The vacuum weighted Einstein field equations: Properties and rigidity of solutions

Diego Mojón Álvarez

Galician Centre for Mathematical Research and Technology (CITMAga) Universidade de Santiago de Compostela

Santiago de Compostela, September 23, 2024 Symmetry and Shape

Joint work with Miguel Brozos Vázquez

Partially supported by grants PID2022-138988NB-I00 funded by MICIU/AEI/10.13039/501100011033 and by ERDF, EU, and ED431F 2020/04 (Xunta de Galicia, Spain); and by contract FPU21/01519 (Ministry of Universities, Spain).

1 [Context and motivation](#page-4-0)

2 [The weighted variational problem](#page-9-0)

3 [The vacuum weighted Einstein field equation](#page-19-0)

- **[General properties](#page-19-0)**
- [Isotropic and non-isotropic solutions](#page-19-0)

Smooth metric measure space

Triple $(M, g, h \, dvol_g)$ where

- M: smooth manifold
- \bullet g : semi-Riemannian metric. We focus on Lorentzian metrics.
- \bullet dvol_g: Riemannian volume element
- $h \in C^\infty(M)$: positive density function $(\nabla h \neq 0)$

Smooth metric measure space

Triple $(M, g, h \, dvol_g)$ where

- M: smooth manifold
- \bullet g : semi-Riemannian metric. We focus on Lorentzian metrics.
- \bullet dvol_g: Riemannian volume element
- $h \in C^\infty(M)$: positive density function $(\nabla h \neq 0)$

Some notation

- ρ : Usual Ricci tensor ($\rho_{ij} = R^k_{ikj})$
- **•** Ric: Ricci operator $(\text{Ric}_j^i = g^{ik} \rho_{kj})$
- τ : Scalar curvature ($\tau=\rho^i_{\ i})$
- \bullet Hes_h: Hessian tensor of h $\text{Hes}_h(X, Y) = g(\nabla_X \nabla h, Y)$
- Δh : Laplacian of h ($\Delta h = (\text{Hes}_h)^i$;)

On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

$$
G = \rho - \frac{\tau}{2}g
$$

On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

$$
G=\rho-\frac{\tau}{2}g
$$

Aim

To define a weighted analogue of the GR Einstein tensor G for smooth metric measure spaces.

On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

$$
G=\rho-\frac{\tau}{2}g
$$

Aim

To define a weighted analogue of the GR Einstein tensor G for smooth metric measure spaces.

Characterizing properties of G:

- **•** Symmetric
- **Concomitant of the metric and its** first two derivatives
- **O** Divergence-free
- **Q** Linear in the first two derivatives of the metric

On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

$$
G=\rho-\frac{\tau}{2}g
$$

Aim

To define a weighted analogue of the GR Einstein tensor G for smooth metric measure spaces.

Characterizing properties of G:

- **•** Symmetric
- **Concomitant of the metric and its** first two derivatives
- **O** Divergence-free
- **Q** Linear in the first two derivatives of the metric

It is the only tensor with these properties.
 $\overline{}$

D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12, (1971), 498–501.

On a Lorentzian manifold, the Einstein tensor used in General Relativity has the form

$$
G = \rho - \frac{\tau}{2}g
$$

Aim

To define a weighted analogue of the GR Einstein tensor G for smooth metric measure spaces.

Characterizing properties of G:

- **•** Symmetric
- **Concomitant of the metric and its** first two derivatives
- **O** Divergence-free
- **Q** Linear in the first two derivatives of the metric

It is the only tensor with these properties.
 $\overline{}$

Variational approach:

The Einstein tensor is obtained through a variation of the Einstein-Hilbert action:

$$
\mathcal{S} = \int_{\mathcal{V}} \tau \, d\textit{vol}_g
$$

D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12, (1971), 498–501.

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
S_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
S_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
\mathcal{S}_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

We impose the condition
$$
\frac{d}{dt}\Big|_{t=0} dV[t] = 0
$$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
\mathcal{S}_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

We impose the condition
$$
\frac{d}{dt}\Big|_{t=0} dV[t] = 0
$$

$$
\delta S_h = \frac{d}{dt} S_h \bigg|_{t=0} = \int_M \frac{d\tau[t]}{dt} \bigg|_{t=0} dV + \int_M \tau \frac{d}{dt} \bigg|_{t=0} dV[t] = 0
$$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
\mathcal{S}_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

We impose the condition
$$
\frac{d}{dt}\Big|_{t=0} dV[t] = 0
$$

$$
\delta S_h = \frac{d}{dt} S_h \bigg|_{t=0} = \int_M \frac{d\tau[t]}{dt} \bigg|_{t=0} dV + \int_M \frac{d}{dt} \frac{dV[t]}{dt} = 0
$$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
\mathcal{S}_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

We impose the condition
$$
\frac{d}{dt}\Big|_{t=0} dV[t] = 0
$$

$$
\delta S_h = \frac{d}{dt} S_h \bigg|_{t=0} = \int_M \frac{d\tau[t]}{dt} \bigg|_{t=0} dV = 0
$$

Let (M, g) be a Lorentzian manifold and take the action given by the Einstein-Hilbert functional with density:

$$
\mathcal{S}_h = \int_{\mathcal{V}} \tau h \, d\text{vol}_g
$$

Variational problem:

• Critical points of this functional under variations

$$
g[t] = g + t\delta g, \qquad h[t] = h + t\delta h
$$

Variations of the metric and its first derivatives vanish at the integration boundary

 \bullet We want to preserve the distinguished measure $dV = h dvol_g$, whose variation is $dV[t] = h[t]dvol_{g[t]}$

We impose the condition
$$
\frac{d}{dt}\Big|_{t=0} dV[t] = 0
$$

$$
\delta S_h = \frac{d}{dt} S_h \bigg|_{t=0} = \int_M D\tau_g(\delta g) h \, dvol_g = 0
$$

The Einstein tensor

The variation of the action reads

$$
\delta \mathcal{S}_h = \int_M \langle h \rho + \Delta h g - \mathrm{Hes}_h, \delta g \rangle \text{dvol}_g = \int_M \langle D \tau_g^*(h), \delta g \rangle \text{dvol}_g
$$

where $\langle T,K\rangle = T^{ij}K_{ij}$, vanishing for all $\delta {\bf g}$ at critical points.

The Einstein tensor

The variation of the action reads

$$
\delta \mathcal{S}_h = \int_M \langle h \rho + \Delta h g - \mathrm{Hes}_h, \delta g \rangle d\mathrm{vol}_g = \int_M \langle D\tau^*_g(h), \delta g \rangle d\mathrm{vol}_g
$$

where $\langle T,K\rangle = T^{ij}K_{ij}$, vanishing for all $\delta {\bf g}$ at critical points.

We define the weighted Einstein tensor

$$
G^h = h\rho + \Delta hg - \mathsf{Hes}_h
$$

Properties:

- **•** Symmetric
- Concomitant of the metric, the density function and their first two derivatives
- Linear in the first two derivatives of the metric and the density function
- **Not** divergence-free in general: $\mathrm{div} \mathcal{G}^h = \frac{1}{2} h d\tau$

The Einstein tensor

The variation of the action reads

$$
\delta \mathcal{S}_h = \int_M \langle h \rho + \Delta h g - \mathrm{Hes}_h, \delta g \rangle d\mathrm{vol}_g = \int_M \langle D\tau^*_g(h), \delta g \rangle d\mathrm{vol}_g
$$

where $\langle T,K\rangle = T^{ij}K_{ij}$, vanishing for all $\delta {\bf g}$ at critical points.

We define the weighted Einstein tensor

$$
G^h = h\rho + \Delta hg - \mathsf{Hes}_h
$$

Properties:

- **•** Symmetric
- Concomitant of the metric, the density function and their first two derivatives
- Linear in the first two derivatives of the metric and the density function
- **Not** divergence-free in general: $\mathrm{div} \mathcal{G}^h = \frac{1}{2} h d\tau$

Vacuum weighted Einstein field equation

$$
G^h = h\rho + \Delta hg - \text{Hes}_h = 0
$$

Vacuum weighted Einstein field equation

 $h\rho + \Delta hg - Hes_h = 0$

Taking its trace, we have

$$
\Delta h = -\frac{h\tau}{n-1} \quad \Rightarrow \quad \text{Hes}_h = h\left(\rho - \frac{\tau}{n-1}g\right)
$$

In Riemannian signature, this is the equation of a vacuum static space

Vacuum weighted Einstein field equation

 $h\rho + \Delta hg - Hes_h = 0$

Taking its trace, we have

$$
\Delta h = -\frac{h\tau}{n-1} \quad \Rightarrow \quad \text{Hes}_h = h\left(\rho - \frac{\tau}{n-1}g\right)
$$

In Riemannian signature, this is the equation of a vacuum static space

Second aim

To understand the geometry of solutions to the vacuum weighted Einstein field equation.

Depending on the character of ∇h , we have different possibilities:

Depending on the character of ∇h , we have different possibilities:

• isotropic solutions if $g(\nabla h, \nabla h) = 0$. The level sets of h are degenerate hypersurfaces.

Depending on the character of ∇h , we have different possibilities:

- isotropic solutions if $g(\nabla h, \nabla h) = 0$. The level sets of h are degenerate hypersurfaces.
- non-isotropic if $g(\nabla h, \nabla h) \neq 0$. The level sets of h are non-degenerate hypersurfaces:
	- $\bullet \nabla h$ is timelike
	- \bullet ∇h is spacelike

Depending on the character of ∇h , we have different possibilities:

- isotropic solutions if $g(\nabla h, \nabla h) = 0$. The level sets of h are degenerate hypersurfaces.
- non-isotropic if $g(\nabla h, \nabla h) \neq 0$. The level sets of h are non-degenerate hypersurfaces:
	- $\bullet \nabla h$ is timelike
	- $\bullet \nabla h$ is spacelike

 ${e_1}$

The Jordan form of the Ricci operator also plays a role:

Type Ia	Type II
\n $\text{Ric} = \begin{pmatrix}\n \alpha_1 & 0 \\ \vdots & \ddots & \\ 0 & \alpha_n\n \end{pmatrix}$ \n	\n $\text{Ric} = \begin{pmatrix}\n \alpha & 0 \\ \varepsilon & \alpha \\ \vdots & \ddots\n \end{pmatrix}$ \n
\n $\text{Ric} = \begin{pmatrix}\n a & b & \cdots \\ -b & a & \cdots \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n	\n $\text{Ric} = \begin{pmatrix}\n \alpha & 0 & 1 \\ 0 & \alpha & 0 \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n
\n $\text{Ric} = \begin{pmatrix}\n a & b & \cdots \\ 0 & \alpha & \cdots \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n	\n $\text{Ric} = \begin{pmatrix}\n \alpha & 0 & 1 \\ 0 & \alpha & 0 \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n
\n $\text{Ric} = \begin{pmatrix}\n a & b & \cdots \\ 0 & \alpha & \cdots \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n	
\n $\text{Ric} = \begin{pmatrix}\n a & b & \cdots \\ 0 & \alpha & \cdots \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n	
\n $\text{Ric} = \begin{pmatrix}\n a & b & \cdots \\ 0 & \alpha & \cdots \\ \vdots & \ddots & \ddots\n \end{pmatrix}$ \n	
\n $\text{Ric} = \begin{pmatrix}\n a &$	

We assume the Jordan form is constant $8/15$

Lemma

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then Ric is nilpotent and $\Delta h = 0$.

The vacuum weighted Einstein equation reduces to $h\rho = \text{Hes}_h$

Lemma

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then Ric is nilpotent and $\Delta h = 0$.

The vacuum weighted Einstein equation reduces to $h\rho = \text{Hes}_h$

Theorem

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then one of the following possibilities holds:

Lemma

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then Ric is nilpotent and $\Delta h = 0$.

The vacuum weighted Einstein equation reduces to $h\rho = \text{Hes}_h$

Theorem

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then one of the following possibilities holds:

 \bigodot (M, g) is Ricci-flat and $\text{Hes}_h = 0$

Lemma

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then Ric is nilpotent and $\Delta h = 0$.

The vacuum weighted Einstein equation reduces to $h\rho = \text{Hes}_h$

Theorem

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then one of the following possibilities holds:

- \bigodot (M, g) is Ricci-flat and $\text{Hes}_h = 0$
- The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave

Brinkmann wave: (M, g) with a recurrent lightlike geodesic vector field V $(\nabla_X V = \alpha(X)V)$, for a 1-form α)

Lemma

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then Ric is nilpotent and $\Delta h = 0$.

The vacuum weighted Einstein equation reduces to $h\rho = \text{Hes}_h$

Theorem

Let $(M, g, h dvol_g)$ be an isotropic solution of the vacuum weighted Einstein field equation. Then one of the following possibilities holds:

- \bigodot (M, g) is Ricci-flat and $\text{Hes}_h = 0$
- **2** The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave
- The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime

Kundt spacetime: (M, g) with a geodesic lightlike vector field which is Expansion-free Shear-free Twist-free $\theta = \frac{1}{n-2}\nabla_iV^i \qquad \sigma^2 = (\nabla^iV^j)\nabla_{(i}V_{j)} - (n-2)\theta^2 \qquad \omega^2 = (\nabla^iV^j)\nabla_{[i}V_{j]}$

Locally conformally flat solutions

Theorem

Let (M, g, h) be a locally conformally flat solution.

- **1** If $g(\nabla h, \nabla h) \neq 0$ at a point p, then, on a neighborhood of p, (M, g, h) is locally isometric to a warped product $(I \times N, dt^2 \oplus \varphi^2 g^N)$, where
	- N has constant sectional curvature
	- $h(t)$ and $\varphi(t)$ satisfy the following system of ODEs:

$$
0 = h' \varphi' - h \varphi'',
$$

$$
0 = h'' + (n-1)h\frac{\varphi''}{\varphi} + \varepsilon \frac{\tau}{n-1}h.
$$

Locally conformally flat solutions

Theorem

Let (M, g, h) be a locally conformally flat solution.

- **1** If $g(\nabla h, \nabla h) \neq 0$ at a point p, then, on a neighborhood of p, (M, g, h) is locally isometric to a warped product $(I \times N, dt^2 \oplus \varphi^2 g^N)$, where
	- N has constant sectional curvature
	- $h(t)$ and $\varphi(t)$ satisfy the following system of ODEs:

$$
0 = h'\varphi' - h\varphi'',
$$

\n
$$
0 = h'' + (n-1)h\frac{\varphi''}{\varphi} + \varepsilon \frac{\tau}{n-1}h.
$$

2 If $g(\nabla h, \nabla h) = 0$ on an open subset $\mathfrak{U} \subset M$, then $(\mathfrak{U}, g|_{\mathfrak{U}})$ is a plane wave with the metric

$$
g(u, v, x_1, \ldots, x_{n-2}) = 2dvdu + F(v, x_1, \ldots, x_{n-2})dv^2 + \sum_{i=1}^{n-2} dx_i^2,
$$

where $F(v, x_1, ..., x_{n-2}) = -\frac{h''(v)}{(n-2)h(v)} \sum_{i=1}^{n-2} x_i^2 + \sum_{i=1}^{n-2} b_i(v) x_i + c(v)$.

 \bullet Less restrictive conditions than $W = 0$

- \bullet Less restrictive conditions than $W = 0$
- **Einstein equation gives information on** $\rho \rightarrow$ We impose div $W = \text{div } R = 0$

$$
\begin{aligned}\n\text{hes}_h &= h\left(\text{Ric} - \frac{\tau}{n-1} \,\text{Id}\right) \\
\text{div}\, R &= 0\n\end{aligned}\n\bigg\} \Rightarrow \text{Ric}(\nabla h) = \lambda_1 \nabla h, \quad \lambda_1 \in \mathcal{C}^\infty(M)
$$

- \bullet Less restrictive conditions than $W = 0$
- Einstein equation gives information on $\rho \rightarrow$ We impose div $W = \text{div } R = 0$ \bullet

$$
\begin{aligned}\n\text{hes}_h &= h\left(\text{Ric} - \frac{\tau}{n-1} \,\text{Id}\right) \\
\text{div}\, R &= 0\n\end{aligned}\n\bigg\} \Rightarrow \text{Ric}(\nabla h) = \lambda_1 \nabla h, \quad \lambda_1 \in C^\infty(M)
$$

∇h timelike

 g is positive definite on ∇h^\perp Ric is self-adjoint $\mathrm{Ric}(\nabla h) = \lambda_1 \nabla h$ \mathcal{L} $\overline{\mathcal{L}}$ \int \Rightarrow Ric $\,$ is diagonalizable (Type Ia)

- \bullet Less restrictive conditions than $W = 0$
- **Einstein equation gives information on** $\rho \rightarrow W$ e impose div $W = \text{div } R = 0$

$$
\begin{aligned}\n\text{hes}_h &= h\left(\text{Ric} - \frac{\tau}{n-1} \,\text{Id}\right) \\
\text{div}\, R &= 0\n\end{aligned}\n\bigg\} \Rightarrow \text{Ric}(\nabla h) = \lambda_1 \nabla h, \quad \lambda_1 \in C^\infty(M)
$$

∇h timelike

- **If** ∇h is spacelike, Ric does not diagonalize in general
- We focus on 4-dimensional solutions

Let (M, g, h) be a 4-dimensional solution with $\text{div } R = 0$ (not locally conformally flat).

Let (M, g, h) be a 4-dimensional solution with $\text{div } R = 0$ (not locally conformally flat). Then, the eigenvalues of Ric are real and one of the following is satisfied:

1 Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:

- **1** Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:
	- **1** A direct product $I_2 \times \tilde{M}$, where $\tilde{M} = I_1 \times_{\varepsilon} N$ is a 3-dimensional solution with $\tilde{\tau} = 0$ and N a surface of constant Gauss curvature.

- **1** Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:
	- **1** A direct product $I_2 \times \tilde{M}$, where $\tilde{M} = I_1 \times_{\xi} N$ is a 3-dimensional solution with $\tilde{\tau} = 0$ and N a surface of constant Gauss curvature.
	- \bullet A direct product $\mathsf{N}_1\times \mathsf{N}_2$ of two surfaces of constant Gauss curvature $\frac{\kappa}{2}$ and κ , respectively.

- **1** Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:
	- **1** A direct product $I_2 \times \tilde{M}$, where $\tilde{M} = I_1 \times_{\xi} N$ is a 3-dimensional solution with $\tilde{\tau} = 0$ and N a surface of constant Gauss curvature.
	- \bullet A direct product $\mathsf{N}_1\times \mathsf{N}_2$ of two surfaces of constant Gauss curvature $\frac{\kappa}{2}$ and κ , respectively.
- \bigodot (M, g) is a Kundt spacetime

- **1** Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:
	- **1** A direct product $I_2 \times \tilde{M}$, where $\tilde{M} = I_1 \times_{\xi} N$ is a 3-dimensional solution with $\tilde{\tau}=0$ and N a surface of constant Gauss curvature.
	- \bullet A direct product $\mathsf{N}_1\times \mathsf{N}_2$ of two surfaces of constant Gauss curvature $\frac{\kappa}{2}$ and κ , respectively.
- **2** (M, g) is a Kundt spacetime and, depending on the causal character of ∇h , one of the following applies:
	- **1** If $g(\nabla h, \nabla h) = 0$, then Ric is nilpotent and ∇h determines the lightlike parallel line field. Moreover, if Ric vanishes or is 2-step nilpotent, the underlying manifold is a pp-wave.

- **1** Ric diagonalizes on (M, g) and $g(\nabla h, \nabla h) \neq 0$. Furthermore, there exists an open dense subset M_{Ric} of M such that, for every $p \in M_{\text{Ric}}$, (M, g) is isometric on a neighborhood of p to:
	- **1** A direct product $I_2 \times \tilde{M}$, where $\tilde{M} = I_1 \times_{\xi} N$ is a 3-dimensional solution with $\tilde{\tau}=0$ and N a surface of constant Gauss curvature.
	- \bullet A direct product $\mathsf{N}_1\times \mathsf{N}_2$ of two surfaces of constant Gauss curvature $\frac{\kappa}{2}$ and κ , respectively.
- **2** (M, g) is a Kundt spacetime and, depending on the causal character of ∇h , one of the following applies:
	- **1** If $g(\nabla h, \nabla h) = 0$, then Ric is nilpotent and ∇h determines the lightlike parallel line field. Moreover, if Ric vanishes or is 2-step nilpotent, the underlying manifold is a pp-wave.
	- **2** If $g(\nabla h, \nabla h) \neq 0$, then ∇h is spacelike and the distinguished lightlike vector field is orthogonal to ∇h .

Sketch of the proof (non-isotropic case)

Type la	Type lb		
Ric =	\n $\begin{pmatrix}\n \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4\n \end{pmatrix}$ \n	Ric =	\n $\begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & -b & a & 0 \\ 0 & 0 & 0 & \alpha\n \end{pmatrix}$ \n

 ${e_1, \ldots, e_n}$ orthonormal basis with $e_1 = \nabla h / |\nabla h|$

Sketch of the proof (non-isotropic case)

Type la	Type lb		
Ric =	\n $\begin{pmatrix}\n \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4\n \end{pmatrix}$ \n	Ric =	\n $\begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & -b & a & 0 \\ 0 & 0 & 0 & \alpha\n \end{pmatrix}$ \n

 ${e_1, \ldots, e_n}$ orthonormal basis with $e_1 = \nabla h / |\nabla h|$

- **Type Ia:** We analyze the geometric structure according to the number of distinct eigenvalues of Ric
	- λ_2 , λ_3 , λ_4 cannot be pairwise distinct \rightsquigarrow Multiply warped product

Sketch of the proof (non-isotropic case)

Type la	Type lb
\n $\text{Ric} = \begin{pmatrix}\n \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4\n \end{pmatrix}$ \n	\n $\text{Ric} = \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & -b & a & 0 \\ 0 & 0 & 0 & \alpha\n \end{pmatrix}$ \n

 ${e_1, \ldots, e_n}$ orthonormal basis with $e_1 = \nabla h / |\nabla h|$

- **Type Ia:** We analyze the geometric structure according to the number of distinct eigenvalues of Ric
	- λ_2 , λ_3 , λ_4 cannot be pairwise distinct \rightsquigarrow Multiply warped product
- **Type Ib:** Use div $R = 0$ and the Einstein equations to obtain information on the eigenvalues, the curvature and the Christoffel symbols
	- Polynomial system on 5 variables
	- Show $b = 0$
	- There are solutions with $div R \neq 0$

 \bullet div $R = 0 \Rightarrow$ Non-diagonalizable case only possible when ∇h is spacelike

 \bullet div $R = 0 \Rightarrow$ Non-diagonalizable case only possible when ∇h is spacelike

The 2 remaining normal forms for Ric:

Type II	Type III
\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & \varepsilon & \alpha & 0 \\ 0 & 0 & 0 & \beta\n \end{pmatrix}$ \n	\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 1 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 1 & \alpha\n \end{pmatrix}$ \n

 $\{\nabla h, u, v, e_1\}$ pseudo-orthonormal basis $(g(u, u) = g(v, v) = 0, g(u, v) = 1)$

 \bullet div $R = 0 \Rightarrow$ Non-diagonalizable case only possible when ∇h is spacelike

The 2 remaining normal forms for Ric:

Type II	Type III
\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & \varepsilon & \alpha & 0 \\ 0 & 0 & 0 & \beta\n \end{pmatrix}$ \n	\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 1 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 1 & \alpha\n \end{pmatrix}$ \n

 $\{\nabla h, u, v, e_1\}$ pseudo-orthonormal basis $(g(u, u) = g(v, v) = 0, g(u, v) = 1)$

• Type II: solutions are Kundt spacetimes with geodesic vector field v.

• We classifed 4D pr-wave solutions.

 \bullet div $R = 0 \Rightarrow$ Non-diagonalizable case only possible when ∇h is spacelike

The 2 remaining normal forms for Ric:

Type II	Type III
\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & \varepsilon & \alpha & 0 \\ 0 & 0 & 0 & \beta\n \end{pmatrix}$ \n	\n $\text{Ric} = \n \begin{pmatrix}\n \lambda & 0 & 0 & 0 \\ 0 & \alpha & 0 & 1 \\ 0 & 0 & \alpha & 0 \\ 0 & 0 & 1 & \alpha\n \end{pmatrix}$ \n

 $\{\nabla h, u, v, e_1\}$ pseudo-orthonormal basis $(g(u, u) = g(v, v) = 0, g(u, v) = 1)$

• Type II: solutions are Kundt spacetimes with geodesic vector field v.

- We classifed 4D pr-wave solutions.
- **Type III:** solutions are Kundt spacetimes with geodesic vector field u.
- M. Brozos-Vázquez, ——; The vacuum weighted Einstein field equations, arXiv:2407.18791 [math.DG] (2024).
- M. Brozos-Vázquez, ——; The vacuum weighted Einstein field equations on pr-waves, arXiv:2407.10535 [math.DG] (2024).
- M. Brozos-Vázquez, ——; Vacuum Einstein field equations in smooth metric measure spaces: the isotropic case. Class. Quantum Grav. 39 (13) (2022), 135013.
- J. Kim, J. Shin; Four-dimensional static and related critical spaces with harmonic curvature Pacific J. Math 295 (2) (2018), 429–462.
- D. Lovelock; The Einstein tensor and its generalizations. J. Math. Phys. 12 (1971), 498–501.