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Ricci solitons

(M, g) Riemannian manifold.
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M is a Ricci soliton if

Ric = cg + LXg

for some c ∈ R and X ∈ X(M).

Einstein metrics: Ric = cg .

Classes
c > 0, shrinking.
c = 0, steady.
c < 0, expanding.
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Definition
An algebraic Ricci soliton is a Lie group G with left-invariant metric such
that

Ric = c id+D,

with D : g→ g a derivation.
Solvsoliton: Solvable algebraic Ricci soliton.
Nilsoliton: Nilpotent algebraic Ricci soliton.
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M homogeneous Ricci soliton (M Ricci sol. + I (M) acts transitively on M).

If c > 0 =⇒ M ∼= E × Rn, E compact Einstein manifold.
If c = 0 =⇒ M ∼= Rn × Tm.
If c < 0 =⇒ M isometric to a solvsoliton. (Alekseevskii conjecture)

Equiv. statement to Alekseevskii conj. [C. Böhm, R. Lafuente (2021)]
A homogeneous Ricci soliton with c < 0 is isometric to a solvsoliton.

M. Jablonski (2018)
Any solvsoliton can be isometrically and isomorphically embedded in the
solvable model of a symmetric space of non-compact type.

Any homogeneous Ricci soliton with c < 0 is isometric to a Lie subgroup
of the solvable model of a symmetric space of non-compact type.
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Iwasawa decomposition and solvable model

M̃ ∼= G/K symmetric space of non-compact type =⇒ G real semisimple.

Iwasawa decomposition theorem
G = KAN, K compact, A abelian, N nilpotent.

K ↷ RH3 A ↷ RH3 N ↷ RH3

⇝ M̃ diffeomorphic to AN.

Solvable model

M̃ is isometric to the Lie group AN with a left-invariant metric.
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Subgroups of AN and Einstein and Ricci soliton metrics

Tamaru (2011): Parabolic subgroups of semisimple Lie groups and
Einstein solvmanifolds.
⇝ Einstein solvmanifolds as minimal Lie subgroups of AN.
Domínguez-Vázquez, Sanmartín-López, Tamaru (2021):
Codimension one Ricci soliton subgroups of solvable Iwasawa groups.
Sanmartín-López (2022): Codimension one Ricci soliton subgroups of
nilpotent Iwasawa groups.

Objective today: Classify Lie subgroups of AN ∼= CHn that are algebraic
Ricci solitons with the induced metric.

⇝ CHn: Simplest symmetric space of non-compact type where the
classification is open.
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The solvable model of CHn

Complex hyperbolic space CHn: only complete, simply connected Kähler
manifold with constant holomorphic sectional curvature < 0.

AN ∼= CHn solvable model, Lie(AN) = a⊕ n metric Lie algebra.

We can induce an orthogonal complex structure J in a⊕ n ≡ TpCHn.

a ≃ R, a := RB .

n = g1 ⊕ g2, g1 ≃ Cn−1 ( =⇒ Jg1 ⊂ g1 ), g2 = Ja ≃ R, g2 := RZ

Lie(AN) = a⊕ g1 ⊕ g2 orthogonal sum with respect to ⟨·, ·⟩ (Induced
metric from CHn).
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Approach to the problem: the nilradical

Problem: Classify the alg. Ricci solitons (solvsolitons) of AN ∼= CHn.

Structure of solvsolitons [J. Lauret, 2011]
S solvmanifold with metric Lie algebra (s, ⟨·, ·⟩). Consider the orthogonal
decomposition s = b⊕ Nil(s). Then S is a solvsoliton iff

Nil(S) is a nilsoliton.
b is abelian.
Some conditions on the vectors of b must be satisfied.

Subgroups S < AN that are
algebraic Ricci solitons. ←→

Nilsolitons L < AN and their
possible non-nilpotent

extensions in AN.

↕
Nilsolitons L < N and their

possible rank-one non-nilpotent
extensions in AN.
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Kähler angle

Let V be a real subspace of Cn.

Definition
V constant Kähler angle φ ∈ [0, π2 ] if ∠(V , i v) = φ for all v ∈ V , v ̸= 0.

If φ = 0: V complex subspace.
If φ = π

2 : V totally real subspace.

Theorem [Díaz-Ramos, Kollross, Domínguez-Vázquez, 2017]
Let V ⊂ Cn be any real subspace. Then V = V1 ⊕ . . .⊕ Vr such that:

Vk has constant Kähler angle φk and φk ̸= φl if k ̸= l .
CVk ⊥ CVl for every k ̸= l .
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Kähler angle and algebraic Ricci soliton condition

AN ∼= CHn solvable model, a⊕ n = a⊕ g1 ⊕ g2.

Let h ⊂ n = g1 ⊕ g2 (g1 ≃ Cn−1, g2 ∼= R) be a Lie subalgebra.
Is D(c) := c id+RicH a derivation of h for some c ∈ R?

D(c)[X ,Y ]
?
= [D(c)X ,Y ] + [X ,D(c)Y ], X ,Y ∈ h.

Example
m ⊂ g1, m⊕ g2= mφ1 ⊕ . . .⊕mφr ⊕ g2.

Each one of the mφi imposes some condition on c = c(φi ) iff φi ∈ [0, π2 ).

c(φi ) ̸= c(φj) if i ̸= j =⇒ m = mφ1 ⊕mπ
2
.
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D(c)[X ,Y ]
?
= [D(c)X ,Y ] + [X ,D(c)Y ], X ,Y ∈ h.

Example
m ⊂ g1, m⊕ g2= mφ1 ⊕ . . .⊕mφr ⊕ g2.

Each one of the mφi imposes some condition on c = c(φi ) iff φi ∈ [0, π2 ).

c(φi ) ̸= c(φj) if i ̸= j =⇒ m = mφ1 ⊕mπ
2
.



Theorem (— , Sanmartín-López)
A Lie subgroup H < AN ∼= CHn of dim ≥ 2 is an algebraic Ricci soliton iff

Subalgebra Isometric to Einstein?

mπ/2 ⊕ R(V + tZ ) Rk Yes

R(B + U + xZ )⊕mπ/2 ⊕ R(V + tZ ) RHk Yes

R(B + U)⊕mφ ⊕ g2 CHk Yes

mφ ⊕mπ/2 ⊕ g2 Hk × Rl No

R(B + U)⊕mπ/2 ⊕ g2 Non-Einstein solv. ext. of a Rk No

R(B + U)⊕mφ ⊕mπ/2 ⊕ g2 Non-Einstein solv. ext. of Hk × Rl No

*mφ ⊂ g1 of ct. Kähler angle φ ∈ [0, π/2], U,V ∈ g1, RB = a, RZ = g2.
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Corollaries

Corollary 1
S < AN ∼= CHn, considered with the induced metric. Then:
S Einstein ⇐⇒ S is a symmetric space.

Corollary 2
Every nilsoliton of AN ∼= CHn can be extended to a non-nilpotent
solvsoliton in AN.

Sanmartín-López, 2022
Codimension one Ricci soliton Lie subgroups of any nilpotent Iwasawa are
minimal in N.

Corollary 3
Let S < AN ∼= CHn. Suppose that S is an algebraic Ricci soliton with the
induced metric.
Nil(S) is non-flat ⇐⇒ Nil(S) is a minimal submanifold of N.
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Corollaries II

Rn [A. Di Scala, 2002], RHn [A. Di Scala, C. Olmos, 2001]
In Rn and in RHn minimal homogeneous submanifolds are totally geodesic.

This does no longer hold in general for sym. spaces of non-compact type!

Corollary 4
Let S < AN ∼= CHn.
S Einstein and minimal in AN ⇐⇒ S totally geodesic in AN.
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