BASICS OF DIFFERENTIABLE MANIFOLDS

Riemannian geometry – IMPA – Miguel Domínguez Vázquez

1. DIFFERENTIABLE MANIFOLDS

Definition 1.1. A differentiable manifold or smooth manifold of dimension n is a Hausdorff topological space M with countable base endowed with a family

$$\{x_{\alpha} \colon U_{\alpha} \subset \mathbb{R}^n \to V_{\alpha} = x_{\alpha}(U_{\alpha}) \subset M\}_{\alpha \in \Lambda}$$

of bijective maps x_{α} from open sets U_{α} of \mathbb{R}^n to open sets V_{α} of M, such that:

- (1) x_{α} is a homeomorphism, for each $\alpha \in \Lambda$.
- (2) $M = \bigcup_{\alpha \in \Lambda} V_{\alpha}.$
- (3) If $V_{\alpha} \cap V_{\beta} \neq \emptyset$, for $\alpha, \beta \in \Lambda$, then the map

$$x_{\beta}^{-1} \circ x_{\alpha} \colon x_{\alpha}^{-1}(V_{\alpha} \cap V_{\beta}) \to x_{\beta}^{-1}(V_{\alpha} \cap V_{\beta})$$

is a diffeomorphism between open sets of \mathbb{R}^n .

In these conditions, (U_{α}, x_{α}) , or simply x_{α} , is called a *parametrization* or *coordinate system*. Each inverse map x_{α}^{-1} is called a *coordinate chart*, and V_{α} is a *coordinate open set* or *coordinate neighborhood*. A family $\{(U_{\alpha}, x_{\alpha})\}_{\alpha \in \Lambda}$ in the conditions above is a *differentiable structure* or *coordinate atlas*.

Definition 1.2. Let M^m and N^n be smooth manifolds. A map $\varphi \colon M \to N$ is differentiable at $p \in M$ if, given parametrizations $x \colon U \subset \mathbb{R}^m \to V \subset M$ around p and $y \colon U' \subset \mathbb{R}^n \to$ $V' \subset N$ around $\varphi(p)$, the map $y^{-1} \circ \varphi \circ x$, which is defined in a neighborhood of $x^{-1}(p)$, is differentiable at $x^{-1}(p)$ as a map between open sets of Euclidean spaces.

The map φ is differentiable or smooth if it is differentiable at every point of M.

The set of all smooth maps from M to \mathbb{R} will be denoted by $\mathcal{C}^{\infty}(M)$.

Definition 1.3. Let $\varphi \colon M \to N$ be smooth. Then:

- (1) φ is a *diffeomorphism* if φ is bijective and φ^{-1} is smooth.
- (2) φ is a *local diffeomorphism* if for each $p \in M$ there is an open neighborhood U of p in M such that $\varphi(U)$ is open in N and $\varphi|_U \colon U \to \varphi(U)$ is a diffeomorphism.

Definition 1.4. A *(smooth) partition of unity* of a smooth manifold M is a collection $\{f_{\alpha} \colon M \to \mathbb{R}\}_{\alpha \in \Lambda}$ of functions $f_{\alpha} \in \mathcal{C}^{\infty}(M)$ such that:

- (1) $0 \leq f_{\alpha} \leq 1$ for all $\alpha \in \Lambda$.
- (2) {supp $f_{\alpha} : \alpha \in \Lambda$ } is a locally finite collection of subsets of M, that is, each point of M has a neighborhood that meets only finitely many subsets in the collection.

(3)
$$\sum_{\alpha \in \Lambda} f_{\alpha} = 1.$$

The partition is said to be *subordinate* to an open covering \mathcal{U} of M provided that each set supp f_{α} is contained in an element of \mathcal{U} .

Theorem 1.5. Let \mathcal{U} be an open covering of a smooth manifold M. Then M admits a smooth partition of unity subordinate to \mathcal{U} .

2. TANGENT SPACE

Definition 2.1. Let M be a smooth manifold. Let $\alpha : (-\varepsilon, \varepsilon) \to M$ be a differentiable curve in M with $\alpha(0) = p \in M$. The *tangent vector* to the curve α for t = 0 is the map

$$\alpha'(0) \colon \mathcal{C}^{\infty}(M) \to \mathbb{R}, \qquad f \mapsto \alpha'(0)f = \left. \frac{d(f \circ \alpha)}{dt} \right|_{t=0}$$

A tangent vector at $p \in M$ is the tangent vector for t = 0 of some differentiable curve $\alpha: (-\varepsilon, \varepsilon) \to M$ with $\alpha(0) = p$.

Equivalently, a tangent vector to M at $p \in M$ is an \mathbb{R} -linear map $v \colon \mathcal{C}^{\infty}(M) \to \mathbb{R}$ satisfying the Leibniz rule:

$$v(fg) = v(f)g(p) + f(p)v(g), \text{ for all } f, g \in \mathcal{C}^{\infty}(M).$$

Equivalently, a tangent vector to M at $p \in M$ is an equivalence class of differentiable curves $\alpha \colon (-\varepsilon, \varepsilon) \to M$ with $\alpha(0) = p$ under the equivalence relation:

$$\alpha \cong \beta$$
 if $\frac{d(x^{-1} \circ \alpha)}{dt}\Big|_{t=0} = \frac{d(x^{-1} \circ \beta)}{dt}\Big|_{t=0}$

,

for some coordinate system x around p.

The set of all tangent vectors to M at $p \in M$ is called the *tangent space* of M at p and denoted by T_pM . It is a vector space of the same dimension as M.

Definition 2.2. Let $x: U \to V \subset M$ be a parametrization of a smooth manifold M^n , denote the coordinates in U by (x^1, \ldots, x^n) , and let $p \in V$. The coordinate vectors (associated to x) at the point p are the tangent vectors $\frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p \in T_pM$ such that

$$\frac{\partial}{\partial x^i}\Big|_p(f) = \left.\frac{\partial (f \circ x)}{\partial x^i}\right|_{x^{-1}(p)}, \quad \text{for all } f \in \mathcal{C}^{\infty}(M), \quad i = 1, \dots n.$$

Sometimes we also write $\partial_i|_p$ for $\frac{\partial}{\partial x^i}|_p$, and we usually forget about the subindex indicating the point: ∂_i , $\frac{\partial}{\partial x^i}$. The coordinate vectors form a basis of T_pM .

The real number $\frac{\partial}{\partial x^i}\Big|_p(f)$ is the *directional derivative* of f at p in the *i*-th coordinate direction.

Definition 2.3. The *tangent* and *cotangent bundles* of a smooth manifold M are, respectively:

$$TM = \bigcup_{p \in M} T_p M \equiv \{(p, v) : p \in M, v \in T_p M\},\$$
$$T^*M = \bigcup_{p \in M} T_p^* M \equiv \{(p, \theta) : p \in M, \theta \in T_p^* M\},\$$

where T_p^*M is the dual vector space to T_pM .

Both are vector bundles with fibre \mathbb{R}^n and base M. In particular, they admit canonical projection maps, namely $TM \to M$, $(p, v) \mapsto p$, and $T^*M \to M$, $(p, \theta) \to p$.

3. Differential maps, types of smooth maps, and submanifolds

Definition 3.1. Let $\varphi \colon M \to N$ be a smooth map, and $p \in M$. The differential of φ at p is the \mathbb{R} -linear map φ_{*p} (also denoted by $d\varphi_p$ or $d\varphi(p)$) given by:

$$\varphi_{*p} \colon T_p M \to T_{\varphi(p)} N, \quad v \mapsto \varphi_{*p}(v),$$

where the vector $\varphi_{*p}(v)$ is defined by

$$\varphi_{*p}(v) \colon \mathcal{C}^{\infty}(N) \to \mathbb{R}, \quad f \mapsto v(f \circ \varphi),$$

or, equivalently (by the definition of tangent vector that uses curves), by

 $\varphi_{*p}(\alpha'(0)) = (\varphi \circ \alpha)'(0),$

where $\alpha \colon (-\varepsilon, \varepsilon) \to M$ is a differentiable curve with $\alpha(0) = p$.

The map $\varphi_* = d\varphi \colon TM \to TN, (p, v) \mapsto (\varphi(p), \varphi_{*p}(v))$, is the differential of φ .

Definition 3.2. Let $\varphi \colon M \to N$ be a smooth map between two smooth manifolds. Then:

- (1) φ is an *immersion* at $p \in M$ if $\varphi_{*p} \colon T_p \to T_{\varphi(p)}N$ is injective. If it is immersion at all points of M, we say that φ is an immersion.
- (2) φ is an submersion at $p \in M$ if $\varphi_{*p} \colon T_p \to T_{\varphi(p)}N$ is onto. If it is submersion at all points of M, we say that φ is a submersion.
- (3) φ is a *(smooth) embedding* if φ is an immersion and φ is a homeomorphism onto $\varphi(M)$, where $\varphi(M)$ has the topology induced by N.
- (4) If $M \subset N$, φ is the inclusion map, and φ is an immersion, then M is an *immersed* submanifold of N.
- (5) If $M \subset N$, φ is the inclusion map, and φ is an embedding, then M is a regular or embedded submanifold of N.

Theorem 3.3. (Rank theorem.) Let M^m and N^n be smooth manifolds and $\varphi \colon M \to N$ a smooth map with constant rank k (i.e. dim Im $\varphi_{*p} = k$, for all $p \in M$). Then for each $p \in M$ there exist a parametrization x on M with coordinates (x^1, \ldots, x^m) centered at p (i.e. x(0) = p), and a parametrization on N with coordinates (v^1, \ldots, v^n) centered at $\varphi(p)$, with respect to which φ has the following coordinate representation:

$$\varphi(x^1,\ldots,x^m) = (x^1,\ldots,x^k,0,\ldots,0).$$

Proposition 3.4. Let $\pi: M \to N$ be a submersion. Then π is an open map and, if π is onto, then π is a quotient map.

Theorem 3.5. (Inverse function theorem.) Let $\varphi \colon M \to N$ be a smooth map between two smooth manifolds. If φ_{*p} is a linear isomorphism, then there is an open neighborhood U of p in M such that $\varphi(U)$ is open in N and $\varphi|_U \colon U \to \varphi(U)$ is a diffeomorphism.

In particular, φ is a local diffeomorphism if and only if φ_{*p} is a linear isomorphism for all $p \in M$.

Theorem 3.6. Let $\varphi \colon M \to N$ be a smooth map between two smooth manifolds. Then φ is an immersion if and only if for each $p \in M$ there exists an open neighborhood U around p in M such that $\varphi|_U \colon U \to N$ is an embedding.

Theorem 3.7. A subset M of a smooth manifold N^n is an embedded submanifold of dimension m if and only if for each $p \in M$ there exists a coordinate system of N around p adapted to M, that is, a coordinate system of N centered at p of the form

$$x \colon U = [-1, 1]^n \subset \mathbb{R}^n \to N,$$

such that x(0,...,0) = p, and $x([-1,1]^m \times \{(0, \frac{n-m}{\cdots}, 0)\}) = x(U) \cap M$.

Theorem 3.8. Let $\varphi: M \to N$ be an injective immersion which is proper, that is, the inverse image of every compact set is compact (this holds if M is compact). Then φ is an embedding and $\varphi(M)$ is an embedded submanifold of M.

Theorem 3.9. Let $\varphi \colon M^m \to N^n$ be a smooth map with constant rank k. Then every level set $\varphi^{-1}(q)$, with $q \in N$, is a closed embedded submanifold of codimension k in M.

Theorem 3.10. (Regular level set theorem.) Let $\varphi \colon M^m \to N^n$ be a smooth map. Let $q \in N$ be a regular value for φ , that is, for every $p \in \varphi^{-1}(q)$, the differential $\varphi_{*p} \colon T_pM \to T_qN$ is surjective. Then the regular level set $\varphi^{-1}(q)$ is a closed embedded submanifold of codimension n in M.

4. Vector fields

Definition 4.1. A vector field X in a smooth manifold M is a correspondence that maps each $p \in M$ to a tangent vector $X_p = X(p) \in T_pM$.

A vector field on M is differentiable (or smooth) if $X: M \to TM$ is a smooth map or, equivalently, if $X(f): M \to \mathbb{R}$, $p \mapsto X_p(f)$, is a smooth map for all $f \in \mathcal{C}^{\infty}(M)$. An equivalent characterization is that, for every parametrization with coordinates (x^1, \ldots, x^n) , the coefficients $a_i, i = 1, \ldots, n$, in the linear combination $X = a_1\partial_1 + \ldots a_n\partial_n$, are smooth functions.

We denote the set of smooth vector fields on a smooth manifold M by $\mathfrak{X}(M)$. This set is a $\mathcal{C}^{\infty}(M)$ -module of rank n, and an \mathbb{R} -vector space of infinite dimension.

Definition 4.2. Let $X, Y \in \mathfrak{X}(M)$. The *Lie bracket* of X and Y is the smooth vector field $[X, Y] \in \mathfrak{X}(M)$ such that

$$[X, Y](f) = X(Y(f)) - Y(X(f)), \text{ for all } f \in \mathcal{C}^{\infty}(M).$$

The Lie bracket satisfies the following properties: anticommutativity, \mathbb{R} -bilinearity, and Jacobi identity. In particular, $\mathfrak{X}(M)$ endowed with the Lie bracket is a Lie algebra of infinite dimension.

Definition 4.3. Let $\varphi \colon M \to N$ be a smooth map, $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$. Then X and Y are φ -related if $\varphi_{*p}(X_p) = Y_{\varphi(p)}$ for all $p \in M$.

Proposition 4.4. Let $\varphi \colon M \to N$ be a smooth map, $X_1, X_2 \in \mathfrak{X}(M)$ and $Y_1, Y_2 \in \mathfrak{X}(N)$. If X_1 is φ -related to Y_1 , and X_2 is φ -related to Y_2 , then $[X_1, X_2]$ is φ -related to $[Y_1, Y_2]$. **Definition 4.5.** Let $X \in \mathfrak{X}(M)$. A differentiable curve α in M is an *integral curve* of X if $\alpha'(t) = X_{\alpha(t)}$, for all t in the domain of α .

Theorem 4.6. Let $X \in \mathfrak{X}(M)$, $p \in M$. Then there exist an open neighborhood U of p in M, an interval $(-\delta, \delta)$, $\delta > 0$, and a smooth map

$$\varphi \colon (-\delta, \delta) \times U \to M$$

such that the curve $t \in (-\delta, \delta) \mapsto \varphi(t, q) \in M$, is the unique integral curve of X that goes through $q \in U$ for t = 0.

It is customary to write φ_t such that $\varphi_t(q) = \varphi(t,q)$ and call $\varphi_t \colon U \to M$ the local flow of X. It is a local 1-parameter group that satisfies $\varphi_0 = \text{id}$, $\varphi_t^{-1} = \varphi_{-t}$, and $\varphi_t \circ \varphi_s = \varphi_{t+s}$ when defined.

Definition 4.7. A smooth vector field $X \in \mathfrak{X}(M)$ is *complete* if its integral curves exist for all time. In this case, the flow is defined in $\mathbb{R} \times M$.

Proposition 4.8. If a smooth manifold M is compact, and $X \in \mathfrak{X}(M)$, then X is complete.

Proposition 4.9. Let M be an embedded submanifold of N. If $X \in \mathfrak{X}(N)$ is tangent to M (i.e. for all $p \in M$, $X_p \in T_pM$), then the restriction $X|_M$ of X to M is a smooth vector field. If $Y \in \mathfrak{X}(N)$ is also tangent, then [X, Y] is tangent and $[X, Y]|_M = [X|_M, Y|_M]$.

Definition 4.10. Let M^n be a smooth manifold and let $k \in \{1, \ldots, n\}$. A distribution \mathcal{D} of rank k on M is a choice of a k-dimensional vector subspace \mathcal{D}_p of T_pM , for each $p \in M$.

The distribution \mathcal{D} is smooth if for each $p \in M$ there exists an open neighborhood U of pand smooth vector fields $X_1, \ldots, X_k \in \mathfrak{X}(U)$ that generate \mathcal{D}_q for every $q \in U$. We denote by $\Gamma(\mathcal{D})$ the set of smooth vector fields $X \in \mathfrak{X}(M)$ such that $X_p \in \mathcal{D}_p$ for all $p \in M$.

The smooth distribution \mathcal{D} is called *involutive* if $[X, Y] \in \Gamma(\mathcal{D})$, for all $X, Y \in \Gamma(\mathcal{D})$.

An immersed submanifold N of M is an *integral manifold* of the smooth distribution \mathcal{D} if $T_p N = \mathcal{D}_p$ for all $p \in N$.

Theorem 4.11. (Frobenius theorem.) A smooth distribution \mathcal{D} is involutive if and only if there is an integral manifold of \mathcal{D} through each point in M.

The collection of all maximal connected integral manifolds of an involutive distribution \mathcal{D} on M forms a foliation of M.

5. Tensors

Definition 5.1. Let V be a finite-dimensional \mathbb{R} -vector space, and V^{*} its dual space. A *tensor of type* (r, s) on V, also called *s*-covariant, *r*-contravariant tensor, is a multilinear map

$$V^* \times \stackrel{r}{\cdots} \times V^* \times V \times \stackrel{s}{\cdots} \times V \to \mathbb{R}.$$

We denote by $T_{r,s}(V)$ the space of all tensors on V of type (r, s).

Proposition 5.2. Let V be a finite-dimensional vector space. There is a natural (i.e. basis-independent) isomorphism between $T_{r+1,s}(V)$ and the space of multilinear maps

$$V^* \times \stackrel{r}{\cdots} \times V^* \times V \times \stackrel{s}{\cdots} \times V \to V.$$

In particular, we have the identification $T_{1,1}(V) = \text{End}(V)$, and also $T_{1,0}(V) = V^{**} = V$ and $T_{0,0} = \mathbb{R}$.

Definition 5.3. A tensor field of type (r, s) on a smooth manifold M is a $\mathcal{C}^{\infty}(M)$ multilinear map of the form

 $\Omega^{1}(M) \times \stackrel{r}{\cdots} \times \Omega^{1}(M) \times \mathfrak{X}(M) \times \stackrel{s}{\cdots} \times \mathfrak{X}(M) \to \mathcal{C}^{\infty}(M),$

where $\Omega^1(M)$ is the set of all 1-forms on M (i.e. of all smooth maps $\theta \colon M \to T^*M$ with $\theta_p \in T_p^*M, p \in M$).

We denote the space of all tensor fields of type (r, s) on M by $\mathcal{T}_{r,s}(M)$.

Proposition 5.4. Let M be a smooth manifold. There is a natural (i.e. basis-independent) isomorphism between $T_{r+1,s}(M)$ and the space of $\mathcal{C}^{\infty}(M)$ -multilinear maps

$$\Omega^{1}(M) \times \stackrel{r}{\cdots} \times \Omega^{1}(M) \times \mathfrak{X}(M) \times \stackrel{s}{\cdots} \times \mathfrak{X}(M) \to \mathfrak{X}(M).$$

In particular, we have the identification $\mathcal{T}_{1,1}(M) = \operatorname{End}(TM)$. Here $\operatorname{End}(TM)$ is the set of all smooth maps $F: TM \to TM$ such that $F(T_pM) \subset T_pM$ for all $p \in M$, and $F|_{T_pM}: T_pM \to T_pM$ is \mathbb{R} -linear. We also have $\mathcal{T}_{1,0}(M) = \mathfrak{X}(M), \ \mathcal{T}_{0,1} = \Omega^1(M)$, and $\mathcal{T}_{0,0} = \mathcal{C}^{\infty}(M)$.

Definition 5.5. Let (E_1, \ldots, E_n) be a *local frame* on an open set U of a smooth manifold M^n , that is, n smooth vector fields defined on some open set U such that $(E_1|_p, \ldots, E_n|_p)$ is a basis for T_pM at each point $p \in U$. Consider the corresponding dual coframe $(\varphi^1, \ldots, \varphi^n)$, that is, those 1-forms satisfying $\varphi^i(E_j) = \delta^i_j$, for $i, j = 1, \ldots, n$.

In terms of such local frame, a tensor field F of type (r, s) on M can be written in the form

$$F = \sum_{i_1,\dots,i_s=1}^n \sum_{j_1,\dots,j_r=1}^n F_{i_1,\dots,i_s}^{j_1,\dots,j_r} E_{j_1} \otimes \dots \otimes E_{j_r} \otimes \varphi^{i_1} \otimes \dots \otimes \varphi^{i_s},$$

where the $\mathcal{C}^{\infty}(U)$ -functions

$$F_{i_1,\ldots,i_s}^{j_1,\ldots,j_r} = F(\varphi^{j_1},\ldots,\varphi^{j_r},E_{i_1},\ldots,E_{i_s}).$$

are called the *components* of the tensor F in the local frame fixed above.

In particular, in terms of a coordinate frame $\{\partial_1, \ldots, \partial_n\}$ and its dual coframe $\{dx^1, \ldots, dx^n\}$, *F* has the coordinate expression

$$F = \sum_{i_1,\dots,i_s=1}^n \sum_{j_1,\dots,j_r=1}^n F_{i_1,\dots,i_s}^{j_1,\dots,j_r} \partial_{j_1} \otimes \dots \otimes \partial_{j_r} \otimes dx^{i_1} \otimes \dots \otimes dx^{i_s}.$$

Definition 5.6. Let F be a tensor field of type (r + 1, s + 1) on a smooth manifold M. The *contraction* of F over the k-th covariant index and the *l*-contravariant index is the tensor field tr F of type (r, s), where $(\operatorname{tr} F)(\omega^1, \ldots, \omega^r, X_1, \ldots, X_s)$ is defined as the trace of the endomorphism

$$F(\omega^1,\ldots,\omega^{l-1},\cdot,\omega^{l+1},\ldots,\omega^r,X_1,\ldots,X_{k-1},\cdot,X_{k+1},\ldots,X_s) \in \mathcal{T}_{1,1}(M).$$

In terms of a local frame, the components of $\operatorname{tr} F$ are

$$(\operatorname{tr} F)_{i_1,\dots,i_s}^{j_1,\dots,j_r} = \sum_{m=1}^n F_{i_1,\dots,i_{l-1},m,i_{l+1},\dots,i_s}^{j_1,\dots,j_{k-1},m,j_{k+1},\dots,j_r}.$$

In particular, the contraction of a tensor field of type (1, 1), that is, of an endomorphism of TM, is given by its trace.

Definition 5.7. Let $\varphi \colon M \to N$ be a smooth map, and F a covariant tensor field on N of type (0, s). The *pullback* of F by φ is the covariant tensor field φ^*F of type (0, s) on M given by

$$(\varphi^*F)(X_1,\ldots,X_s)=F(\varphi_*X_1,\ldots,\varphi_*X_s),\quad X_1,\ldots,X_s\in\mathfrak{X}(M).$$

6. Lie derivative

Definition 6.1. Let M be a smooth manifold, X a smooth vector field on M, and φ_t its flow. Let F be a covariant tensor field of type (0, s) on M. The *Lie derivative* of F with respect to X is the smooth tensor field $\mathcal{L}_X F$ of type (0, s) on M defined by

$$(\mathcal{L}_X F)_p = \left. \frac{d}{dt} \right|_{t=0} (\varphi_t^* F)_p$$

In particular, $\mathcal{L}_X f = X(f)$ for any $f \in \mathcal{C}^{\infty}(M)$. We also define the Lie derivative of $Y \in \mathfrak{X}(M)$ with respect to X by $\mathcal{L}_X Y = [X, Y]$.

Proposition 6.2. Let M be a smooth manifold and $X \in \mathfrak{X}(M)$. Let $f \in \mathcal{C}^{\infty}(M)$ and F a covariant tensor field of type (0, s) on M. Then we have:

(1)
$$\mathcal{L}_X(fF) = X(f)F + f\mathcal{L}_XF.$$

(2) If $Y_1, \dots, Y_s \in \mathfrak{X}(M)$, then
 $\mathcal{L}_X(F(Y_1, \dots, Y_s)) = (\mathcal{L}_XF)(Y_1, \dots, Y_s) + F(\mathcal{L}_XY_1, \dots, Y_s) + \dots + F(Y_1, \dots, \mathcal{L}_XY_s).$

References

- W. M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Second edition, Pure and Applied Mathematics, 120, Academic Press, Inc., Orlando, FL, 1986.
- [2] L. Conlon, *Differentiable manifolds*, Second edition, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001.
- [3] J. M. Lee, Introduction to smooth manifolds, Second edition, Graduate Texts in Mathematics, 218. Springer, New York, 2013.
- [4] B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- [5] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Corrected reprint of the 1971 edition, Graduate Texts in Mathematics, 94, Springer-Verlag, New York-Berlin, 1983.