
Practical Session

Josu Arroyo

Universidad del País Vasco. Spain

1 Spline-Elastrip

From the classical Calculus of Variations [6], let X be some subset of sufficiently smooth
functions defined on some closed interval [a, b], consider functionals F :X −→ R of the
form

F (x) =
∫ b

a
f (t, x, ẋ) dt

where ẋ = dx/dt and f :R3 −→ R is a given function. In searching for xf ∈ X with the
property that F (xf ) ≤ F (x) for all x ∈ X, to expose potential candidates for xf the
conventional approach utilizes the Euler-Lagrange equation

d

dt

∂f

∂ẋ
(t, x, ẋ) =

∂f

∂x
(t, x, ẋ) (1)

with the boundary conditions. In the simplest problem of the calculus of variations, If
there is sufficient smoothness, then (1) is a second order differential equation. To deal
with isoperimetric constraints of the form

G (x) =
∫

g (t, x (t) , ẋ (t)) dt = 0,

the classical theory establishes some version of the Lagrange multiplier theorem. Super-
ficially, replace f by f + λg in (1). Typically, the domain X is not “flat”, which leads to
considerable complications.

Geometric methods are made accessible once an inner product 〈, 〉 is defined on the
functions space H. The gradient and the directional derivative of a functional F are
paired dually by 〈∇F (x) , ~v〉 = DF (x)~v. The xf solution, called critical point, is deter-
mined by the equation DF (xf ) = 0, that also includes the boundary conditions. This
equation, independent of the inner product, is equivalent to∇F (xf ) = 0. This statement
incorporates the Euler-Lagrange equation as well as necessary conditions given by the
natural boundary conditions. It follows that the last equation is in general more selective
than the Euler-Lagrange equation. Although the choice of metric is not important when
finding solutions of this last equation, from the numerical point of view, a “good choice”
of metric on H makes “numerically friendly” gradient formulas in terms of certain Euler
operators. [9, 10, 11].
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Far from the dark side of the theory, it is known that the vector −∇F (x) points in
the direction of minimal increase. So, with slight abuse of notation, choosing a starting
point (curve, function) xo ∈ H, the new one x1 = xo − h∇F (xo), for h small enough,
satisfies F (x1) < F (xo). This is nothing but the steepest descent method, that may
be used to solve the general isoperimetric problem by following the trajectory in the
negative gradient direction. The curve sequence {xn} created this way evolves searching
for a minimum xf of the variational problem.

This experimental point of view may be applied in known problems of calculus of
variations like these:

1. Looking for the smallest length path joining two points in a bi-dimensional surface
patch.

2. The Bachistochrona problems.

3. The Catenoid, least area surface of revolution.

4. Constant mean curvature surfaces of revolution.

5. The Elasticae and “hyper-elastic” curves in the plane:

>From Euler-Bernoulli, let γ be a smooth curve in the Euclidean plane and let κ be
its signed curvature. The quantity F (γ) =

∫
γ κ2ds is known as the total squared

curvature. F (γ) has a physical interpretation as the “elastic” energy stored in a
thin rod shaped as γ. The elastic curves are the critical points of this functional.

a) A less known elastica: the Cornu spiral.

6. Membranes over planar elasticae.

Look the Calculus of Variations and Geometry topic in [6].

2 Another point of view: Elasticae in the Sphere

The variational problem associated to functionals of the type F (γ) =
∫
γ P (κ), with P a

smooth function and κ the curvature of the curve γ, has a long tradition in Mathematics.
If P (κ) = const is constant we were talking about geodesics and its study can be traced
back to the very beginning of the calculus of variations. By using a less elementary choice
of P (κ), D. Bernoulli proposed around 1740 a simple geometric model according to which
an elastic curve or elastica is a minimum of the bending energy functional. Planar Elastic
curves were classified by L. Euler in 1743. The elastica problem in real space forms has
been recently considered under different points of view, More generally, the geometric
importance of minimizing a curvature energy functional of the type F (γ) =

∫
γ P (κ),

defined on a certain space of curves in the 3-dimensional Euclidean space R3, was pointed
out by W. Blaschke in his book on Differential Geometry.
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Critical points of F (γ) =
∫
γ P (κ) in real space forms must lie fully in a 3-dimensional

space. The corresponding Euler-Lagrange equations can be expressed in terms of the
first and second Frenet curvatures, that is in terms of the curvature and torsion of γ. By
using the symmetries of the problem, one can obtain first integrals and show that κ and
τ can be integrated by quadratures. Curvature and torsion determines the corresponding
critical curve up to rigid motions of ambient space, but even if we were able to obtain
explicit expressions for κ and τ , explicit integration of the Frenet equations are rarely
possible.
Fortunately, we can choose a special coordinate system where the coordinates of a

critical point are also integrable by quadratures. On the other hand, boundary and
initial conditions of the variational problem have to be precised. Due to its geometric
importance we want to study closed critical points. We notice that even if we obtain
periodic solutions of the EL equations the corresponding periodic curve is not necessarily
closed. Again, we use the special coordinate system we talked about before, to give
closure conditions for a curve which corresponds to periodic solutions of EL equations to
close up. This is as far as one can go with a general Lagrangian F (γ) =

∫
γ P (κ). The

point now is to choose P (κ) so that above program can be further developed in order
to complete the whole integration process and obtain the classification of closed critical
points in terms of the integration parameters.
In order to show this point of view, we consider the elastic energy functional F (γ) =∫

γ κ2 defined in the Sphere, because it offers many options such as:

• searching for closed elastic curves in S2,

• searching for closed elastic curves in S3,

• Obtaining Willmore vesicles in R3 from elastic curves in S2.
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