5. The smooth action of 𝐻 = SO3 on
Herm0

3 (R) by conjugation, 𝐴 · 𝑋 = 𝐴𝑋𝐴𝑡 , is clearly isometric. We consider its
induced isometric action on the unit sphere S4 of Herm0

3 (R) � R
5. The subset

Σ = {𝑋 ∈ S4 : 𝑋 is diagonal} is the trace of a geodesic in S4 that intersects all
𝐻-orbits in S4, by the spectral theorem. One can easily compute the stabilizers at
the points of Σ. These stabilizers are larger when 𝑋 ∈ Σ has two equal entries in the
diagonal, which happens when 𝑋 has diagonal entries 1√

6
, 1√

6
,− 2√

6
or − 1√

6
,− 1√

6
, 2√

6
(reordered in any way). Notice that these 6 points are equidistributed along the great
circle Σ. For these 6 points 𝑋 in Σ we have 𝐻𝑋 � S(O2 × O1) � O2. The other
points 𝑋 in Σ have finite isotropy group. Therefore, the regular orbits have dimension
dim SO3 = 3, and hence, we have a cohomogeneity one action on S4. There are two
singular orbits (one passing through the diagonal matrices with diagonal entries
1√
6
, 1√

6
,− 2√

6
, and the other passing through the diagonal matrices with the opposite

entries). These are diffeomorphic to real projective planes,𝐻/𝐻𝑋 � SO3/O3 � RP2,
which are minimally embedded in S4. One can show that the principal orbits of this
action have 𝑔 = 3 principal curvatures.

Example 5 The previous action in Example 4 is the simplest one of a collection of
four cohomogeneity one actions on the unit spheres S4, S7, S13, S25 of the space
Herm0

3 (F) of trace-free Hermitian matrices of order 3 with coefficients in some
normed division algebra F ∈ {R,C,H,O}, with inner product 〈𝑋,𝑌〉 = Re(tr 𝑋𝑌 ).
The respective groups acting upon are SO3, SU3, Sp3 and F4. These actions produce
homogeneous hypersurfaces with 𝑔 = 3 principal curvatures (all of them with the
same multiplicity 𝑚 ∈ {1, 2, 4, 8}) which are tubes around certain minimal embed-
dings of the projective planes RP2, CP2, HP2 and OP2, respectively. Of particular
interest is the octonionic case, as it provides one of the simplest models of the excep-
tional Lie group F4, as well as of the Cayley projective plane OP2. Indeed, F4 can
be defined as the automorphism group of the Jordan algebra Herm3 (O) with multi-
plication 𝑋 ◦𝑌 = 1

2 (𝑋𝑌 +𝑌𝑋). Similarly as in Example 4, the minimally embedded
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Cayley projective planes are obtained as the orbits through diag( 1√
6
, 1√

6
,− 2√

6
) and

diag(− 1√
6
,− 1√

6
, 2√

6
) ∈ Herm0

3 (O) of the action of the automorphism group F4 on
the unit sphere S25 of Herm0

3 (O). For more information on these actions, we refer
the reader to the discussion in [78, §3.3.3], which is based on [2, §3], [6, p. 86] and
[51, pp. 289–292].

The homogeneous hypersurfaces described in the examples above were charac-
terized by Cartan [23] as the only (complete) isoparametric hypersurfaces in round
spheres with up to 𝑔 = 3 distinct principal curvatures. Whereas the examples with
𝑔 ∈ {1, 2} arise in spheres S𝑛 of any dimension (𝑛 ≥ 3 if 𝑔 = 2), examples with 𝑔 = 3
are restricted to four possible dimensions 𝑛 ∈ {4, 7, 13, 25}. Cartan [24] also initi-
ated the study of isoparametric hypersurfaces with 𝑔 = 4, and was able to produce
two examples in S5 and S9. These are recovered in the following two constructions.

Example 6 Let M2×𝑘 (F) denote the vector space of 2 × 𝑘 matrices with entries in
F ∈ {R,C,H}, endowed with the standard inner product 〈𝑋,𝑌〉 = tr 𝑋𝑌 ∗, where (·)∗
denotes conjugate transpose. In order to settle ideas, assume F = R. Consider the
isometric action of 𝐻 = SO2 × SO𝑘 on M2×𝑘 (R) by (𝐴, 𝐵) · 𝑋 = 𝐴𝑋𝐵∗, and then
its restriction to the unit sphere S2𝑘−1 of M2×𝑘 (R) � R2𝑘 . The geodesic of S2𝑘−1

given by

𝛾(𝑡) =
(
cos 𝑡 0 0 . . . 0

0 sin 𝑡 0 . . . 0

)
intersects all𝐻-orbits in S2𝑘−1 and always perpendicularly (again, it suffices to check
this at one point, say for 𝑡 = 0). One can compute the stabilizers of the points in this
geodesic, obtaining that, for any 𝑡 ∉ {ℓ 𝜋4 : ℓ ∈ Z}, 𝛾(𝑡) belongs to a principal orbit
of codimension one in S2𝑘−1. Moreover, for any ℓ ∈ Z, 𝛾

(
ℓ 𝜋2

)
belongs to a singular

orbit of dimension 𝑘 , and 𝛾
(
𝜋
4 + ℓ 𝜋2

)
belongs to a singular orbit of dimension 2𝑘 −3.

Again, the singular points along the normal geodesic 𝛾 are equidistributed. The
homogeneous hypersurfaces arising from this action turn out to have 𝑔 = 4 principal
curvatures with multiplicities 1, 1, 𝑘 − 2 and 𝑘 − 2. Cartan’s example with 𝑔 = 4 in
S5 corresponds to 𝑘 = 3. The discussion for F ∈ {C,H} is analogous by considering
the actions of U2 × U𝑘 on the unit sphere S4𝑘−1 of M2×𝑘 (C) and of Sp2 × Sp𝑘 on
the unit sphere S8𝑘−1 of M2×𝑘 (H). In these cases, the distribution of singular points
along a normal geodesic is the same as in the real case, but now the 𝑔 = 4 principal
curvatures of the homogeneous hypersurfaces have multiplicities 2, 2, 2𝑘 −3, 2𝑘 −3,
for the complex case, and 4, 4, 4𝑘 − 5, 4𝑘 − 5 for the quaternionic case.

Example 7 Consider the action by conjugation of SO5 on its Lie algebra 𝔰𝔬5 of
skew-symmetric matrices, namely 𝐴 · 𝑋 = 𝐴𝑋𝐴𝑡 . When 𝔰𝔬5 is endowed with the
standard inner product 〈𝑋,𝑌〉 = − tr 𝑋𝑌 , this action is isometric, and hence induces
an isometric action on the unit sphere S9 of 𝔰𝔬5. The geodesic of S9 given by the
block diagonal matrices

𝛾(𝑡) = 1
√

2
diag

((
0 cos 𝑡

− cos 𝑡 0

)
,

(
0 sin 𝑡

− sin 𝑡 0

)
, 0

)
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intersects all orbits and always perpendicularly. Similarly as in Example 6, 𝛾 meets
the two singular orbits at 𝑡 ∈ {ℓ 𝜋4 : ℓ ∈ Z}, and these singular orbits have di-
mension 6. The principal orbits are homogeneous hypersurfaces of S9 with 𝑔 = 4
principal curvatures, all of them with multiplicity 2.

All the actions above fit into a general construction: they are induced by isotropy
representations of symmetric spaces of rank 2. This is, roughly speaking, what
Hsiang and Lawson proved in [55] for arbitrary cohomogeneity one actions on round
spheres.

Let us recall from Section 3 that, if 𝑀 � 𝐺/𝐾 is a symmetric space, where 𝐾 is
the isotropy in 𝐺 of some point 𝑜 ∈ 𝑀 , then 𝐾 acts on the tangent space 𝑇𝑜𝑀 by the
differential of the isometries in 𝐾 . That is, we have a smooth action 𝐾×𝑇𝑜𝑀 → 𝑇𝑜𝑀

given by 𝑘 · 𝑣 = 𝑘∗𝑜𝑣. This action is equivalent to the adjoint representation of 𝐾
on 𝔭, that is, 𝐾 × 𝔭 → 𝔭, 𝑘 · 𝑋 = Ad(𝑘)𝑋 . Each one of these actions is called the
isotropy representation of 𝑀 .

Since 𝐾 is made of isometries of 𝑀 , the isotropy representation is an isometric
action on 𝑇𝑜𝑀 � 𝔭. Hence, it restricts to an isometric action on the unit sphere
Sdim𝑀−1 of 𝑇𝑜𝑀 � 𝔭. Any maximal abelian subspace 𝔞 of 𝔭 turns out to intersect all
the orbits of the isotropy representation, and always perpendicularly (see [6, §2.3.2]
for a proof). Hence, 𝔞 ∩ Sdim𝑀−1 is a totally geodesic submanifold of Sdim𝑀−1

that intersects all the orbits of the restricted action to the unit sphere of 𝑇𝑜𝑀 � 𝔭

perpendicularly. By dimension reasons, if we want this restricted action on Sdim𝑀−1

to be of cohomogeneity one, we just need to impose that 𝔞∩Sdim𝑀−1 has dimension 1,
or equivalently, that dim 𝔞 = 2. But dim 𝔞 is, by definition, the rank of the symmetric
space 𝑀 . Hence, we are led to the conclusion that the restriction of the isotropy
representation of a symmetric space 𝑀 to the unit sphere of the tangent space is of
cohomogeneity one precisely when 𝑀 has rank two. Up to orbit equivalence, these
actions exhaust all cohomogeneity one actions on spheres, by Hsiang and Lawson’s
theorem.

Theorem 1 (Homogeneous hypersurfaces in round spheres)
Any homogeneous hypersurface of a round sphere is congruent to a principal orbit

of the action obtained by restriction to the unit sphere of isotropy representation of
a symmetric space of rank two.

For the whole list of symmetric spaces, see [53, pp. 516, 518], or [38, Table 2] for
the list of the rank 2 symmetric spaces of compact type.

Example 8 The compact symmetric spaces whose isotropy representations induce
the examples considered above in this section are:

(1) Example 1 (d): 𝑀 = S𝑛 × S1 � (SO𝑛+1/SO𝑛) × S1, since in this case 𝐾 = SO𝑛
and 𝑇𝑜𝑀 = 𝑇𝑣S

𝑛 × R.
(2) Example 3: 𝑀 = S𝑘+2 × S𝑛−𝑘+1.
(3) Example 4: 𝑀 = SU3/SO3.
(4) Example 5: 𝑀 is SO6/SU3, SU6/Sp3 or the exceptional space E6/F4.
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(5) Example 6: 𝑀 is SO2+𝑘/SO2SO𝑘 , namely, the Grassmannian of oriented 2-
planes of R2+𝑘 , or U2+𝑘/U2U𝑘 � SU2+𝑘/S(U2U𝑘) or Sp2+𝑘/Sp2Sp𝑘 , that is,
the Grassmannians of complex or quaternionic 2-planes of C2+𝑘 or H2+𝑘 , re-
spectively.

(6) Example 7: 𝑀 is the compact Lie group SO5 with a bi-invariant metric.

In each of the previous cases we have indicated a compact symmetric space, but
there is also a noncompact symmetric space with equivalent isotropy representation,
by duality. For instance, in item (3), 𝑀 could be taken as SL3 (R)/SO3. In this case,
its Cartan decomposition 𝔤 = 𝔨 ⊕ 𝔭 is nothing but the decomposition of 𝔤 = 𝔰𝔩3 (R)
into the sum of the subspace of skew-symmetric matrices 𝔨 = 𝔰𝔬3 and the subspace
𝔭 = Herm0

3 (R) of trace-free symmetric matrices, and the isotropy representation
𝐾 × 𝔭 → 𝔭 agrees directly with the SO3-action by conjugation on Herm0

3 (R)
described in Example 4.

In the examples discussed in this section we could see the following remarkable
fact: a normal geodesic to the orbit foliation intersects the singular orbits in exactly
2𝑔 equidistributed points, where 𝑔 agrees with the number of distinct principal
curvatures of each one of the principal orbits. This is something that holds for
any cohomogeneity one action on a round sphere (and more generally, for any
isoparametric family, by Münzner’s seminal work [74]).

The number 𝑔 of principal curvatures of homogeneous hypersurfaces in spheres,
their multiplicities, and their actual values, were calculated by Takagi and Taka-
hashi [95]. Their description can be done in terms of the restricted root system Σ

associated with the symmetric space 𝑀 of noncompact type whose isotropy rep-
resentation induces the action. Let 𝑋 ∈ 𝔞 ∩ Sdim𝑀−1 be a point in a geodesic of
Sdim𝑀−1 that is orthogonal to the orbits of the isotropy representation 𝐾 × 𝔭 → 𝔭.
Assume that 𝑋 lies in a principal orbit. Let b be a unit normal vector to the hypersur-
face 𝐾 ·𝑋 , i.e. b spans𝑇𝑋 (𝔞∩Sdim𝑀−1). Then the principal curvatures of 𝐾 ·𝑋 are of
the form `𝛼 = −𝛼(b)/𝛼(𝑋), for each positive root 𝛼 ∈ Σ+. Note that if 𝛼, 2𝛼 ∈ Σ+,
then both roots have the same associated principal curvature, `𝛼 = `2𝛼. Thus, the
number 𝑔 of principal curvatures of a homogeneous hypersurface is precisely the
cardinality of the set of reduced positive roots. It is a standard fact of root systems
that those of rank 2 have exactly 2, 3, 4 or 6 reduced roots, see [60, Figure 2.2 in
p. 151]. This immediately gives that 𝑔 ∈ {1, 2, 3, 4, 6}; the case 𝑔 = 1 arises since the
symmetric space can have a flat factor, see Example 8 (1), and then the associated
root system is of rank 1. The multiplicities correspond to the multiplicities of the
positive roots. Specifically, the multiplicity of the principal curvature `𝛼 associated
with the reduced positive root 𝛼 is 𝑚𝛼 = dim 𝔤𝛼 ⊕ 𝔤2𝛼. We refer to [6, §2.3.2 and
§2.7] for more details, and to [74, §2, Satz 1] or [78, Teorema 3.8] for an alternative
description in the general setting of isoparametric hypersurfaces.
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4.2 Homogeneous hypersurfaces in the other compact symmetric
spaces

In this subsection we will review the classification problem of homogeneous hy-
persurfaces in compact symmetric spaces of nonconstant curvature. We will mainly
focus on the rank one setting.

The simply connected Riemannian symmetric spaces of compact type and rank
one are the sphere S𝑛 and the projective spaces CP𝑛, HP𝑛, OP2 (𝑛 ≥ 2). They can
be described by a symmetric pair (𝐺, 𝐾) as specified in Table 1.

Table 1 Data for the sphere and the projective spaces.
S𝑛 CP𝑛 HP𝑛 OP2

𝐺 SO𝑛+1 SU𝑛+1 Sp𝑛+1 F4
𝐾 SO𝑛 S(U1U𝑛 ) Sp1Sp𝑛 Spin9

The classification problem for the complex projective space was solved by Tak-
agi [96].

Theorem 2 (Homogeneous hypersurfaces in complex projective spaces)
A homogeneous hypersurface in a complex projective space CP𝑛 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic CP𝑘 in CP𝑛, 𝑘 ∈ {1, . . . , 𝑛 − 1}, or
(3) a tube around a totally geodesic RP𝑛 in CP𝑛, or
(4) a tube around the Segre embedding of CP1 × CP𝑘 into CP𝑛 with 𝑛 = 2𝑘 + 1

odd, 𝑘 ≥ 1, or
(5) a tube around the Plücker embedding of the complex Grassmannian G2 (C5)

into CP9, or
(6) a tube around the half spin embedding of SO10/U5 into CP15.

A remarkable observation, similar to the discussion above in spheres, and which
follows from the work of Takagi [96] and later by Podestà and Thorbergsson [79], is
that a homogeneous hypersurface in the complex projective space CP𝑛 is congruent
to the quotient of a principal orbit of the isotropy representation of a Hermitian sym-
metric space of rank two. We will develop this idea a bit further before commenting
on the different items of the classification given by Theorem 2.

Let 𝑀 � 𝐺/𝐾 be a Hermitian symmetric space of rank two. Being Hermitian
means that𝑀 has a complex structure that is invariant under each geodesic symmetry.
Then 𝑀 has even dimension, and we write dim𝑀 = 2𝑛 + 2. Consider the base
point 𝑜 � 𝑒𝐾 . The isotropy representation of 𝑀 is the action 𝐾 × 𝑇𝑜𝑀 → 𝑇𝑜𝑀 ,
(𝑘, 𝑣) ↦→ 𝑘∗𝑒𝑣. Since 𝑇𝑜𝑀 � R2𝑛+2 � C𝑛+1 and the elements of 𝐾 act as linear
holomorphic isometries of C𝑛+1, this action can be restricted to an action on the unit
sphere S2𝑛+1 ⊂ C𝑛+1. As discussed in the previous subsection, this action on the
unit sphere is of cohomogeneity one. Moreover, the action on C𝑛+1 is polar and with
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totally real section, that is, there exists a totally real plane inC𝑛+1 that intersects all the
orbits of the isotropy representation, and, at the points of intersection, the plane and
the orbits are orthogonal. Since this action maps complex lines of C𝑛+1 to complex
lines of C𝑛+1, it descends to a cohomogeneity one action on the projectivization
P(C𝑛+1) � CP𝑛.

In order to obtain the classification in Theorem 2 it is therefore enough to consider
the classification of (possibly reducible) Hermitian symmetric spaces of rank two
and calculate their induced isotropy representations on the corresponding projec-
tivization of the tangent space of the point where the isotropy is considered. See [53,
X.6], taking into account the possible coincidences between different classes.

Tubes around totally geodesic CP𝑘 , 𝑘 ∈ {0, . . . , 𝑛− 1}, are principal orbits of the
action of U𝑘+1 × U𝑛−𝑘 . This action comes from the isotropy representation of the
reducible symmetric space CP𝑘+1 ×CP𝑛−𝑘 = (SU𝑘+2 ×SU𝑛−𝑘+1)/(S(U1 ×U𝑘+1) ×
S(U1 × U𝑛−𝑘)). If 𝑘 = 0 we recover geodesic spheres.

The real oriented two-plane Grassmannian G+
2 (R

𝑛+3) = SO𝑛+3/SO2 ×SO𝑛+1 in-
duces an action of SO𝑛+1 onCP𝑛 with two singular orbits: a totally geodesic real pro-
jective spaceRP𝑛, and the complex quadric Q𝑛−1 = {[𝑧] ∈ CP𝑛 : 𝑧20 + · · · + 𝑧2𝑛 = 0}.

Similarly, the complex two-plane Grassmannian G2 (C𝑘+3) = SU𝑘+3/S(U2U𝑘+1)
induces an action on CP2𝑘+1, one of whose singular orbits is the Segre embedding of
CP1 × CP𝑘 in CP2𝑘+1. This is an embedding of a product of projective spaces onto
another projective space of suitable dimension, where homogeneous coordinates are
multiplied out. In our case this embedding is given by the mapCP1×CP𝑘 → CP2𝑘+1,
( [𝑧0 : 𝑧1], [𝑤0 : · · · : 𝑤𝑘]) ↦→ [𝑧0𝑤0 : · · · : 𝑧0𝑤𝑘 : 𝑧1𝑤0 : · · · : 𝑧1𝑤𝑘].

The Plücker embedding is another classical embedding into a complex projective
space. In this case we embed a Grassmannian of 𝑘-planes into the projectivization
of the space of 𝑘-forms. For G2 (C5) into P(Λ2C5) � CP9 this embedding is defined
by span{𝑣1, 𝑣2} ↦→ [𝑣1 ∧ 𝑣2]. Tubes around this submanifold are homogeneous and
correspond to the principal orbits of the cohomogeneity one action induced by the
isotropy representation of the Hermitian symmetric space SO10/U5.

Finally, the Hermitian symmetric space E6/U1Spin10 induces a cohomogeneity
one action onCP15. One of the singular orbits of this action is the half spin embedding
of the symmetric space SO10/U5. We refer to [25, §7.5] for further details on this
embedding.

The classification problem in quaternionic projective space is attributed to
D’Atri [28] and Iwata [56].

Theorem 3 (Homogeneous hypersurfaces in quaternionic projective spaces)
A homogeneous hypersurface in a quaternionic projective space HP𝑛 is congru-

ent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic HP𝑘 in HP𝑛, 𝑘 ∈ {1, . . . , 𝑛 − 1}, or
(3) a tube around a totally geodesic CP𝑛 in HP𝑛.

The action of Sp𝑘+1 × Sp𝑛−𝑘 on HH𝑘 is of cohomogeneity one and its principal
orbits are tubes around totally geodesic quaternionic projective spaces HP𝑘 , 𝑘 ∈
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{0, . . . , 𝑛 − 1}. If 𝑘 = 0 we retrieve geodesic spheres. The principal orbits of the
action of U𝑛+1 on HP𝑛 are tubes around a totally geodesic CP𝑛.

It can be shown [79] that a cohomogeneity one action on a quaternionic projective
space is induced by the isotropy representation of a product of two quaternionic-
Kähler symmetric spaces of rank one, or of an irreducible quaternionic-Kähler
symmetric space of rank two. Thus, an alternative way of getting the list of Theorem 3
is to look at the corresponding list of these spaces, which turns out to be HP𝑘+1 ×
HP𝑛−𝑘 and SU𝑛+3/S(U2 × U𝑛+1).

We finish our review of homogeneous hypersurfaces in rank one symmetric
spaces of compact type recalling the classification result for the Cayley projective
plane given by Iwata [57].

Theorem 4 (Homogeneous hypersurfaces in the Cayley projective plane)
A homogeneous hypersurface in the Cayley projective planeOP2 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic HP2 in OP2.

A geodesic sphere can be seen as a principal orbit of the isotropy action of Spin9
on OP2. This action has two singular orbits: a fixed point and a totally geodesic
S8 = OP1. The second example in this classification is congruent to a principal orbit
of the action of Sp3Sp1, which has two singular orbits: a totally geodesic HP2 and a
minimal S11 = Sp3Sp1/Sp2Sp1. As pointed out by Iwata, there are two more groups,
up to conjugation, with the same orbits as Sp3Sp1. These are Sp3U1 and Sp3. Unlike
the results presented here, Iwata’s classification was obtained up to conjugation by
an element of F4, not up to orbit equivalence.

Remark 4 We would like to point out that there is a classification of isoparamet-
ric families of hypersurfaces in complex projective spaces CP𝑛, 𝑛 ≠ 15 [36] and
in quaternionic projective spaces HP𝑛, 𝑛 ≠ 7 [39]. It follows from these classifi-
cations that there are inhomogeneous examples of isoparametric hypersurfaces in
complex and quaternionic projective spaces. However, the classification problem of
isoparametric hypersurfaces in the Cayley projective plane is still open [99].

All these results were generalized by Kollross [61], who classified cohomogeneity
one actions on irreducible symmetric spaces of compact type up to orbit equivalence.
Thus, homogeneous hypersurfaces in an irreducible symmetric space of compact type
can be obtained via a case-by-case study of all these actions in each corresponding
space.

Theorem 5 (Cohomogeneity one actions on irreducible symmetric spaces of
compact type)

A cohomogeneity one action on an irreducible symmetric space of compact type
is locally orbit equivalent to one of the following:

(1) a Hermann action of cohomogeneity one, or
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(2) the action of {(𝑔, �̄�) : 𝑔 ∈ SU3} on SU3, or
(3) an action induced by the isotropy representation of a symmetric space of rank

two, or
(4) one of the seven exceptions corresponding to the action of 𝐻 × 𝐾 on 𝐺, or of

the action of 𝐻 on 𝐺/𝐾 , where (𝐻, 𝐾, 𝐺) is a triple of Table 2.

Table 2 Seven exceptional cohomogeneity one actions on symmetric spaces of compact type
𝐻 G2 G2 U3 Spin9 Sp1Sp𝑛 SU3 SU3
𝐾 SO3 × SO4 G2 G2 SO2 × SO14 SO2 × SO4𝑛−2 SO4 SU3
𝐺 SO7 SO7 SO7 SO16 SO4𝑛 G2 G2

Let 𝐻 and 𝐾 be compact Lie subgroups of 𝐺. In Theorem 5 and in the discussion
below, the isometric action of a product group 𝐻 × 𝐾 on a compact Lie group 𝐺
with bi-invariant metric is given by

(ℎ, 𝑘) · 𝑔 = ℎ𝑔𝑘−1, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, 𝑔 ∈ 𝐺.

The action of a subgroup 𝐻 of 𝐺 on a compact symmetric space 𝐺/𝐾 is given by
ℎ · 𝑔𝐾 = ℎ𝑔𝐾 .

Let 𝐺 be a compact semisimple Lie group. A subgroup 𝐾 of 𝐺 is called a
symmetric subgroup of 𝐺 if its Lie algebra is a fixed point set of an involutive
automorphism of the Lie algebra of 𝐺. Then (𝐺, 𝐾) is a symmetric pair and 𝐺/𝐾 a
symmetric space of compact type if equipped with a suitable metric.

A Hermann action is the action of 𝐻 ×𝐾 on𝐺 defined above, where 𝐻 and 𝐾 are
symmetric subgroups of𝐺. The natural action of𝐻 on𝐺/𝐾 is also called a Hermann
action, and it turns out that the action of 𝐻 ×𝐾 on 𝐺 is of cohomogeneity one if and
only if so is the action of 𝐻 on 𝐺/𝐾 (or the action of 𝐾 on 𝐺/𝐻). Thus, classifying
cohomogeneity one Hermann 𝐻-actions on 𝐺/𝐾 and classifying cohomogeneity
one Hermann 𝐻 × 𝐾-actions on 𝐺 are equivalent problems. Indeed, there is a
correspondence between Hermann actions on symmetric spaces of type II (or group
type), that is, compact simple Lie groups, and Hermann actions on symmetric spaces
of type III, that is, compact symmetric spaces with simple isometry group, and this
correspondence preserves the cohomogeneity.

Not any Hermann action is of cohomogeneity one, but it is possible to determine
explictly which ones are by looking at the classification of symmetric spaces of
compact type. Obvious examples that fall into this category are isotropy actions of
symmetric spaces 𝐺/𝐾 of rank one and the corresponding 𝐾 × 𝐾 actions on 𝐺.
However, there are a few more examples as shown in [61, Theorem B].

In Theorem 5 (2), the action of {(𝑔, �̄�) : 𝑔 ∈ SU3} on SU3 is given by (𝑔, �̄�) ·𝑔′ =
𝑔𝑔′�̄�−1. Here, �̄� denotes the complex conjugation of a matrix 𝑔, which induces an
outer Lie group automorphism of SU3.

Finally, we describe the actions in Theorem 5 (3). Let𝐺/𝐾 be a simply connected
symmetric space of rank 2. Then the isotropy representation of𝐺/𝐾 can be regarded
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as a Lie group homomorphism 𝜌 = Ad |
𝐾

: 𝐾 → SO(�̂�) � SO𝑛, where �̂� � 𝑇𝑜𝐺/𝐾
and 𝑛 = dim𝐺/𝐾 . If 𝐺/𝐾 is Hermitian, then 𝐾 � 𝐾ℎ · U1, for some compact
Lie group 𝐾ℎ, and we can regard the restriction of 𝜌 to 𝐾ℎ as a homomorphism
𝜌 |𝐾ℎ

: 𝐾ℎ → SU𝑛, where 𝑛 = dimC𝐺/𝐾 . If 𝐺/𝐾 is quaternionic-Kähler, then
𝐾 = 𝐾𝑞 · Sp1, for some compact Lie group 𝐾𝑞 , and we can regard the restriction of
𝜌 to 𝐾𝑞 as a homomorphism 𝜌 |𝐾𝑞

: 𝐾𝑞 → Sp𝑛, where 𝑛 = dimH𝐺/𝐾 . Then, the
actions in item (3) of Theorem 5 correspond to the action of 𝐻 × 𝐾 on 𝐺, and to the
action of 𝐻 on 𝐺/𝐾 , where (𝐻, 𝐾, 𝐺) is given in Table 3, and 𝐺/𝐾 is a rank two
symmetric space.

Table 3 Actions induced by isotropy representations of symmetric spaces of rank two

𝐺/𝐾 arbitrary 𝐺/𝐾 Hermitian 𝐺/𝐾 quaternionic-Kähler
𝐻 𝜌(𝐾 ) 𝜌(𝐾ℎ ) 𝜌(𝐾𝑞 )
𝐾 SO𝑛−1 S(U1 × U𝑛−1 ) Sp1 × Sp𝑛−1
𝐺 SO𝑛 SU𝑛 Sp𝑛

5 Homogeneous hypersurfaces in hyperbolic spaces

In this section we review the classification results of homogeneous hypersurfaces in
rank one symmetric spaces of noncompact type. These are precisely the hyperbolic
spaces over the normed real division algebras, namely,RH𝑛,CH𝑛,HH𝑛,OH2 (𝑛 ≥ 2).

5.1 Homogeneous hypersurfaces in real hyperbolic spaces

The classification of homogeneous hypersurfaces in real hyperbolic spaces was
solved in a classical paper by Cartan [22]. Actually, Cartan’s aim was to classify
isoparametric hypersurfaces in Riemannian manifolds of constant curvature. He
succeeded to get such classification in RH𝑛, but not in spheres, where the problem
remained open for nearly a century. It follows from this classification that an isopara-
metric hypersurface in RH𝑛 is an open part of a homogeneous hypersurface. This
implies the classification of homogeneous hypersurfaces in RH𝑛:

Theorem 6 (Homogeneous hypersurfaces in real hyperbolic spaces)
A homogeneous hypersurface in RH𝑛 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic RH𝑘 , 𝑘 ∈ {1, . . . , 𝑛 − 2}, in RH𝑛, or
(3) a totally geodesic RH𝑛−1, or one of its equidistant hypersurfaces, or
(4) a horosphere.
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Recall that the connected component of the identity of the isometry group of the
real hyperbolic space RH𝑛 is SO0

1,𝑛. A geodesic sphere is congruent to a principal
orbit of the action of SO𝑛 on RH𝑛. Similarly, a tube around a totally geodesic
RH𝑘 in RH𝑛 is congruent to a principal orbit of the action of SO0

1,𝑘 × SO𝑛−𝑘 ,
𝑘 ∈ {1, . . . , 𝑛 − 2}. If 𝑘 = 0 we recover the geodesic spheres, and if 𝑘 = 𝑛 − 1, then
SO0

1,𝑛−1 acts with cohomogeneity one, but in this case, all orbits are principal; in
particular, a totally geodesic RH𝑛−1 is also a homogeneous hypersurface. Finally,
the horospheres are the orbits of the nilpotent part 𝑁 of the Iwasawa decomposition
of SO0

1,𝑛 (see §3.3). It is remarkable that the horospheres are Euclidean spaces R𝑛−1

embedded in RH𝑛 in a totally umbilical way [93, p. 14]; all horospheres of RH𝑛 are
congruent to each other.

5.2 General approach to homogeneous hypersurfaces in hyperbolic
spaces

In the rest of this section we address the classification problem for the remaining
symmetric spaces of noncompact type and rank one. In this subsection we review
the algebraic structure theory of these spaces, and explain the general approach for
the classification of homogeneous hypersurfaces in this setting. In the subsequent
subsections we will describe the classification results separately for each family of
spaces. We will use the notation introduced in §3.3.

Let (𝐺, 𝐾) be a symmetric pair representing the symmetric space FH𝑛, F ∈
{R,C,H,O} (𝑛 = 2 if F = O). Then, the root space decomposition of 𝔤, the Lie
algebra of 𝐺, reads

𝔤 = 𝔤−2𝛼 ⊕ 𝔤−𝛼 ⊕ 𝔤0 ⊕ 𝔤𝛼 ⊕ 𝔤2𝛼,

where 𝔤2𝛼 = 𝔤−2𝛼 = 0 in the case of the real hyperbolic space RH𝑛; the asso-
ciated root system is otherwise nonreduced. Recall that 𝔤0 = 𝔨0 ⊕ 𝔞, where 𝔞 is
1-dimensional. We denote by 𝐾0 the connected subgroup of 𝐾 whose Lie algebra is
𝔨0. Then, the possibilities for 𝐺, 𝐾 , and 𝐾0 are summarized in Table 4.

Table 4 Data for each hyperbolic space.
RH𝑛 CH𝑛 HH𝑛 OH2

𝐺 SO0
1,𝑛 SU1,𝑛 Sp1,𝑛 F−20

4
𝐾 SO𝑛 S(U1U𝑛 ) Sp1Sp𝑛 Spin9
𝐾0 SO𝑛−1 S(U1U𝑛−1 ) Sp1Sp𝑛−1 Spin7
𝔤𝛼 R𝑛−1 C𝑛−1 H𝑛−1 O
𝔤2𝛼 0 R R3 R7

In this case, the nilpotent part of the Iwasawa decomposition of 𝔤 is simply
𝔫 = 𝔤𝛼 ⊕ 𝔤2𝛼. If 𝔤𝛼 = 0, then 𝔫 is abelian. Otherwise, if 𝔤𝛼 ≠ 0, it turns out that
𝔤2𝛼 is the center of 𝔫 and the derived subalgebra of the nilpotent Lie algebra 𝔫, that
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is, [𝔫, 𝔫] = 𝔤2𝛼. We have dim 𝔤2𝛼 = dimR F − 1. In fact, 𝔤2𝛼 can be interpreted as
the imaginary part of F; following this idea, there is a Clifford algebra representation
𝐽 : Cl(𝔤2𝛼) → End(𝔤𝛼) which turns 𝔤𝛼 into a Clifford module. The restriction of 𝐽
to 𝔤2𝛼 gives rise to endomorphisms 𝐽𝑍 of 𝔤𝛼 that are defined by the relation

〈[𝑈,𝑉], 𝑍〉 = 〈𝐽𝑍𝑈,𝑉〉, 𝑈, 𝑉 ∈ 𝔤𝛼, 𝑍 ∈ 𝔤2𝛼.

See [16] for further details. Moreover, 𝔤𝛼 � F𝑛−1, and the action of 𝐾0 on 𝔤𝛼 is
equivalent to the standard action.

We will now describe the possible types of cohomogeneity one actions that may
arise on a rank one symmetric space of noncompact type and nonconstant curvature.
The fact that the following types exhaust all actions follows from the various works
of Berndt, Brück and Tamaru [5], [12], [14]. In Section 6 we will describe a more
general approach that holds for arbitrary rank.

(1) If a cohomogeneity one action on FH𝑛 induces a regular foliation, then there are
two options up to orbit equivalence [12]:

(a) the horosphere foliation, whose leaves are the orbits of the action of the
nilpotent part of the Iwasawa decomposition of 𝐺, namely, the connected
subgroup 𝑁 with Lie algebra 𝔫; and

(b) the solvable foliation, whose leaves are the orbits of the subgroup 𝑆 whose
Lie algebra is 𝔰 = 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼, where 𝔴 is a real hyperplane of 𝔤𝛼.

(2) In order to determine the cohomogeneity one actions on FH𝑛 that have a totally
geodesic singular orbit, it is enough to determine which totally geodesic sub-
manifolds of FH𝑛 have homogeneous tubes. Totally geodesic submanifolds of
hyperbolic spaces have been classified. By calculating the stabilizer of each one
of these submanifolds, as well as its slice representation (i.e., the linearized ac-
tion on the normal space to the totally geodesic submanifold), one can conclude
which ones give rise to cohomogeneity one actions [5].

(3) Finally, it remains to study cohomogeneity one actions on FH𝑛 with a non-
totally geodesic singular orbit. Berndt and Tamaru devised in [14] a procedure
to address this case. In symmetric spaces of higher rank this method is called
the nilpotent construction, cf. §6.4. In brief, the classification of cohomogeneity
one actions on FH𝑛 with a non-totally geodesic singular orbit reduces to the
classification of the subspaces 𝔴 of 𝔤𝛼 such that 𝑁𝐾0 (𝔴), the normalizer of
𝔴 in 𝐾0, acts transitively on the unit sphere of 𝔴⊥ = 𝔤𝛼 	 𝔴, the orthogonal
complement of 𝔴 in 𝔤𝛼, up to congruence by an element of 𝐾0. In this case, the
connected subgroup of 𝐾0𝐴𝑁 ⊂ 𝐺 whose Lie algebra is 𝑁𝐾0 (𝔴) ⊕ 𝔞 ⊕𝔴⊕ 𝔤2𝛼
acts on FH𝑛 with cohomogeneity one. The subspaces 𝔴 ⊂ 𝔤𝛼 satisfying this
condition have been classified in [14] for F ∈ {C,O}, and in [32] for F = H.
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5.3 Homogeneous hypersurfaces in complex hyperbolic spaces

The classification of homogeneous hypersurfaces in the complex case was obtained
by Berndt and Tamaru in [14]. It can be stated as follows:

Theorem 7 (Homogeneous hypersurfaces in complex hyperbolic spaces)
A homogeneous hypersurface in CH𝑛 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic CH𝑘 in CH𝑛, 𝑘 ∈ {1, . . . , 𝑛 − 1}, or
(3) a tube around a totally geodesic RH𝑛 in CH𝑛, or
(4) a horosphere, or
(5) a ruled homogeneous minimal Lohnherr hypersurface 𝑊2𝑛−1

𝜋/2 , or one of its
equidistant hypersurfaces, or

(6) a tube around a ruled homogeneous minimal Berndt–Brück submanifold𝑊2𝑛−𝑘
𝜑 ,

for 𝑘 ∈ {2, . . . , 𝑛 − 1}, 𝜑 ∈ (0, 𝜋/2], where 𝑘 is even if 𝜑 ≠ 𝜋/2.

Tubes around totally geodesic complex hyperbolic spacesCH𝑛, 𝑘 ∈ {0, . . . , 𝑛−1},
are congruent to the principal orbits of the action of S(U1,𝑘 × U𝑛−𝑘). The particular
case of 𝑘 = 0 corresponds to geodesic spheres. The principal orbits of the group
SO0

1,𝑛 produce tubes around a totally geodesic real hyperbolic space RH𝑛. Note
that tubes around a totally geodesic RH𝑘 , 𝑘 ∈ {1, . . . , 𝑛 − 1}, are not homogeneous
because the normal space of RH𝑘 is a direct sum of a nontrivial totally real and
a nontrivial complex subspace of a complex vector space, and isometries of CH𝑛
are holomorphic. The group 𝑁 gives rise to a horosphere foliation, whose orbits
are isometric to generalized Heisenberg groups. All of the orbits of this action are
principal and congruent to each other.

Item (5) in Theorem 7 corresponds to the solvable foliation, whereas example (6)
corresponds to a nilpotent construction. We review them in more detail here. Let𝔴 be
a real subspace of 𝔤𝛼 � C𝑛−1. We denote by 𝐽 the complex structure of 𝔤𝛼 � C𝑛−1.
The Kähler angle of a nonzero 𝑣 ∈ 𝔴⊥ is the angle between 𝐽𝑣 and 𝔴⊥. We say
that 𝔴⊥ has constant Kähler angle 𝜑 ∈ [0, 𝜋/2] if the Kähler angle of any nonzero
vector of 𝔴⊥ is 𝜑. Examples of subspaces with constant Kähler angle are totally
real subspaces, that is, 〈𝐽𝔴⊥,𝔴⊥〉 = 0, whose Kähler angle is 𝜋/2, and complex
subspaces, that is, 𝐽𝔴⊥ = 𝔴⊥, whose Kähler angle is 0. Any angle 𝜑 ∈ (0, 𝜋/2) can
be achieved, and in this case dim𝔴⊥ = 𝑘 is an even number. Two subspaces of 𝔤𝛼
with the same dimension and Kähler angle are congruent by an isometry of 𝐾0, and
a basis of such a subspace can be written as

{𝑒1, cos(𝜑)𝐽𝑒1 + sin(𝜑)𝐽𝑒2, . . . , 𝑒2𝑘−1, cos(𝜑)𝐽𝑒2𝑘−1 + sin(𝜑)𝐽𝑒2𝑘},

where {𝑒1, . . . , 𝑒2𝑘} is a C-orthonormal subset in 𝔤𝛼 � C
𝑛−1.

It turns out that if𝔴⊥ has constant Kähler angle 𝜑, then𝑁𝐾0 (𝔴) acts transitively on
the unit sphere of 𝔴⊥. Berndt and Tamaru [14] showed that the connected subgroup
of SU1,𝑛 whose Lie algebra is 𝑁𝐾0 (𝔴)⊕𝔞⊕𝔴⊕𝔤2𝛼 acts onCH𝑛 with cohomogeneity
one. We denote by 𝑊2𝑛−𝑘

𝜑 the orbit through the origin 𝑜 � 𝑒𝐾 of this group, where
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𝑘 is its codimension. If 𝔴 is a hypersurface, then 𝔴⊥ is one-dimensional, and thus,
totally real. The corresponding action has exactly one minimal orbit, known as the
Lohnherr hypersurface, and the rest of the orbits are equidistant hypersurfaces to it.
If 𝔴 has codimension 𝑘 > 1, then there is exactly one singular orbit, known as a
Berndt-Brück submanifold, and the rest of the orbits are tubes around it. Any Kähler
angle is possible if 𝑛 ≥ 3. However, if 𝜑 = 0, this construction reproduces the tubes
around a totally geodesic CH𝑘 , 𝑘 ∈ {1, . . . , 𝑛}, so it is removed from item (6) of
Theorem 7 to avoid duplication.

Remark 5 Isoparametric hypersurfaces inCH𝑛 have been classified in [33]. It follows
from this classification that a hypersurface in CH𝑛 is isoparametric if and only if it
is an open part of a homogeneous hypersurface or of a tube around the orbit through
the origin of the subgroup of 𝐴𝑁 ⊂ SU1,𝑛 whose Lie algebra is 𝔞 ⊕𝔴 ⊕ 𝔤2𝛼, where
𝔴⊥ is a subspace of 𝔤𝛼 with nonconstant Kähler angle. As a consequence, any
isoparametric hypersurface in CH2 is homogeneous, but there are infinitely many
inhomogeneous examples in CH𝑛, 𝑛 ≥ 3.

5.4 Homogeneous hypersurfaces in quaternionic hyperbolic spaces

The classification of cohomogeneity one actions on quaternionic hyperbolic spaces
HH𝑛 has recently been obtained in [32] by the first two authors and Rodrı́guez-
Vázquez. The corresponding classification of homogeneous hypersurfaces can be
read from there.

Theorem 8 (Homogeneous hypersurfaces in quaternionic hyperbolic spaces)
A homogeneous hypersurface in HH𝑛 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic HH𝑘 in HH𝑛, 𝑘 ∈ {1, . . . , 𝑛 − 1}, or
(3) a tube around a totally geodesic CH𝑛 in HH𝑛, or
(4) a horosphere, or
(5) a homogeneous minimal hypersurface 𝑃1, or one of its equidistant hypersur-

faces, or
(6) a tube around a homogeneous minimal submanifold 𝑃𝔴 in HH𝑛, where 𝔴⊥ is a

protohomogeneous subspace of 𝔤𝛼.

Similar to the complex case, tubes around a totally geodesic quaternionic hyper-
bolic space HH𝑘 , 𝑘 ∈ {0, . . . , 𝑛 − 1}, are homogeneous and are congruent to the
principal orbits of the action of Sp1,𝑘 × Sp𝑛−𝑘 on HH𝑛. If 𝑘 = 0 we again have
geodesic spheres. Tubes around totally geodesic complex hyperbolic spaces CH𝑛 in
HH𝑛 are also homogeneous and correspond to the principal orbits of the action of
SU1,𝑛. Although there are more totally geodesic submanifolds of HH𝑛, their tubes
fail to be homogeneous. The action of 𝑁 gives rise to a horosphere foliation, all
whose orbits are congruent to each other. Examples (5) correspond to the leaves of
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the solvable foliation. This is constructed, as usual, as the action of the subgroup of
𝐴𝑁 ⊂ Sp1,𝑛 whose Lie algebra is 𝔞 ⊕𝔴 ⊕ 𝔤2𝛼, where 𝔴 is a hyperplane in 𝔤𝛼. This
foliation has exactly one minimal leaf, which we have denoted by 𝑃1.

For the rest of the examples, we need to determine all subspaces 𝔴 of 𝔤𝛼 � H𝑛−1

such that 𝑁𝐾0 (𝔴) acts transitively on the unit sphere of 𝔴⊥ up to congruence
by an element of 𝐾0 � Sp1Sp1,𝑛−1. As we explained before, the subgroup of
𝐾0𝐴𝑁 ⊂ Sp1,𝑛 whose Lie algebra is 𝑁𝐾0 (𝔴) ⊕ 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼 acts on HH𝑛 with
cohomogeneity one. We will call the subspaces 𝔴 of 𝔤𝛼 satisfying this condition
protohomogeneous. In the particular case that 𝔴 is a hypersurface, we recover the
solvable foliation, which corresponds to item (5) of Theorem 8.

The space 𝔤𝛼 � H
𝑛−1 is a right quaternionic vector space. It can be endowed

with a quaternionic structure 𝔍, that is, a vector subspace of EndR (H𝑛−1) admitting
a so-called canonical basis {𝐽1, 𝐽2, 𝐽3} satisfying

𝐽2
𝑖 = − Id, 𝐽𝑖𝐽𝑖+1 = 𝐽𝑖+2 = −𝐽𝑖+1𝐽𝑖 (indices modulo 3).

For a given subspace 𝔴⊥ ⊂ 𝔤𝛼, each complex structure 𝐽 ∈ 𝔍 determines a Kähler
angle of a nonzero vector 𝑣 ∈ 𝔴⊥ in the sense we have considered for the complex
case. We define the quaternionic Kähler angle of a nonzero 𝑣 ∈ 𝔴⊥ to be the triple
(𝜑1 (𝑣), 𝜑2 (𝑣), 𝜑3 (𝑣)) satisfying that there exists a canonical basis {𝐽1, 𝐽2, 𝐽3} such
that

(i) 𝜑1 (𝑣) ≤ 𝜑2 (𝑣) ≤ 𝜑3 (𝑣),
(ii) 𝜑𝑖 (𝑣) is the Kähler angle of 𝑣 with respect to 𝐽𝑖 , 𝑖 ∈ {1, 2, 3},
(iii) 〈𝜋𝔴⊥𝐽𝑖𝑣, 𝜋𝔴⊥𝐽 𝑗𝑣〉 = 0 if 𝑖 ≠ 𝑗 , and where 𝜋𝔴⊥ : 𝔤𝛼 → 𝔴⊥ denotes the orthog-

onal projection onto 𝔴⊥,
(iv) 𝜑1 (𝑣) is minimum and 𝜑3 (𝑣) is maximum among the Kähler angles of 𝑣 with

respect to the complex structures 𝐽 ∈ 𝔍.

A probably more telling way of defining the quaternionic Kähler angle is the
following. We consider the symmetric bilinear form

𝐿𝑣 : 𝔍 × 𝔍 → R, (𝐽, 𝐽′) ↦→ 〈𝜋𝔴⊥𝐽𝑣, 𝜋𝔴⊥𝐽′𝑣〉.

Then, the Kähler angle of a nonzero 𝑣 ∈ 𝔴⊥ is the ordered triple (𝜑1 (𝑣), 𝜑2 (𝑣), 𝜑3 (𝑣))
satisfying that the eigenvalues of 𝐿𝑣 are precisely cos2 (𝜑𝑖 (𝑣))〈𝑣, 𝑣〉. The canonical
basis {𝐽1, 𝐽2, 𝐽3} used above to define the quaternionic Kähler angle is precisely a
basis that diagonalizes 𝐿𝑣.

If 𝔴⊥ is protohomogeneous, then 𝔴⊥ has constant quaternionic Kähler angle.
Protohomogeneous subspaces of H𝑛 have been classified in [32] up to congruence
by an element of Sp1Sp𝑛 by making extensive use of the concept of quaternionic
Kähler angle. The moduli space M𝑘,𝑛 of nonzero protohomogeneous subspaces of
dimension 𝑘 in H𝑛, up to congruence in Sp1Sp𝑛, is described in Table 5.

This classification includes well-known examples such as totally real subspaces
(precisely those with quaternionic Kähler angle (𝜋/2, 𝜋/2, 𝜋/2)), totally com-
plex subspaces (with quaternionic Kähler angle (0, 𝜋/2, 𝜋/2)), quaternionic sub-
spaces (with quaternionic Kähler angle (0, 0, 0)), subspaces of constant Kähler
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Table 5 Moduli space of protohomogeneous subspaces of dimension 𝑘 in H𝑛.

M𝑘,𝑛 𝑘 ≤ 𝑛 𝑛 < 𝑘 ≤ 4𝑛
3

4𝑛
3 < 𝑘 ≤ 2𝑛 𝑘 > 2𝑛

𝑘 ≡ 0 (mod 4) (ℜ+
4 \ℜ−

4 ) t (ℜ−
4 × Z2 ) 𝔖 { (0, 𝜑, 𝜑) }𝜑∈ [0, 𝜋

2 ] { (0, 0, 0) }
𝑘 ≡ 2 (mod 4) { (𝜑, 𝜋

2 ,
𝜋
2 ) }𝜑∈ [0, 𝜋

2 ] { (0, 𝜋
2 ,

𝜋
2 ) } { (0, 𝜋

2 ,
𝜋
2 ) } ∅

𝑘 ≠ 3 odd { ( 𝜋
2 ,

𝜋
2 ,

𝜋
2 ) } ∅ ∅ ∅

𝑘 = 3 (ℜ+
3 \ℜ−

3 ) t (ℜ−
3 × Z2 ) ∅ { (𝜑, 𝜑, 𝜋

2 ) }𝜑∈{0, 𝜋
3 } { (0, 0, 𝜋

2 ) }

Λ = { (𝜑1, 𝜑2, 𝜑3 ) ∈ [0, 𝜋/2]3 : 𝜑1 ≤ 𝜑2 ≤ 𝜑3},
ℜ+

3 = { (𝜑, 𝜑, 𝜋/2) ∈ Λ : 𝜑 ∈ [0, 𝜋/2] },
ℜ−

3 = { (𝜑, 𝜑, 𝜋/2) ∈ Λ : 𝜑 ∈ [𝜋/3, 𝜋/2) },
ℜ+

4 = { (𝜑1, 𝜑2, 𝜑3 ) ∈ Λ : cos(𝜑1 ) + cos(𝜑2 ) − cos(𝜑3 ) ≤ 1},
ℜ−

4 = { (𝜑1, 𝜑2, 𝜑3 ) ∈ Λ : cos(𝜑1 ) + cos(𝜑2 ) + cos(𝜑3 ) ≤ 1, 𝜑3 ≠ 𝜋/2},
𝔖 = { (𝜑1, 𝜑2, 𝜑3 ) ∈ Λ : cos(𝜑1 ) + cos(𝜑2 ) + Y cos(𝜑3 ) = 1, for Y = 1 or Y = −1}.

angle 𝜑 ∈ (0, 𝜋/2) inside a totally complex vector subspace (with quaternionic
Kähler angle (𝜑, 𝜋/2, 𝜋/2)), complexifications of subspaces of constant Kähler an-
gle 𝜑 ∈ (0, 𝜋/2) in a totally complex subspace (with quaternionic Kähler angle
(0, 𝜑, 𝜑)), and subspaces of the form 𝔍𝑣, 𝑣 ∈ H𝑛, 𝑣 ≠ 0 (with quaternionic Kähler
angle (0, 0, 𝜋/2)).

However, there are some other nonclassical examples. See [32] for an explicit
construction of these subspaces. While two subspaces with different quaternionic
Kähler angles cannot be congruent to each other, a remarkable consequence of
this classification implies the existence of noncongruent subspaces of H𝑛 with the
same quaternionic Kähler angles. These correspond precisely to the intersections
ℜ+

3 ∩ℜ−
3 = ℜ−

3 and ℜ+
4 ∩ℜ−

4 = ℜ−
4 .

All the examples in Theorem 8 (6) are obtained as tubes around the orbit through
the origin 𝑜 � 𝑒𝐾 of the connected subgroup of 𝐴𝑁 ⊂ 𝐺 = Sp1,𝑛 whose Lie
algebra is 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼, and where 𝔴⊥ is protohomogeneous in 𝔤𝛼 � H

𝑛−1. The
moduli space M𝑘,𝑛−1 determines the congruence classes of the singular orbits of
the corresponding cohomogeneity one actions, which in turn determines the orbit
equivalence classes of cohomogeneity one actions on HH𝑛.

In order to get a proper classification we still need to exclude a few classes that
intersect with previous items of Theorem 8. If 𝔴⊥ has quaternionic Kähler angle
(0, 0, 0), then 𝔴⊥ and also 𝔴 are quaternionic vector subspaces of 𝔤𝛼 � H𝑛−1. In
this case, we recover tubes around totally geodesic quaternionic hyperbolic spaces
HH𝑘 , 𝑘 ∈ {1, . . . , 𝑛 − 1}. As we explained before, we also have to exclude when 𝔴

is a hyperplane, as this gives the solvable foliation.

Remark 6 Consider the connected subgroup of Sp1,𝑛 with Lie algebra 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼,
where 𝔴 is an arbitrary proper subspace of 𝔤𝛼. If follows from [30] that tubes around
the orbit through the origin of that group are always isoparametric. These have
constant principal curvatures if and only if 𝔴⊥ has constant quaternionic Kähler
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angle. If follows from [32] that, by taking direct sums of spaces in both ℜ+
4 and ℜ−

4
with the same constant quaternionic Kähler angles we obtain subspaces 𝔴⊥ that still
have constant quaternionic Kähler angle, but are not protohomogeneous. This yields
examples of isoparametric hypersurfaces with constant principal curvatures in HH𝑛,
𝑛 ≥ 8, that are not homogeneous.

5.5 Homogeneous hypersurfaces in the Cayley hyperbolic plane

Finally, we deal with the Cayley hyperbolic plane OH2.

Theorem 9 (Homogeneous hypersurfaces in the Cayley hyperbolic plane)
A homogeneous hypersurface in OH2 is congruent to:

(1) a geodesic sphere, or
(2) a tube around a totally geodesic OH1, or
(3) a tube around a totally geodesic HH2, or
(4) a horosphere, or
(5) a minimal homogeneous hypersurface 𝐹1, or one of its equidistant hypersur-

faces, or
(6) a tube around the minimal submanifold 𝐹𝑘 of codimension 𝑘 ∈ {2, 3, 6, 7}, or
(7) a tube around the minimal submanifold 𝐹4,𝜑 of codimension 4, for some 𝜑 ∈

[0, 1].

Geodesic spheres are principal orbits of the isotropy action of Spin9 on OH2.
Tubes around a totally geodesic OH1 on OH2 are congruent to the principal orbits of
the action of Spin0

1,8 ⊂ F−20
4 , and tubes around a totally geodesic HH2 are principal

orbits of the action of Sp1,2Sp1 ⊂ F−20
4 . The group 𝑁 , which is the nilpotent part

of the Iwasawa decompostion of F−20
4 , gives rise to the horosphere foliation in OH2,

whose leaves are congruent to each other. Example (5) of Theorem 9 corresponds to
the solvable foliation, which is obtained by the action of the subgroup of F−20

4 whose
Lie algebra is 𝔞 ⊕𝔴 ⊕ 𝔤2𝛼, where 𝔴 is a hyperplane in 𝔤𝛼. This action has a unique
minimal orbit which is denoted by 𝐹1.

Examples (6) and (7) correspond to the nilpotent construction. Berndt and Br̈uck
classified in [5] all subspaces 𝔴 of 𝔤𝛼 � O such that 𝑁𝐾0 (𝔴) acts transitively
on the unit sphere of 𝔴⊥. It turns out that any proper subspace 𝔴 of 𝔤𝛼 with
dim𝔴 ≠ 3 satisfies this condition. Hyperplanes of 𝔤𝛼 are ones of such spaces, but
they correspond to item (5) and produce a foliation. The group 𝐾0 � Spin7 acts on
O � R8 by its irreducible 8-dimensional spin representation. This action induces
an action on the Grassmannians G𝑘 (R8) of 𝑘-planes in R8. If 𝑘 ≠ 4, this action
is transitive, and if 𝑘 = 4 this action is of cohomogeneity one (see the dicussion
for OH2 in [14] and the references therein). This implies that any pair of subspaces
of 𝔤𝛼 of dimension 𝑘 ≠ 4 are congruent by an isometry of Spin7. The singular
orbit of the action on OH2 of the connected subgroup of F−20

4 with Lie algebra
𝑁𝐾0 (𝔴) ⊕ 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼 is denoted by 𝐹𝑘 , where 𝑘 = dim𝔴⊥ = 8 − dim𝔴. The
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moduli space of Spin7-congruence classes of subspaces of 𝔤𝛼 of dimension 4 is
in one to one correspondence with the orbit space G4 (R8)/Spin7 � [0, 1]. The
congruence class corresponding to some 𝜑 ∈ [0, 1] produces a cohomogeneity one
action on OH2 whose singular orbit is denoted by 𝐹4,𝜑 .
Remark 7 As in the previous hyperbolic spaces, any tube around the orbit through
the origin of the subgroup 𝑆𝔴 of 𝐴𝑁 ⊂ F−20

4 with Lie algebra 𝔞 ⊕ 𝔴 ⊕ 𝔤2𝛼 is
isoparametric. Moreover, in this case, it follows from [30] that each one of these
tubes has constant principal curvatures. Thus, for dim𝔴⊥ = 5, the corresponding
tubes around 𝑆𝔴 · 𝑜 are inhomogeneous isoparametric hypersurfaces with constant
principal curvatures. If dim𝔴⊥ = 4, the constant principal curvatures of the homo-
geneous tubes around 𝐹4,𝜑 are independent of 𝜑. Thus, there is an infinite family
of noncongruent homogeneous isoparametric hypersurfaces with the same constant
principal curvatures counted with multiplicities.

6 Homogeneous hypersurfaces in symmetric spaces of
noncompact type and arbitrary rank

The aim of this section is to provide an overview of the methods of construction and
classification of cohomogeneity one actions on symmetric spaces of noncompact
type and arbitrary rank. As we commented in the previous section, the classification
in rank one is nowadays complete. Although this is not the case for higher rank,
there have been recent advances that give us, not only some classifications in certain
spaces, but importantly, a panoramic view of the possible types of actions that may
arise in any symmetric space of noncompact type.

We will start by explaining four construction techniques that can be regarded as
building blocks for the classification problem. These techniques are the construction
of codimension one subgroups of the solvable part 𝐴𝑁 of the Iwasawa decomposition
(explained in §6.1), the actions with a totally geodesic singular orbit (§6.2), the
canonical extension of actions from lower rank symmetric spaces (§6.3), and the
nilpotent construction (§6.4). Then, in §6.5 we will report on a structural result that
asserts that these four building blocks are enough to construct any cohomogeneity
one action on any (not necessarily irreducible) symmetric space of noncompact type.

6.1 Homogeneous codimension one foliations

Since any symmetric space of noncompact type 𝑀 is a Hadamard manifold, any
cohomogeneity one action on 𝑀 has at most one singular orbit. We will explain
in this subsection that the case of actions without singular orbit is nowadays well
understood.

It follows from the Iwasawa decomposition that the connected solvable subgroup
𝐴𝑁 of𝐺 with Lie algebra 𝔞⊕𝔫 acts freely and transitively on 𝑀 . Thus, codimension
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one subgroups of 𝐴𝑁 give rise to homogeneous codimension one regular foliations
on 𝑀 . Berndt and Tamaru used this in [12] to propose two general methods for
constructing cohomogeneity one actions with no singular orbits on a given symmetric
space of noncompact type.

The first method produces a regular Riemannian foliation Fℓ for each one-
dimensional subspace in 𝔞. Define 𝔥ℓ to be the orthogonal complement of ℓ in
𝔞 ⊕ 𝔫, 𝔥ℓ = (𝔞 	 ℓ) ⊕ 𝔫. This is a codimension one subalgebra of 𝔞 ⊕ 𝔫, so the
corresponding connected subgroup 𝐻ℓ of 𝐺 acts on 𝑀 with cohomogeneity one and
no singular orbits. It turns out that the orbits of this action are congruent to each
other. Foliations of 𝑀 by horospheres (i.e. by the level sets of a Busemann function
on 𝑀) are a particular type of such a construction [42, Remark 5.4], so we will refer
to the Fℓ as foliations of horospherical type.

The second method gives us a foliation F𝑖 for each simple root 𝛼𝑖 ∈ Λ =

{𝛼1, . . . , 𝛼𝑟 }. Let ℓ be a one-dimensional subspace of a simple root space 𝔤𝛼𝑖 . It
follows from the properties of root spaces that 𝔥𝑖 = 𝔞 ⊕ (𝔫 	 ℓ) is a codimension
one subalgebra of 𝔞 ⊕ 𝔫, and so, its corresponding connected subgroup 𝐻𝑖 of 𝐺 acts
with cohomogeneity one on 𝑀 . Actions arising in this way have a unique minimal
orbit (namely, the orbit through 𝑜). We will refer to these F𝑖 as foliations of solvable
type.

It was shown in [12] for irreducible 𝑀 and in [7] for the general case that
every cohomogeneity one action on a symmetric space of noncompact type with
no singular orbits is orbit equivalent to the action of some 𝐻ℓ or 𝐻𝑖 as constructed
before. Furthermore, the moduli space of such actions has been studied in [12]
and [92]. Two actions of horospherical type Fℓ and Fℓ′ are isometrically congruent
precisely whenever there exists an isometry of 𝑀 that induces a symmetry of the
Dynkin diagram of 𝔤 taking ℓ to ℓ′. Something similar happens for the foliations of
solvable type: F𝑖 and F𝑗 are isometrically congruent if and only if there exists an
isometry of 𝑀 that induces a symmetry of the Dynkin diagram of 𝔤 taking 𝛼𝑖 to 𝛼 𝑗 .
In particular, if ℓ and ℓ′ are contained in the same root space, they yield congruent
foliations. Thus, the moduli space of homogeneous codimension one foliations on
a symmetric space of noncompact type up to orbit equivalence is isomorphic to
(RP𝑟 t {1, . . . , 𝑟})/Aut(DD𝑀 ), where 𝑟 = rank (𝑀) and Aut(DD𝑀 ) denotes the
subgroup of symmetries of the Dynkin diagram of 𝔤 which are induced by isometries
of 𝑀 .

6.2 Cohomogeneity one actions with a totally geodesic singular orbit

Among the cohomogeneity one actions that have a singular orbit, it is natural to
first determine those actions whose singular orbit is totally geodesic. Recall that if a
cohomogeneity one action on a Euclidean or a real hyperbolic space has a singular
orbit, this must be totally geodesic, although this is no longer the case for the other
hyperbolic spaces, as explained in Section 5.
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In the article [13], Berndt and Tamaru derived the classification of the totally
geodesic submanifolds 𝐹 of any irreducible symmetric space of noncompact type
𝑀 that arise as singular orbits of cohomogeneity one actions on 𝑀 , i.e., the totally
geodesic submanifolds 𝐹 such that the tubes around them are homogeneous hyper-
surfaces. This is basically the only case where the use of duality of symmetric spaces
can be applied. However, we recall that one cannot simply analyze case-by-case all
possible totally geodesic submanifolds of 𝑀 , since even nowadays there is no such a
classification. Berndt and Tamaru appeal to the use of duality, along with Kollross’
classification [61] in the compact setting, as well as Leung’s classification [66] of a
certain very particular type of totally geodesic submanifolds, called reflective sub-
manifolds. A reflective submanifold 𝐹 of a symmetric space 𝑀 is a totally geodesic
submanifold of 𝑀 such that the exponential of its normal space at some (and hence
all) point, 𝐹⊥ = exp(a𝑝𝐹), is also totally geodesic in 𝑀 . Recall that, as totally
geodesic submanifolds, both 𝐹 and 𝐹⊥ are themselves symmetric spaces.

Berndt and Tamaru proved that 𝐹 is a totally geodesic singular orbit of a co-
homogeneity one action on an irreducible 𝑀 if and only if one of the following
possibilities holds:

(i) 𝐹 is a reflective submanifold such that 𝐹⊥ is a symmetric space of rank one
(see [13, Theorem 3.3] for an explicit list), or

(ii) 𝐹 is one of five possible nonreflective totally geodesic submanifolds related to
the exceptional Lie group G2 appearing in Table 6.

Table 6 Nonreflective totally geodesic submanifolds related to 𝐺2

𝑀 SO3,7/SO3 × SO7 SO7 (C)/SO7 G2
2/SO4 GC2 /G2

𝐹 G2
2/SO4 GC2 /G2 CH2, SL3 (R)/SO3 SL3 (C)/SU3

It is important to mention that the lists provided in [13] are given up to congruence
in 𝑀 by isometries of the full isometry group Isom(𝑀), cf. Problem 3 in Section 7.

Let us now assume that 𝑀 is reducible. Put 𝑀 = 𝑀1 × · · · × 𝑀𝑠 for its de
Rham decomposition into irreducible symmetric spaces (of noncompact type). For
each 𝑖 ∈ {1, . . . , 𝑠}, we write 𝑀𝑖 � 𝐺𝑖/𝐾𝑖 , and hence, 𝔤 = 𝔤1 ⊕ · · · ⊕ 𝔤𝑠 is the
decomposition of the semisimple Lie algebra 𝔤 into its simple ideals. A fundamental
observation made in the recent work [31] is that if a cohomogeneity one action on
𝑀 with a totally geodesic singular orbit does not split nicely with respect to the
previous decompositions (i.e., if it is not orbit equivalent to a product action), then
there must exist two homothetic factors 𝑀 𝑗 and 𝑀𝑘 of 𝑀 of rank one, and the action
is orbit equivalent to that of the connected subgroup of 𝐺 whose Lie algebra is

𝔤 𝑗 ,𝑘,𝜏 ⊕
(⊕
𝑖=1
𝑖≠ 𝑗 ,𝑘

𝔤𝑖

)
, with 𝔤 𝑗 ,𝑘,𝜏 = {𝑋 + 𝜏𝑋 : 𝑋 ∈ 𝔤 𝑗 }, (3)
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where 𝜏 : 𝔤 𝑗 → 𝔤𝑘 is a Lie algebra isomorphism. In this case, the singular orbit
is also homothetic to 𝑀 𝑗 and 𝑀𝑘 . This result ultimately follows from a classical
theorem of Dynkin [43, Theorem 15.1, p. 235] which states that a maximal proper
subalgebra of 𝔤 either splits nicely with respect to the decomposition of 𝔤 into simple
ideals, or it is of the form (3).

All in all, any cohomogeneity one action with a totally geodesic singular orbit on
𝑀 is determined by one of the actions on an irreducible factor of 𝑀 listed by Berndt
and Tamaru in [13], or by a diagonal action on the product of two homothetic rank
one factors of 𝑀 , as in (3).

6.3 Canonical extension of actions on boundary components

Consider a subsetΦ ⊂ Λ of simple roots and its associated boundary component 𝐵Φ.
Since 𝑆Φ is (up to a covering) the identity component of Isom(𝐵Φ), any isometric
action on 𝐵Φ has the same orbits as some connected Lie subgroup𝐻Φ of 𝑆Φ. Consider
the subgroup

𝐻Λ
Φ = 𝐻Φ𝐴Φ𝑁Φ

of 𝐺. Then, 𝐻Λ
Φ

acts on 𝑀 with the same cohomogeneity of the action of 𝐻Φ on 𝐵Φ.
Indeed, each 𝐻Λ

Φ
-orbit on 𝑀 , say 𝐻Λ

Φ
· 𝑝, is nothing but the union of all 𝐴Φ𝑁Φ-orbits

through the points of 𝐻Λ
Φ
· 𝑝. Recall from §3.4 that all the 𝐴Φ𝑁Φ-orbits have the

same dimension. We say that 𝐻Λ
Φ

is the group obtained by canonical extension of
𝐻Φ from the boundary component 𝐵Φ to 𝑀 . Furthermore, it was proved in [15,
Proposition 4.2] that if the actions of two connected subgroups of 𝑆Φ are orbit
equivalent on 𝐵Φ by an isometry in 𝑆Φ (equivalently, by an isometry of Isom(𝐵Φ)0)
then their canonical extensions are orbit equivalent on 𝑀 by an element of 𝐺.

As boundary components of 𝑀 are symmetric spaces of noncompact type, it
makes sense to study what happens if one applies this procedure twice. Consider
the boundary component 𝐵Φ associated with a subset of simple roots Φ ⊂ Λ. Recall
that we can naturally identify Φ with a set of simple roots for 𝔰Φ. Thus, a boundary
component of 𝐵Φ is determined by a subset Ψ ⊂ Φ ⊂ Λ, and in fact coincides
with the boundary component 𝐵Ψ of 𝑀 associated with Ψ. One gets an inclusion
of totally geodesic submanifolds 𝐵Ψ ⊂ 𝐵Φ ⊂ 𝑀 . Let 𝐻Ψ be a connected closed
subgroup of 𝑆Ψ acting isometrically on 𝐵Ψ. Then, its canonical extension 𝐻Φ

Ψ
is a

connected closed subgroup of 𝑆Φ acting isometrically on 𝐵Φ, so we can consider
its canonical extension to 𝑀 , which we denote by (𝐻Φ

Ψ
)Λ. This construction turns

out to be the same as directly extending the action of 𝐻Ψ from 𝐵Ψ to the whole 𝑀 ,
that is, (𝐻Φ

Ψ
)Λ = 𝐻Λ

Ψ
(cf. [31, Lemma 4.2]). Roughly speaking, the composition of

canonical extensions is a canonical extension.

Remark 8 The canonical extension method described above admits an interesting
version that allows to enlarge submanifolds from boundary components to the whole
symmetric space. This procedure preserves important geometric properties such as
the constancy of the mean curvature or isoparametricity, as was shown in [35]. More
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recently, another remarkable extension method of submanifolds and actions in the
context of symmetric spaces of noncompact type has been discovered [41]. In this
case, the extension does not apply to boundary components, but to certain totally
geodesic and flat submanifolds. As a by-product of this method, the first examples of
inhomogeneous isoparametric hypersurfaces in any symmetric space of noncompact
type and rank higher than two were obtained.

6.4 The nilpotent construction method

Apart from the canonical extension, Berndt and Tamaru proposed in [15] another
method for constructing cohomogeneity one actions from the parabolic subgroups
of 𝐺. Although this procedure was originally formulated for an arbitrary subset of
simple rootsΦ ⊂ Λ, it will be enough to consider subsets of cardinality |Φ| = |Λ|−1,
that is, those giving rise to maximal proper parabolic subgroups of 𝐺.

Let Φ = Λ \ {𝛼 𝑗 }, for some 𝛼 𝑗 ∈ Λ, and consider the dual vector 𝐻 𝑗 ∈ 𝔞 of 𝛼 𝑗 ,
defined by 𝛼𝑖 (𝐻 𝑗 ) = 𝛿𝑖 𝑗 . The subalgebra 𝔫Φ admits a natural gradation

⊕
a≥1 𝔫

a
Φ

,
where 𝔫a

Φ
=

⊕
_(𝐻 𝑗 )=a 𝔤_. Note that _(𝐻 𝑗 ) = a if and only if _ has coefficient a in

𝛼 𝑗 when expressed as a sum of simple roots. Suppose that 𝔳 is a subspace of 𝔫1
Φ

of
dimension dim 𝔳 ≥ 2. Then, 𝔫Φ,𝔳 = 𝔫Φ 	 𝔳 is a subalgebra of 𝔫Φ. Denote by 𝑁Φ,𝔳

the corresponding connected Lie subgroup of 𝑁Φ. Assume the following conditions
hold:

(NC1) 𝑁𝑀Φ
(𝔫Φ,𝔳) acts transitively on 𝐵Φ = 𝑀Φ · 𝑜,

(NC2) 𝑁𝐾Φ
(𝔫Φ,𝔳) = 𝑁𝐾Φ

(𝔳) acts transitively on the unit sphere of 𝔳.

Then, the group

𝐻Φ,𝔳 = 𝑁
0
𝐿Φ

(𝔫Φ,𝔳)𝑁Φ,𝔳 = 𝑁
0
𝑀Φ

(𝔫Φ,𝔳)𝐴Φ𝑁Φ,𝔳

acts on 𝑀 with cohomogeneity one and a singular orbit 𝐻Φ,𝔳 · 𝑜. Here 𝑁0 (·) denotes
the connected component of the identity of a normalizer. In this case, we say that the
action of 𝐻Φ,𝔳 on 𝑀 has been obtained by nilpotent construction from the choices
of Φ and 𝔳. Moreover, it was proved in [15] that if two subspaces 𝔳1, 𝔳2 ⊂ 𝔫1

Φ
giving

rise to actions by nilpotent construction are conjugate by an element in 𝐾Φ, the
actions of the corresponding groups 𝐻Φ,𝔳1 , 𝐻Φ,𝔳2 on 𝑀 are orbit equivalent (via the
same element).

Remark 9 Conditions (NC1)-(NC2) have geometric meaning. Condition (NC1) im-
plies that the orbit 𝐻Φ,𝔳 · 𝑜 contains the boundary component 𝐵Φ, and hence its
normal space can be identified with 𝔳, i.e., a𝑜 (𝐻Φ,𝔳 · 𝑜) � 𝔳. Then, condition (NC2)
means that the slice representation of 𝐻Φ,𝔳 (i.e., the action of the group of differen-
tials of the isometries in 𝐻Φ,𝔳 on a𝑜 (𝐻Φ,𝔳 · 𝑜) � 𝔳) is of cohomogeneity one on the
Euclidean space a𝑜 (𝐻Φ,𝔳 · 𝑜) � 𝔳, with orbits given by the origin and concentric
spheres. Since an isometric action has the same cohomogeneity as its slice repre-
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sentation, we see that both conditions (NC1)-(NC2) imply that 𝐻Φ,𝔳 acts on 𝑀 with
cohomogeneity one, as claimed above.

Remark 10 Subspaces of 𝔫1
Φ

satisfying condition (NC1) (respectively (NC2)) have
been called admissible (resp. protohomogeneous) in [32] and [91]. We observe that,
if 𝑀 has rank one, then any proper subsetΦ ofΛ = {𝛼1} is necessarily the empty set,
and hence, any proper boundary component is a point. Therefore, the admissibility
condition (NC1) is trivially satisfied. Thus, for rank one spaces, the nilpotent con-
struction amounts to the determination of protohomogeneous subspaces. For these
spaces, 𝐾0

Φ
= 𝐾0

∅ = 𝐾0, from where one can see that condition (NC2) is equivalent
to the definition of protohomogenous subspace given in Section 5.

The complete determination of all possible subspaces 𝔳 satisfying conditions
(NC1)-(NC2) for a specific symmetric space is usually a very difficult task. Indeed,
as commented in Section 5, this was even hard in the case of the quaternionic
hyperbolic spaces, where condition (NC1) did not play any role.

As before, it is important to determine what happens when one considers an ac-
tion on a boundary component 𝐵Φ obtained by nilpotent construction, and then one
extends it to 𝑀 . This turns out to be equivalent to an action obtained via nilpotent
construction on 𝑀 . More precisely, let 𝛼 𝑗 ∈ Φ ⊂ Λ. Let 𝐻Φ be a subgroup of 𝑆Φ ob-
tained by the nilpotent construction method applied to the symmetric space 𝐵Φ. Then
the subgroup𝐻Λ

Φ
of𝐺 obtained by canonical extension of the𝐻Φ-action to 𝑀 acts on

𝑀 with the same orbits as the Lie group 𝐻Λ\{𝛼𝑗 },𝔳 = 𝑁0
𝐿Λ\{𝛼𝑗 }

(𝔫Λ\{𝛼𝑗 },𝔳)𝑁Λ\{𝛼𝑗 },𝔳

obtained by nilpotent construction applied to 𝑀 , for certain subspace 𝔳 of 𝔫1
Λ\{𝛼𝑗 }

of dim 𝔳 ≥ 2. For further details and a proof, see [31, Lemma 4.3].

6.5 The classification of cohomogeneity one actions

A general procedure to classify cohomogeneity one actions on a given symmetric
space of noncompact type 𝑀 � 𝐺/𝐾 (not necessarily irreducible) goes as follows.
Assume we have a connected Lie subgroup 𝐻 of𝐺 acting on 𝑀 with cohomogeneity
one. If the𝐻-action produces a regular foliation, then the𝐻-action is orbit equivalent
to one of the actions described in §6.1, as explained in that subsection. Thus, let us
suppose that the action of 𝐻 has a singular orbit. The Lie algebra 𝔥 of 𝐻 is contained
in some maximal proper subalgebra 𝔮 of 𝔤. By a result of Mostow [73], there are two
possibilities for 𝔮: it is either a maximal proper reductive subalgebra or a maximal
proper parabolic subalgebra of 𝔤. Denote by 𝑄 the connected subgroup of 𝐺 with
Lie algebra 𝔮. Then:

(a) If 𝔮 is a maximal proper reductive subalgebra in 𝔤, then 𝑄 acts with coho-
mogeneity one and the same orbits as the 𝐻-action, one of them being totally
geodesic (which is the singular one if 𝑀 is irreducible and 𝑀 ≠ RH𝑛), as shown
in [15, Theorem 3.2].
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(b) If 𝔮 is a maximal proper parabolic subalgebra of 𝔤, then the 𝐻-action is orbit
equivalent to an action obtained by canonical extension or by nilpotent con-
struction, as proved by Berndt and Tamaru in [15, Theorem 5.8]

Using this approach, along with a careful analysis of the nilpotent construction,
allowed for the classification of the cohomogeneity one actions on several symmetric
spaces of noncompact type and rank 2, namely on

SL3 (R)/SO3, SL3 (C)/SU3, SL3 (H)/Sp3, SO5 (C)/SO5,

G2
2/SO4, GC2 /G2, SO0

2,𝑛/SO2SO𝑛, SU2,𝑛/S(U2U𝑛)
(4)

These classifications were obtained in the series of papers [15], [8], [91].
When trying to implement this approach in spaces of rank greater than 2, it turns

out that one can apply a rank reduction procedure. Roughly speaking, if the 𝐻-action
is orbit equivalent to the canonical extension of some action on a boundary compo-
nent, we can apply the same procedure as before recursively until we get to an action
that can no longer be retrieved by canonical extension. Thus, every cohomogeneity
one action with a singular orbit can ultimately be obtained by nilpotent construction
or by extending an action of cohomogeneity one with a totally geodesic singular orbit
on a boundary component of 𝑀 . In the latter case, as follows from the discussion
in §6.2, the action being extended is either

(i) a cohomogeneity one action with a totally geodesic singular orbit on an irre-
ducible boundary component 𝐵Φ of 𝑀 , and hence orbit equivalent to one of the
actions classified in [13] in terms of certain reflective submanifolds and some
exceptions related to G2, or

(ii) a cohomogeneity one action with a diagonal totally geodesic submanifold on a
reducible boundary component 𝐵{𝛼𝑗 ,𝛼𝑘 } � 𝐵{𝛼𝑗 } × 𝐵{𝛼𝑘 } � FH𝑛 ×FH𝑛, given
by a connected Lie group with Lie algebra 𝔰 𝑗 ,𝑘,𝜏 = {𝑋 + 𝜏𝑋 : 𝑋 ∈ 𝔰{𝛼𝑗 }},
where 𝜏 : 𝔰{𝛼𝑗 } → 𝔰{𝛼𝑘 } is a Lie algebra isomorphism between the isometry
Lie algebras of both factors of 𝐵{𝛼𝑗 ,𝛼𝑘 } .

As a consequence of all the facts sketched above in this section, we have recently
obtained the following structural result in [31, Theorem A].

Theorem 10 (Cohomogeneity one actions on symmetric spaces of noncompact
type)

Let𝑀 � 𝐺/𝐾 be a symmetric space of noncompact type, and let𝐻 be a connected
closed subgroup of 𝐺. Then 𝐻 acts on 𝑀 with cohomogeneity one if and only if the
𝐻-action is orbit equivalent to one of the following:

(FH) An action inducing a regular codimension one foliation of horospherical
type.

(FS) An action inducing a regular codimension one foliation of solvable type.
(CEI) The canonical extension of a cohomogeneity one action with a totally geodesic

singular orbit on an irreducible boundary component.
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(CER) The canonical extension of a cohomogeneity one diagonal action on a re-
ducible boundary component of rank two with two homothetic factors.

(NC) An action obtained by nilpotent construction.

Remark 11 Cases (CEI) and (NC) in the previous theorem may overlap. Indeed,
the nilpotent construction method often produces actions that can be obtained by
canonical extension. So far, the only spaces where the nilpotent construction is known
to produce actions that cannot be obtained by any other methods are the hyperbolic
spaces of nonconstant curvature, G2

2/SO4 and GC2 /G2.

Remark 12 Although the moduli space of cohomogeneity one actions producing
regular foliations has been completely determined (see §6.1), the study of the moduli
space of actions with a singular orbit is much more involved. Note that in §6.3 we have
only stated sufficient conditions for two canonical extensions to be orbit equivalent
on 𝑀 . Despite two actions not being orbit equivalent on a boundary component, it
could happen that their canonical extensions could be orbit equivalent. It may also
happen that two orbit equivalent actions could produce canonical extensions which
are not orbit equivalent in 𝑀 (if the equivalence in the boundary component 𝐵Φ

had been obtained by an isometry in Isom(𝐵Φ) \ Isom(𝐵Φ)0). Thus, determining the
orbit equivalence classes involves additional difficulties, see Problem 3 in Section 7.

As an application of Theorem 10, we derived in [31] the classification of co-
homogeneity one actions on the family of spaces SL𝑛+1 (R)/SO𝑛+1. We recall
that SL𝑛+1 (R)/SO𝑛+1 has rank 𝑛. The associated root space decomposition of
𝔤 = 𝔰𝔩𝑛+1 (R) satisfies 𝔤0 = 𝔞 and dim 𝔤_ = 1, for any root _ ∈ Σ.

Theorem 11 (Cohomogeneity one actions on SL𝑛+1 (R)/SO𝑛+1)
Let 𝑀 � SL𝑛+1 (R)/SO𝑛+1, 𝑛 ≥ 1, and let Λ = {𝛼1, . . . , 𝛼𝑛} be a set of simple

roots for 𝔰𝔩𝑛+1 (R) whose Dynkin diagram is

𝛼1 𝛼2 𝛼𝑛−1 𝛼𝑛

Any cohomogeneity one action on 𝑀 is orbit equivalent to one of the following:

(FH) The action of the connected subgroup of SL𝑛+1 (R) with Lie algebra (𝔞	 ℓ) ⊕𝔫,
for some line ℓ of 𝔞.

(FS) The action of the connected subgroup of SL𝑛+1 (R) with Lie algebra 𝔞 ⊕ (𝔫 	
𝔤𝛼𝑗

), for some simple root 𝛼 𝑗 ∈ Λ.
(CE) The canonical extension 𝐻Λ

Φ
of the action of the connected subgroup 𝐻Φ of

SL𝑛+1 (R) on a boundary component 𝐵Φ, for one of the cases in Table 7.

Theorem 10 can also be used to address the classification problem on reducible
symmetric spaces by allowing us to restrict our analysis to the classification problem
on each irreducible factor. It turns out that actions of the types (FS), (CEI), and
importantly, (NC) split well with respect to the de Rham decomposition of a reducible
symmetric space, so they are product actions. We emphasize that a result analogous
to Theorem 12 below is not yet known for compact symmetric spaces, see Problem 5
in Section 7.
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Table 7 Actions on SL𝑛+1 (R)/SO𝑛+1 obtained by canonical extension
𝔥Φ Φ 𝐵Φ codim(𝐻Λ

Φ
· 𝑜) Comments

𝔨{𝛼𝑗 } � 𝔰𝔬2 {𝛼𝑗 } RH2 2 1 ≤ 𝑗 ≤ 𝑛
𝔰𝔩𝑘− 𝑗+1 (R) ⊕ R {𝛼𝑗 , . . . , 𝛼𝑘 } SL𝑘− 𝑗+2 (R)/SO𝑘− 𝑗+2 𝑘 − 𝑗 + 1 1 ≤ 𝑗 < 𝑘 ≤ 𝑛
𝔰𝔭2 (R) {𝛼𝑗 , 𝛼𝑗+1, 𝛼𝑗+2} SL4 (R)/SO4 3 1 ≤ 𝑗 ≤ 𝑛 − 2
𝔰 𝑗,𝑘,𝜏 � 𝔰𝔩2 (R) {𝛼𝑗 , 𝛼𝑘 } RH2 × RH2 2 |𝑘 − 𝑗 | > 1

Theorem 12 (Cohomogeneity one actions on reducible symmetric spaces of non-
compact type)

Let 𝑀 be a symmetric space of noncompact type with de Rham decomposition
𝑀 = 𝑀1 × · · · × 𝑀𝑠 , where 𝑀𝑖 = 𝐺𝑖/𝐾𝑖 , 𝑖 = 1, . . . , 𝑠, and let 𝐺 =

∏𝑠
𝑖=1𝐺𝑖 . Then, a

cohomogeneity one action on 𝑀 is orbit equivalent to one of the following:

(Prod) The product action of a subgroup𝐻 𝑗×
∏𝑠
𝑖=1
𝑖≠ 𝑗

𝐺𝑖 of𝐺, where𝐻 𝑗 is a connected

Lie subgroup of 𝐺 𝑗 that acts with cohomogeneity one on the irreducible
factor 𝑀 𝑗 .

(FH) The action of the connected subgroup of 𝐺 with Lie algebra 𝔥 = (𝔞 	 ℓ) ⊕ 𝔫,
for some line ℓ of 𝔞.

(CER) The canonical extension of a cohomogeneity one diagonal action on a re-
ducible boundary component of 𝑀 of rank two with two homothetic factors.

Theorem 12 can be applied to derive explicit classifications on any product of
symmetric spaces of noncompact type for which we already have the complete list of
cohomogeneity one actions (namely, all rank one spaces studied in Section 5, the rank
two spaces in (4), and the spaces SL𝑛+1 (R)/SO𝑛+1). As a very particular instance
of these possible applications, we state the following classification of homogeneous
hypersurfaces on any finite product of real hyperbolic spaces.

Theorem 13 (Homogeneous hypersurfaces in products of real hyperbolic spaces)
A homogeneous hypersurface of 𝑀 = RH𝑛1 × · · · × RH𝑛𝑟 is congruent to one of

the following:

(FH) A leaf of a regular codimension one foliation of horospherical type.
(FS) An extrinsic product RH𝑛 𝑗−1 ×∏

𝑖≠ 𝑗 RH𝑛𝑖 , where RH𝑛 𝑗−1 is totally geodesic
in RH𝑛 𝑗 , or one of its equidistant hypersurfaces.

(CEI) A tube around the extrinsic product RH𝑘 × ∏
𝑖≠ 𝑗 RH𝑛𝑖 , where RH𝑘 is totally

geodesic in RH𝑛 𝑗 , for some 𝑘 ∈ {0, . . . , 𝑛 𝑗 − 2}.
(CER) A tube around the extrinsic product ΔRH𝑛 𝑗 × ∏

𝑖≠ 𝑗 ,𝑘 RH𝑛𝑖 , where

ΔRH𝑛 𝑗 = {(𝑝, 𝜑(𝑝)) : 𝑝 ∈ RH𝑛 𝑗 }

is a totally geodesic real hyperbolic space diagonally embedded in RH𝑛 𝑗 ×
RH𝑛𝑘 , for two indices 𝑗 , 𝑘 with 𝑛 𝑗 = 𝑛𝑘 and where 𝜑 is a homothety between
RH𝑛 𝑗 and RH𝑛𝑘 .
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Note that even in the simplest case of a product of two hyperbolic planes,
𝑀 = RH2 × RH2, the classification of homogeneous hypersurfaces did not seem
to be previously known (see [46] for a recent alternative approach via isoparametric
hypersurfaces). In this particular case, there are uncountably many cohomogeneity
one actions up to orbit equivalence, due to the existence of actions of horospherical
type, which are determined by the choice of a line ℓ in the 2-dimensional space
𝔞. Apart from these, there are exactly other three cohomogeneity one actions (up
to orbit equivalence) if both factors of 𝑀 are isometric, and exactly five actions
otherwise:

(FS) two of them producing foliations with the totally geodesic codimension one
leaf RH1 × RH2 or RH2 × RH1, respectively (being both orbit equivalent if
and only if both factors of 𝑀 are isometric);

(CEI) other two with the totally geodesic singular orbits {𝑜1}×RH2 or RH2×{𝑜2},
respectively (again, both orbit equivalent when both factors are isometric);
and

(CER) the diagonal action of SO0
1,2 � SL2 (R) on 𝑀 , which has a diagonal totally

geodesic RH2 as singular orbit.

It is interesting to compare this result with the situation in the compact dual
of 𝑀 , namely the product of two round spheres S2 × S2. Here, by a result of
Urbano [100] (who actually classified isoparametric hypersurfaces in this space), the
only homogeneous hypersurfaces are dual analogs to the examples (CEI) and (CER)
above. Again, it is important to recall that the generalization of Urbano’s classification
of homogeneous hypersurfaces for products of several spheres of higher dimensions
(i.e., the compact analog of Theorem 13) is still outstanding.

7 Open problems

We include a list of open problems and questions related to the investigation of
homogeneous hypersurfaces in symmetric spaces.

(1) Analyze the nilpotent construction for each symmetric space of noncompact
type. This, along with the structural result in Theorem 10, would allow to
complete the classification of cohomogeneity one actions in this setting. Due to
the difficulty of this problem, we can distinguish two main cases:

(a) For spaces whose isometry group is a split semisimple Lie group, we expect
that the nilpotent construction leads to various linear algebraic problems
(each one depending on a certain class of representations) whose solu-
tion may be achieved following the lines of the analogous problem for
SL𝑛 (R)/SO𝑛.

(b) For the remaining spaces, the linear algebraic problems involved are more
complicated, but we expect that the combination of Solonenko’s ideas in [91]
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with the ones used for SL𝑛 (R)/SO𝑛 in [31] may eventually lead to a com-
plete classification.

(2) Is there any cohomogeneity one action on a symmetric space of noncompact
type, rank at least 2 and of non-(G2)-type that can be obtained by nilpotent
construction but not as a canonical extension?

(3) Investigate the congruence problem of homogeneous hypersurfaces, or equiv-
alently, determine when two cohomogeneity one actions are orbit equivalent.
Whereas for actions of foliation type this problem has already been solved
in [92], an eventual positive answer to Question (2) would need a specific (but
probably easy) investigation. However, the analysis of the other types of actions
seems more difficult. In particular, one would need to address the following
issues:

(a) Given a rank two reducible boundary component 𝐵Φ � FH𝑛 × FH𝑛 of 𝑀 ,
determine when two different isomorphisms 𝜏1, 𝜏2 between the isometry
Lie algebras of the two homothetic factors FH𝑛 give rise to orbit equivalent
canonical extensions of type (CER).

(b) Can two orbit equivalent cohomogeneity one actions with totally geodesic
singular orbits on an irreducible boundary component produce non-orbit
equivalent canonical extensions of type (CEI)? If the answer is affirmative,
one would probably have to revisit Berndt and Tamaru’s classification of co-
homogeneity one actions with totally geodesic singular orbits [13] in order
to determine the moduli space of actions up to strong orbit equivalence (i.e.,
up to orbit equivalence by isometries in the connected component of the
identity of the isometry group). This may entail an analysis of a strong con-
gruence problem of Leung’s classification of reflective submanifolds [66].

(4) Determine the extrinsic geometry of homogeneous hypersurfaces of symmetric
spaces of noncompact type. As an application, one may obtain the classification
of homogeneous minimal hypersurfaces.

(5) Leaving aside the noncompact setting, classify cohomogeneity one actions on
reducible symmetric spaces of compact type. See [63] for information on this
problem.

(6) Initiate the study of homogeneous hypersurfaces of locally symmetric spaces,
both of compact and noncompact types.

(7) Derive structure results for cohomogeneity one actions on symmetric spaces
of mixed type, including noncompact spaces with Euclidean factors (e.g.
GL+

𝑛 (R)/SO𝑛).
(8) Obtain characterizations of (certain families of) homogeneous hypersurfaces

by (both extrinsic or intrinsic) geometric properties, such as isoparametricity,
constancy of principal curvatures, curvature adaptedness, or having an Einstein
or Ricci soliton induced metric, cf. [42], [76]. Also, obtaining characterizations
of the inhomogeneous isoparametric examples known in most symmetric spaces
would be very interesting, in that this would probably entail the introduction
of new techniques in submanifold geometry of symmetric spaces. Specifically,
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although isoparametric hypersurfaces of a product of two real hyperbolic planes
turn out to be (open subsets of) homogeneous hypersurfaces [46], for a product of
three hyperbolic planes we know the existence of inhomogeneous examples [41].

(9) In this survey we assumed actions to be proper, and homogeneous submanifolds
to be closed and embedded. Under which circumstances and for which ambient
spaces can one guarantee that nonproper cohomogeneity one actions have the
same orbits as proper cohomogeneity one actions? Can one prove that on a
simply connected ambient space there do not exist nonembedded or nonclosed
homogeneous hypersurfaces?
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38. Domı́nguez-Vázquez, M., González-Álvaro, D., Mouillé, L.: Infinite families of mani-
folds of positive 𝑘th-intermediate Ricci curvature with 𝑘 small. Math. Ann. (2022), doi:
10.1007/s00208-022-02420-w

39. Domı́nguez-Vázquez, M., Gorodski, C.: Polar foliations on quaternionic projective spaces.
Tohoku Math. J. (2) 70, no. 3, 353–375 (2018)

40. Domı́nguez-Vázquez, M., Manzano, J. M.: Isoparametric surfaces in E(^, 𝜏 )-spaces. Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) 22, 269–285 (2021)
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