Classification of cohomogeneity-one actions on noncompact symmetric spaces

Ivan Solonenko (joint work with Víctor Sanmartín-Lopez)

University of Stuttgart

Symmetry and Shape, 25 Sep 2024

A B A B A B A

Definition and motivation

Ivan	Sol	lonen	ko (St	ut	tga	rt)	ł
------	-----	-------	------	----	----	-----	-----	---

2

イロト イヨト イヨト イヨト

Definition and motivation

Definition

Let *M* be a Riemannian manifold and *H* a connected Lie group. A proper isometric action $H \curvearrowright M$ is said to be of **cohomogeneity one** (**C1**-) if it has an orbit of codimension one.

• • • • • • • • • • •

Let *M* be a Riemannian manifold and *H* a connected Lie group. A proper isometric action $H \curvearrowright M$ is said to be of **cohomogeneity one** (**C1**-) if it has an orbit of codimension one.

Some motivation:

Let *M* be a Riemannian manifold and *H* a connected Lie group. A proper isometric action $H \curvearrowright M$ is said to be of **cohomogeneity one** (**C1**-) if it has an orbit of codimension one.

Some motivation:

C1-actions can be used to construct metrics with special properties (Einstein, special holonomy, positive sectional curvature, etc.). C1-symmetry allows to reduce PDEs to ODEs (can be applied, e.g., to the Ricci flow).

Let *M* be a Riemannian manifold and *H* a connected Lie group. A proper isometric action $H \curvearrowright M$ is said to be of **cohomogeneity one** (**C1**-) if it has an orbit of codimension one.

Some motivation:

- C1-actions can be used to construct metrics with special properties (Einstein, special holonomy, positive sectional curvature, etc.). C1-symmetry allows to reduce PDEs to ODEs (can be applied, e.g., to the Ricci flow).
- The principal orbits of a C1-action are homogeneous hypersurfaces and thus are isoparametric and have constant principal curvatures.

Let *M* be a Riemannian manifold and *H* a connected Lie group. A proper isometric action $H \curvearrowright M$ is said to be of **cohomogeneity one** (**C1**-) if it has an orbit of codimension one.

Some motivation:

- C1-actions can be used to construct metrics with special properties (Einstein, special holonomy, positive sectional curvature, etc.). C1-symmetry allows to reduce PDEs to ODEs (can be applied, e.g., to the Ricci flow).
- The principal orbits of a C1-action are homogeneous hypersurfaces and thus are isoparametric and have constant principal curvatures.
- C1-actions form one of the chief examples of hyperpolar (and thus polar) actions.

イロト イヨト イヨト

Ivan Solonenko (Stuttgart)

2

イロト イヨト イヨト イヨト

The existence of a C1-action \rightsquigarrow a large degree of symmetry

イロト イヨト イヨト イヨト

The existence of a C1-action \rightsquigarrow a large degree of symmetry

Definition

Two isometric action $H_1 \curvearrowright M$ and $H_2 \curvearrowright M$ are called **orbit-equivalent** if there exists an isometry $\varphi \in I(M)$ identifying their orbits.

The existence of a C1-action \rightsquigarrow a large degree of symmetry

Definition

Two isometric action $H_1 \curvearrowright M$ and $H_2 \curvearrowright M$ are called **orbit-equivalent** if there exists an isometry $\varphi \in I(M)$ identifying their orbits.

Problem

Classify C1-actions on symmetric spaces up to orbit-equivalence.

The existence of a C1-action \rightsquigarrow a large degree of symmetry

Definition

Two isometric action $H_1 \curvearrowright M$ and $H_2 \curvearrowright M$ are called **orbit-equivalent** if there exists an isometry $\varphi \in I(M)$ identifying their orbits.

Problem

Classify C1-actions on symmetric spaces up to orbit-equivalence.

This problem is essentially equivalent to:

Problem

Classify homogeneous hypersurfaces in symmetric spaces up to isometric congruence.

イロト イヨト イヨト イヨト

History

э.

・ロト ・四ト ・ヨト ・ヨト

In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).

< □ > < □ > < □ > < □ > < □ >

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).

イロト イヨト イヨト

History

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).
- In Sⁿ homogeneous ⊊ isoparametric. Classified by Hsiang & Lawson ('71). Every C1-action on Sⁿ is orbit equivalent to the action induced by the isotropy representation of a symmetric space of rank 2 and dimension n + 1.

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).
- In Sⁿ homogeneous ⊊ isoparametric. Classified by Hsiang & Lawson ('71). Every C1-action on Sⁿ is orbit equivalent to the action induced by the isotropy representation of a symmetric space of rank 2 and dimension n + 1.
- ▶ On CPⁿ: Takagi ('73).

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).
- In Sⁿ homogeneous ⊊ isoparametric. Classified by Hsiang & Lawson ('71). Every C1-action on Sⁿ is orbit equivalent to the action induced by the isotropy representation of a symmetric space of rank 2 and dimension n + 1.
- ▶ On ℂ*P*^{*n*}: Takagi ('73).
- ▶ On *HP*^{*n*}: D'Atri ('79) and Iwata ('78).

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).
- In Sⁿ homogeneous ⊊ isoparametric. Classified by Hsiang & Lawson ('71). Every C1-action on Sⁿ is orbit equivalent to the action induced by the isotropy representation of a symmetric space of rank 2 and dimension n + 1.
- ▶ On ℂ*P*^{*n*}: Takagi ('73).
- On ⅢPⁿ: D'Atri ('79) and Iwata ('78).
- ▶ On *OP*²: Iwata ('81).

- In ℝⁿ, homogeneous = isoparametric → classified by Somigliana (1919), Levi-Civita ('37), and Segre ('38).
- ▶ In $\mathbb{R}H^n$, homogeneous = isoparametric \rightsquigarrow classified by Cartan ('38).
- In Sⁿ homogeneous ⊊ isoparametric. Classified by Hsiang & Lawson ('71). Every C1-action on Sⁿ is orbit equivalent to the action induced by the isotropy representation of a symmetric space of rank 2 and dimension n + 1.
- ▶ On ℂ*P*^{*n*}: Takagi ('73).
- On ⅢPⁿ: D'Atri ('79) and Iwata ('78).
- ▶ On *OP*²: Iwata ('81).
- On irreducible symmetric spaces of compact type: Kollross ('02).

< ロ > < 同 > < 三 > < 三 > 、

イロト イヨト イヨト

M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.

- M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.
- g = 𝔅 ⊕ 𝔅 Cartan decomposition with 𝔅 = Lie(𝐾), θ = the corresponding Cartan involution.

イロト イポト イヨト イヨト

- M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.
- g = 𝔅 ⊕ 𝔅 Cartan decomposition with 𝔅 = Lie(𝐾), θ = the corresponding Cartan involution.
- ► B = the Killing form of \mathfrak{g} , $B_{\theta}(X, Y) = -B(X, \theta Y)$ a K-invariant inner product on \mathfrak{g} .

- M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.
- g = 𝔅 ⊕ 𝔅 Cartan decomposition with 𝔅 = Lie(𝐾), θ = the corresponding Cartan involution.
- B = the Killing form of g, B_θ(X, Y) = −B(X, θY) a K-invariant inner product on g.
- ▶ Pick a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p} \rightsquigarrow$ induces the restricted root system $\Sigma \subset \mathfrak{a}^*$ and the restricted root space decomposition $\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$. Here $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}$, where $\mathfrak{k}_0 = Z_{\mathfrak{k}}(\mathfrak{a})$.

5/15

- M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.
- g = 𝔅 ⊕ 𝔅 Cartan decomposition with 𝔅 = Lie(𝐾), θ = the corresponding Cartan involution.
- B = the Killing form of g, B_θ(X, Y) = −B(X, θY) a K-invariant inner product on g.
- ▶ Pick a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p} \rightsquigarrow$ induces the restricted root system $\Sigma \subset \mathfrak{a}^*$ and the restricted root space decomposition $\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$. Here $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}$, where $\mathfrak{k}_0 = Z_{\mathfrak{k}}(\mathfrak{a})$.
- Make a choice of simple roots Λ = {α₁,..., α_r} ⊆ Σ⁺ ⊂ Σ → induces a nilpotent subalgebra n = ⊕_{α∈Σ⁺} g_α.

э

- M = G/K a symmetric space of noncompact type, G = I⁰(M), K = the isotropy of some o ∈ M.
- g = 𝔅 ⊕ 𝔅 Cartan decomposition with 𝔅 = Lie(𝐾), θ = the corresponding Cartan involution.
- B = the Killing form of g, B_θ(X, Y) = −B(X, θY) a K-invariant inner product on g.
- ▶ Pick a maximal abelian subspace $\mathfrak{a} \subset \mathfrak{p} \rightsquigarrow$ induces the restricted root system $\Sigma \subset \mathfrak{a}^*$ and the restricted root space decomposition $\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}$. Here $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{a}$, where $\mathfrak{k}_0 = Z_{\mathfrak{k}}(\mathfrak{a})$.
- Make a choice of simple roots Λ = {α₁,..., α_r} ⊆ Σ⁺ ⊂ Σ → induces a nilpotent subalgebra n = ⊕_{α∈Σ⁺} g_α.

• Iwasawa decomposition: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ and G = KAN.

3

5/15

э

イロト イヨト イヨト イヨト

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

イロト イヨト イヨト

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

1 There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.

イロト イヨト イヨト

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

- **1** There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.
- 2 There is one singular orbit diffeomorphic to ℝ^k, and the other orbits are equidistant tubes around it diffeomorphic to ℝ^k × S^{n-k-1}.

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

- **1** There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.
- 2 There is one singular orbit diffeomorphic to ℝ^k, and the other orbits are equidistant tubes around it diffeomorphic to ℝ^k × S^{n-k-1}.

Actions of the first type were classified by Berndt, Tamaru, and Díaz-Ramos ('03, '10):

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

- **1** There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.
- 2 There is one singular orbit diffeomorphic to ℝ^k, and the other orbits are equidistant tubes around it diffeomorphic to ℝ^k × S^{n-k-1}.

Actions of the first type were classified by Berndt, Tamaru, and Díaz-Ramos ('03, '10):

ℓ ⊆ a a line → 𝔥ℓ = (a ⊖ ℓ) ⊕ 𝑘 a Lie subalgebra, whose corresponding Lie subgroup 𝑘ℓ induces a C1-foliation on 𝑘.

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

- **1** There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.
- 2 There is one singular orbit diffeomorphic to ℝ^k, and the other orbits are equidistant tubes around it diffeomorphic to ℝ^k × S^{n-k-1}.

Actions of the first type were classified by Berndt, Tamaru, and Díaz-Ramos ('03, '10):

- ℓ ⊆ a a line → hℓ = (a ⊖ ℓ) ⊕ n a Lie subalgebra, whose corresponding Lie subgroup Hℓ induces a C1-foliation on M.
- $\alpha_i \in \Lambda$ a simple root and $\ell_{\alpha_i} \subseteq \mathfrak{g}_{\alpha_i}$ a line $\rightsquigarrow \mathfrak{h}_{\alpha_i} = \mathfrak{a} \oplus (\mathfrak{n} \ominus \ell_{\alpha_i})$ is a Lie subalgebra, whose corresponding Lie subgroup H_{α_i} induces a C1-foliation on M.

6/15

For a C1-action $H \curvearrowright M$ on a noncompact symmetric space, there are two possibilities:

- **1** There are no singular orbits, all orbits are diffeomorphic to \mathbb{R}^{n-1} and form a Riemannian foliation.
- 2 There is one singular orbit diffeomorphic to ℝ^k, and the other orbits are equidistant tubes around it diffeomorphic to ℝ^k × S^{n-k-1}.

Actions of the first type were classified by Berndt, Tamaru, and Díaz-Ramos ('03, '10):

- ℓ ⊆ a a line → hℓ = (a ⊖ ℓ) ⊕ n a Lie subalgebra, whose corresponding Lie subgroup Hℓ induces a C1-foliation on M.
- α_i ∈ Λ a simple root and ℓ_{αi} ⊆ g_{αi} a line → 𝔥_{αi} = 𝔅 ⊕ (𝔅 ⊖ ℓ_{αi}) is a Lie subalgebra, whose corresponding Lie subgroup *H_{αi}* induces a C1-foliation on *M*. A different choice of ℓ_{αi} leads to an orbit-equivalent action.

C1-actions with a totally geodesic singular orbit
Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

Image: A math a math

Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

 Leung ('75, '79) classified reflective submanifolds in irreducible compact symmetric spaces.

• • • • • • • • • • • •

Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

- Leung ('75, '79) classified reflective submanifolds in irreducible compact symmetric spaces.
- Berndt and Tamaru ('04) classified C1-actions with a totally geodesic singular orbit for M irreducible:

7/15

Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

- Leung ('75, '79) classified reflective submanifolds in irreducible compact symmetric spaces.
- Berndt and Tamaru ('04) classified C1-actions with a totally geodesic singular orbit for M irreducible:
 - either the orbit is reflective \rightsquigarrow these were classified using Leung's result,

7/15

Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

- Leung ('75, '79) classified reflective submanifolds in irreducible compact symmetric spaces.
- Berndt and Tamaru ('04) classified C1-actions with a totally geodesic singular orbit for M irreducible:
 - either the orbit is reflective \rightsquigarrow these were classified using Leung's result,
 - or non-reflective \rightsquigarrow 5 examples, all related to G_2 .

7/15

(日) (四) (日) (日) (日)

Definition

A submanifold $S \subseteq M$ is called **reflective** if it is a connected component of M^{σ} for some involutive isometry $\sigma \in I(M)$.

- Leung ('75, '79) classified reflective submanifolds in irreducible compact symmetric spaces.
- Berndt and Tamaru ('04) classified C1-actions with a totally geodesic singular orbit for M irreducible:
 - $\bullet\,$ either the orbit is reflective \rightsquigarrow these were classified using Leung's result,
 - or non-reflective \rightsquigarrow 5 examples, all related to G_2 .
- ▶ Díaz-Ramos, Domínguez-Vázquez, and Otero ('23) found another example for *M* reducible. Let M_1 and M_2 be homothetic spaces of rank one, pick an isomorphism $\varphi : \mathfrak{g}_1 \xrightarrow{\sim} \mathfrak{g}_2$, and consider $\mathfrak{g}_{\varphi} = \{X + \varphi(X) \mid X \in \mathfrak{g}_1\} \subseteq$ $\mathfrak{g}_1 \oplus \mathfrak{g}_2$. Then the corresponding subgroup $G_{\varphi} \subseteq G_1 \times G_2$ acts on $M_1 \times M_2$ with cohomogeneity one. This is called a **diagonal C1-action**.

イロト イボト イヨト イヨト

Ivan Solonenko (Stuttgart)

2

イロト イヨト イヨト イヨト

▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .

イロト イ団ト イヨト イヨト

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- M_Φ · o = B_Φ is a **boundary component** of M: itself a noncompact symmetric space of rank |Φ|.

(日) (四) (日) (日) (日)

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- M_Φ · o = B_Φ is a **boundary component** of M: itself a noncompact symmetric space of rank |Φ|.
- Σ_{Φ} = the root subsystem generated by Φ , $\Sigma_{\Phi}^+ = \Sigma_{\Phi} \cap \Sigma^+$. Then Φ is its set of simple roots.

< ロ > < 同 > < 三 > < 三 > 、

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- $M_{\Phi} \cdot o = B_{\Phi}$ is a **boundary component** of *M*: itself a noncompact symmetric space of rank $|\Phi|$.
- Σ_{Φ} = the root subsystem generated by Φ , $\Sigma_{\Phi}^+ = \Sigma_{\Phi} \cap \Sigma^+$. Then Φ is its set of simple roots.
- ► Σ_{Φ} is the restricted root system of B_{Φ} , and the subalgebra \mathfrak{g}'_{Φ} generated by $\mathfrak{g}_{\alpha}, \alpha \in \Sigma_{\Phi}$, is the isometry Lie algebra of B_{Φ} .

< ロ > < 同 > < 三 > < 三 > 、

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- M_Φ · o = B_Φ is a **boundary component** of M: itself a noncompact symmetric space of rank |Φ|.
- Σ_{Φ} = the root subsystem generated by Φ , $\Sigma_{\Phi}^+ = \Sigma_{\Phi} \cap \Sigma^+$. Then Φ is its set of simple roots.
- ► Σ_{Φ} is the restricted root system of B_{Φ} , and the subalgebra \mathfrak{g}'_{Φ} generated by $\mathfrak{g}_{\alpha}, \alpha \in \Sigma_{\Phi}$, is the isometry Lie algebra of B_{Φ} .
- Define $\Delta_{\Phi} = \Sigma^+ \setminus \Sigma_{\Phi}^+$ and $\mathfrak{n}_{\Phi} = \bigoplus_{\lambda \in \Delta_{\Phi}} \mathfrak{g}_{\lambda} \subseteq \mathfrak{n}$.

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- $M_{\Phi} \cdot o = B_{\Phi}$ is a **boundary component** of *M*: itself a noncompact symmetric space of rank $|\Phi|$.
- Σ_{Φ} = the root subsystem generated by Φ , $\Sigma_{\Phi}^+ = \Sigma_{\Phi} \cap \Sigma^+$. Then Φ is its set of simple roots.
- ► Σ_{Φ} is the restricted root system of B_{Φ} , and the subalgebra \mathfrak{g}'_{Φ} generated by $\mathfrak{g}_{\alpha}, \alpha \in \Sigma_{\Phi}$, is the isometry Lie algebra of B_{Φ} .
- Define $\Delta_{\Phi} = \Sigma^+ \setminus \Sigma_{\Phi}^+$ and $\mathfrak{n}_{\Phi} = \bigoplus_{\lambda \in \Delta_{\Phi}} \mathfrak{g}_{\lambda} \subseteq \mathfrak{n}$.
- The canonical extension:

- ▶ Pick $\Phi \subseteq \Lambda$, define $\mathfrak{a}_{\Phi} = \bigcap_{\alpha \in \Phi} \operatorname{Ker}(\alpha) \subseteq \mathfrak{a}$, $\mathfrak{l}_{\Phi} = Z_{\mathfrak{g}}(\mathfrak{a}_{\Phi})$, $\mathfrak{m}_{\Phi} = \mathfrak{l}_{\Phi} \ominus \mathfrak{a}_{\Phi}$, and $M_{\Phi} \subseteq G$ the subgroup corresponding to \mathfrak{m}_{Φ} .
- M_Φ · o = B_Φ is a **boundary component** of M: itself a noncompact symmetric space of rank |Φ|.
- Σ_{Φ} = the root subsystem generated by Φ , $\Sigma_{\Phi}^+ = \Sigma_{\Phi} \cap \Sigma^+$. Then Φ is its set of simple roots.
- ► Σ_{Φ} is the restricted root system of B_{Φ} , and the subalgebra \mathfrak{g}'_{Φ} generated by $\mathfrak{g}_{\alpha}, \alpha \in \Sigma_{\Phi}$, is the isometry Lie algebra of B_{Φ} .
- Define $\Delta_{\Phi} = \Sigma^+ \setminus \Sigma_{\Phi}^+$ and $\mathfrak{n}_{\Phi} = \bigoplus_{\lambda \in \Delta_{\Phi}} \mathfrak{g}_{\lambda} \subseteq \mathfrak{n}$.
- The canonical extension:

$$\begin{aligned} & \mathcal{H}_{\Phi} \subseteq I^{0}(B_{\Phi}) \ \rightsquigarrow \ \mathfrak{h}_{\Phi} \subseteq \mathfrak{g}'_{\Phi} \ \rightsquigarrow \ \mathfrak{h}_{\Phi}^{\Lambda} = \mathfrak{h}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi} \subseteq \mathfrak{g} \ \rightsquigarrow \ \boldsymbol{H}_{\Phi}^{\Lambda} \subseteq G \\ & \mathcal{H}_{\Phi} \frown B_{\Phi} \text{ is } \mathsf{C1} \ \Rightarrow \ \mathcal{H}_{\Phi}^{\Lambda} \frown M \text{ is } \mathsf{C1}. \end{aligned}$$

Ivan Solonenko (Stuttgart)

2

・ロト ・四ト ・ヨト ・ヨト

Suppose $\Phi = \Lambda \setminus \{\alpha_i\}$. In this case, we write *j* instead of Φ in subscripts.

イロト イヨト イヨト イヨト

Suppose $\Phi = \Lambda \setminus \{\alpha_i\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

イロト イヨト イヨト イヨト

Suppose $\Phi = \Lambda \setminus \{\alpha_i\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

9/15

Suppose $\Phi = \Lambda \setminus \{\alpha_i\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

1 admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .

9/15

< ロ > < 同 > < 三 > < 三 > 、

Suppose $\Phi = \Lambda \setminus {\alpha_j}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

- ▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v
 - **1** admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .
 - **2** protohomogeneous if $N_{\kappa_i}(v)$ acts transitively on the unit sphere in v.

Suppose $\Phi = \Lambda \setminus \{\alpha_j\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

1 admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .

- **2** protohomogeneous if $N_{\kappa_i}(v)$ acts transitively on the unit sphere in v.
- If v satisfies these conditions and dim(v) ≥ 2, then N⁰_{Mj}(n_{j,v})N_{j,v} acts on M with cohomogeneity 1 and a singular orbit.

9/15

Suppose $\Phi = \Lambda \setminus \{\alpha_j\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

1 admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .

- **2** protohomogeneous if $N_{\kappa_i}(v)$ acts transitively on the unit sphere in v.
- If v satisfies these conditions and dim(v) ≥ 2, then N⁰_{Mj}(n_{j,v})N_{j,v} acts on M with cohomogeneity 1 and a singular orbit.

Nilpotent construction problem

Given M, find all such subspaces v for all j. (May assume M is irreducible.)

Suppose $\Phi = \Lambda \setminus \{\alpha_j\}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

1 admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .

- **2** protohomogeneous if $N_{\kappa_i}(v)$ acts transitively on the unit sphere in v.
- If v satisfies these conditions and dim(v) ≥ 2, then N⁰_{Mj}(n_{j,v})N_{j,v} acts on M with cohomogeneity 1 and a singular orbit.

Nilpotent construction problem

Given M, find all such subspaces v for all j. (May assume M is irreducible.)

▶ Has been solved in rank 1, some spaces of rank 2, and $SL(n, \mathbb{R})/SO(n)$.

Suppose $\Phi = \Lambda \setminus {\alpha_j}$. In this case, we write *j* instead of Φ in subscripts.

•
$$\Delta_j = \sqcup_{\nu \ge 1} \Delta_j^{\nu}$$
, where $\Delta_j^{\nu} = \left\{ \nu \alpha_j + \sum_{i \ne j} m_i \alpha_i \right\} \rightsquigarrow \mathfrak{n}_j^{\nu} = \bigoplus_{\lambda \in \Delta_j^{\nu}} \mathfrak{g}_{\lambda},$
 $\mathfrak{n}_j = \bigoplus_{\nu \ge 1} \mathfrak{n}_j^{\nu}.$

▶ Write $K_j = M_j \cap K$. Given a subspace $v \subseteq n_j^1$, define a subalgebra $n_{j,v} = n_j \ominus v$ and $N_{j,v} \subseteq N$ the corresponding subgroup. We call v

1 admissible if $N_{M_i}(n_{j,v})$ acts transitively on B_j .

- **2** protohomogeneous if $N_{\kappa_i}(v)$ acts transitively on the unit sphere in v.
- If v satisfies these conditions and dim(v) ≥ 2, then N⁰_{Mj}(n_{j,v})N_{j,v} acts on M with cohomogeneity 1 and a singular orbit.

Nilpotent construction problem

Given M, find all such subspaces v for all j. (May assume M is irreducible.)

▶ Has been solved in rank 1, some spaces of rank 2, and $SL(n, \mathbb{R})/SO(n)$.

▶ Has yielded new actions only on $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$, $G_2^2/SO(4)$, and $G_2(\mathbb{C})/G_2$.

Classification of C1-actions

2

イロト イヨト イヨト イヨト

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

イロト イヨト イヨト イヨト

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically.

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically. Then H acts with cohomogeneity one if and only if it its action is orbit-equivalent to one of the following:

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically. Then H acts with cohomogeneity one if and only if it its action is orbit-equivalent to one of the following:

1 The action of H_{ℓ} for some one-dimensional linear subspace $\ell \subseteq \mathfrak{a}$.

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically. Then H acts with cohomogeneity one if and only if it its action is orbit-equivalent to one of the following:

- **1** The action of H_{ℓ} for some one-dimensional linear subspace $\ell \subseteq \mathfrak{a}$.
- **2** The action of H_{α_i} for some simple root $\alpha_i \in \Lambda$.

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically. Then H acts with cohomogeneity one if and only if it its action is orbit-equivalent to one of the following:

- **1** The action of H_{ℓ} for some one-dimensional linear subspace $\ell \subseteq \mathfrak{a}$.
- **2** The action of H_{α_i} for some simple root $\alpha_i \in \Lambda$.
- **3** The canonical extension of a C1-action with a totally geodesic singular orbit on an irreducible boundary component B_{Φ} of M.

Theorem (S., Sanmartín-Lopez; '24)

The nilpotent construction produces no new actions other than the known examples or their canonical extensions.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

Let M = G/K be a symmetric space of noncompact type and H a connected Lie group acting on M properly and isometrically. Then H acts with cohomogeneity one if and only if it its action is orbit-equivalent to one of the following:

- **1** The action of H_{ℓ} for some one-dimensional linear subspace $\ell \subseteq \mathfrak{a}$.
- **2** The action of H_{α_i} for some simple root $\alpha_i \in \Lambda$.
- **3** The canonical extension of a C1-action with a totally geodesic singular orbit on an irreducible boundary component B_{Φ} of M.
- If the canonical extension of a diagonal C1-action on a reducible rank-2 boundary component B_{Φ} of M whose de Rham factors are homothetic.

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

5 A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:

(日) (同) (日) (日)

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

- **5** A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:
 - **1** M_i is homothetic to
 - $Gr^{*}(k, \mathbb{C}^{2k+n})$ $(k, n \ge 1)$,
 - $SO(2n+1, \mathbb{H})/U(2n+1) (n \ge 1)$, or
 - $E_6^{-14}/\text{Spin}(10)\text{U}(1)$,

and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{C}H^{n+1}$ (resp., $\mathbb{C}H^3$ or $\mathbb{C}H^5$) of M_i .

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

- **5** A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:
 - **1** M_i is homothetic to
 - $Gr^*(k, \mathbb{C}^{2k+n})$ $(k, n \ge 1)$,
 - $SO(2n+1, \mathbb{H})/U(2n+1) (n \ge 1)$, or
 - $E_6^{-14}/\text{Spin}(10)\text{U}(1)$,

and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{C}H^{n+1}$ (resp., $\mathbb{C}H^3$ or $\mathbb{C}H^5$) of M_i .

2 $M_i \simeq \operatorname{Gr}^*(k, \mathbb{H}^{2k+n})(k, n \ge 1)$ and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{H}H^{n+1}$ of M_i .

(日)
Main theorem

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

- **5** A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:
 - **1** M_i is homothetic to
 - $Gr^*(k, \mathbb{C}^{2k+n})$ $(k, n \ge 1)$,
 - $SO(2n+1, \mathbb{H})/U(2n+1) (n \ge 1)$, or

•
$$E_6^{-14}/\text{Spin}(10)\text{U}(1)$$
,

and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{C}H^{n+1}$ (resp., $\mathbb{C}H^3$ or $\mathbb{C}H^5$) of M_i .

- **2** $M_i \simeq \text{Gr}^*(k, \mathbb{H}^{2k+n})$ $(k, n \ge 1)$ and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{H}H^{n+1}$ of M_i .
- **3** $M_i \simeq \mathbb{O}H^2$ and $H_i \curvearrowright M_i$ is a NC action.

Main theorem

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

- **5** A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:
 - **1** M_i is homothetic to
 - $Gr^*(k, \mathbb{C}^{2k+n})$ $(k, n \ge 1)$,
 - $SO(2n+1, \mathbb{H})/U(2n+1) (n \ge 1)$, or

•
$$E_6^{-14}/\text{Spin}(10)\text{U}(1)$$
,

and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{C}H^{n+1}$ (resp., $\mathbb{C}H^3$ or $\mathbb{C}H^5$) of M_i .

2 $M_i \simeq \text{Gr}^*(k, \mathbb{H}^{2k+n})$ $(k, n \ge 1)$ and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{H}H^{n+1}$ of M_i .

3
$$M_i \simeq \mathbb{O}H^2$$
 and $H_i \curvearrowright M_i$ is a NC action.

4 $M_i \simeq G_2^2/SO(4)$ and $H_i \curvearrowright M_i$ is the NC action.

Main theorem

Theorem (Berndt, Tamaru, Brück, Díaz-Ramos, Domínguez-Vázquez, Otero, Rodríguez-Vázquez, S., Sanmartín-Lopez; '01-'24)

- **5** A decomposable action $H_i \times \prod_{j \neq i} G_j \curvearrowright M_i \times \prod_{j \neq i} M_j = M$, where the de Rham factor M_i and the action $H_i \curvearrowright M_i$ are one the following:
 - **1** M_i is homothetic to
 - $Gr^*(k, \mathbb{C}^{2k+n})$ $(k, n \ge 1)$,
 - $SO(2n+1, \mathbb{H})/U(2n+1) (n \ge 1)$, or
 - $E_6^{-14}/\text{Spin}(10)\text{U}(1)$,

and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{C}H^{n+1}$ (resp., $\mathbb{C}H^3$ or $\mathbb{C}H^5$) of M_i .

- **2** $M_i \simeq \text{Gr}^*(k, \mathbb{H}^{2k+n})$ $(k, n \ge 1)$ and $H_i \curvearrowright M_i$ is the canonical extensions of a NC action from the boundary component $\mathbb{H}H^{n+1}$ of M_i .
- **3** $M_i \simeq \mathbb{O}H^2$ and $H_i \curvearrowright M_i$ is a NC action.
- 4 $M_i \simeq G_2^2/SO(4)$ and $H_i \curvearrowright M_i$ is the NC action.
- **5** $M_i \simeq G_2(\mathbb{C})/G_2$ and $H_i \curvearrowright M_i$ is the NC action.

van	Solonen	(Stuttgart))
-----	---------	-------------	---

2

In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

Theorem (S., Sanmartín-Lopez; '24)

12/15

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

Theorem (S., Sanmartín-Lopez; '24)

Let M = G/K be a symmetric space of noncompact type and $H \subseteq G$ a Lie subgroup that acts transitively on M.

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

Theorem (S., Sanmartín-Lopez; '24)

Let M = G/K be a symmetric space of noncompact type and $H \subseteq G$ a Lie subgroup that acts transitively on M. Then there exists

1 an Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

Theorem (S., Sanmartín-Lopez; '24)

Let M = G/K be a symmetric space of noncompact type and $H \subseteq G$ a Lie subgroup that acts transitively on M. Then there exists

- **1** an Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ and
- **2** a maximal abelian subspace $\mathfrak{t}_0 \subseteq \mathfrak{k}_0$

- In the NC, the admissibility condition on v has to do with transitive actions on noncompact symmetric spaces.
- Onishchik ('66) classified transitive isometric actions on irreducible compact symmetric spaces.
- In the noncompact case, there are infinitely many such actions so no classification result is known.

Theorem (S., Sanmartín-Lopez; '24)

Let M = G/K be a symmetric space of noncompact type and $H \subseteq G$ a Lie subgroup that acts transitively on M. Then there exists

- **1** an Iwasawa decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ and
- **2** a maximal abelian subspace $\mathfrak{t}_0 \subseteq \mathfrak{k}_0$

such that \mathfrak{h} contains a solvable subalgebra of the form $V \oplus \mathfrak{n}$, where $V \subseteq \mathfrak{t}_0 \oplus \mathfrak{a}$ projects surjectively onto \mathfrak{a} .

2

イロト イヨト イヨト イヨト

"Corollary"

In the NC, we may assume
$$\mathfrak{v} = \bigoplus_{\lambda \in \Delta_i^1} \mathfrak{v}_{\lambda}$$
, where $\mathfrak{v}_{\lambda} = \mathfrak{v} \cap \mathfrak{g}_{\lambda}$.

2

"Corollary"

In the NC, we may assume
$$\mathfrak{v} = \bigoplus_{\lambda \in \Delta_i^1} \mathfrak{v}_{\lambda}$$
, where $\mathfrak{v}_{\lambda} = \mathfrak{v} \cap \mathfrak{g}_{\lambda}$.

"Corollary"

There cannot be two roots in Δ_i^1 of the same height.

イロト イヨト イヨト イヨト

"Corollary"

In the NC, we may assume
$$\mathfrak{v} = \bigoplus_{\lambda \in \Delta_i^1} \mathfrak{v}_{\lambda}$$
, where $\mathfrak{v}_{\lambda} = \mathfrak{v} \cap \mathfrak{g}_{\lambda}$.

"Corollary"

There cannot be two roots in Δ_i^1 of the same height.

Corollary

 α_i cannot have more than one neighbor in the Dynkin diagram of Σ .

Ivan Solonenko (Stuttgart)	Classification of C1-actions

2

We assume that v has this form and M is irreducible of rk(M) > 1 from now on.

We assume that v has this form and M is irreducible of rk(M) > 1 from now on.

Proposition

For the NC action not to be a canonical extension or have a totally geodesic singular orbit, we must have $v = n_j^1$.

< □ > < 同 > < 回 > < 回 >

We assume that v has this form and M is irreducible of rk(M) > 1 from now on.

Proposition

For the NC action not to be a canonical extension or have a totally geodesic singular orbit, we must have $v = n_j^1$.

Proposition

Let $\delta = \sum_{i=1}^{r} m_i \alpha_i$ be the highest root. For the singular orbit not to be totally geodesic, we must have $m_j \ge 3$.

We assume that v has this form and M is irreducible of rk(M) > 1 from now on.

Proposition

For the NC action not to be a canonical extension or have a totally geodesic singular orbit, we must have $v = n_j^1$.

Proposition

Let $\delta = \sum_{i=1}^{r} m_i \alpha_i$ be the highest root. For the singular orbit not to be totally geodesic, we must have $m_j \ge 3$.

The only root system satisfying these criteria is G_2 with j = 2, which leads to the two C1-actions on $G_2^2/SO(4)$ and $G_2(\mathbb{C})/G_2$, respectively.

$$m_1 = 2$$
 $m_2 = 3$

Thanks for your attention!

2

イロト イヨト イヨト イヨト