Conformal Lorentz geometry of quasi-umbilical timelike surfaces

Lorenzo Nicolodi

Universit`a di Parma

Symmetry and Shape, Celebrating E. García Río Santiago de Compostela, 23 - 27 September, 2024

(Joint with E. Musso and M. Pember)

Background and motivations

- ► Let $f: X^2 \to \mathbb{R}^{1,2}$ be a timelike immersion in Minkowski space.
- At umbilical points, II \propto I and $H^2 K = 0$.
- For timelike surfaces, $H^2 K$ can vanish also at nonumbilics. (For timelike surfaces the quantity $H^2 - K$ can take on any real value.)
- In this case, I and II must share a null direction and the shape operator A of f is non-diagonalizable over $\mathbb C$.
- \triangleright Following Clelland [2012], a timelike immersion f is called (totally) quasi-umbilical if A is is non-diagonalizable over $\mathbb C$.
- \blacktriangleright Equivalently, if at every point of X the trace-free part A^0 of the shape operator satisfies $\det(\mathcal{A}^0)=0$, with $\mathcal{A}^0\neq 0.$

Remark (Conformal invariance)

Since the quasi-umbilical property only depends on the conformal class of the induced Lorentz metric, we study it in the more appropriate context of conformal Lorentz geometry.

Related work

- \blacktriangleright J. Clelland [2012] classified quasi-umbilical surfaces in $\mathbb{R}^{1,2}$ as ruled surfaces whose rulings are all null lines and such that any null curve γ on the surface transversal to the rulings is nondegenerate, i.e., $\gamma' \wedge \gamma'' \neq 0$ at each point.
- \triangleright D. The [2012] investigated the conformal Lorentz geometry of timelike surfaces, including quasi-umbilical ones, which he called 2-parabolic, in connection with his study of the geometry of second-order Monge-Ampere equations.
- \triangleright Burstall–Musso–Pember [2022] proved that quasi-umbilical surfaces arise as one of the four classes of orthogonal surfaces of codimension 2 harmonic sphere congruences, which also include
	- \triangleright S-Willmore surfaces,
	- \triangleright CMC surfaces in 3-dimensional space forms,
	- \triangleright surfaces of constant lightcone mean curvature in 3-dim lightcones.

[Preliminaries and preparatory Material](#page-4-0)

[A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

[Preliminaries and preparatory Material](#page-4-0) [A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

The Einstein universe $\mathcal{E}^{1,2}$

Projective model

- ► For each nonzero $X \in \mathbb{R}^{2,3}$, let $[X]$ denote the ray of X .
- In Let $\mathcal{E}^{1,2}$ be the manifold of null rays of $\mathbb{R}^{2,3}$.
- Endow $\mathcal{E}^{1,2}$ with the Lorentz metric $g_{\mathcal{E}}$ induced from $\mathbb{R}^{2,3}$.
- \blacktriangleright $(\mathcal{E}^{1,2},[\mathcal{g}_{\mathcal{E}}])$ is a conformally flat Lorentz manifold, oriented and time-oriented. $({\mathcal{E}}^{1,2} \cong S^1 \times S^2)$
- \blacktriangleright $\mathcal{E}^{1,2}$ is a conformal compactification of Minkowski space $\mathbb{R}^{1,2}$.

Pseudo-metric model

► Writing $\mathbb{R}^{2,3} = \mathbb{V}_-^2 \oplus \mathbb{V}_+^3$, where \mathbb{V}_-^2 is negative definite and \mathbb{V}^3_+ is positive-definite, then the orientable, time-orientable submanifold $S^1_-\times S^2_+\subset\mathbb{R}^{2,3},$ with the induced Lorentzian structure, gives another model of the Einstein universe.

Other models for $\mathcal{E}^{1,2}$.

- \blacktriangleright as a symmetric R -space;
- as Grassmannian of oriented Lagrangian 2-planes of \mathbb{R}^4 .

[Preliminaries and preparatory Material](#page-4-0) [A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

The restricted conformal group of $\mathcal{E}^{1,2}$

- \blacktriangleright Let $\mathbb{C}_+^{\uparrow}(\mathcal{E}^{1,2})$ be the group of conformal transformations preserving orientation and time-orientation.
- $\blacktriangleright \ \mathbb{C}_+^{\uparrow}(\mathcal{E}^{1,2}) \cong \mathrm{O}_+^{\uparrow}(2,3)$, the identity component of $\mathrm{O}(2,3)$, the pseudo-orthogonal group of $\mathbb{R}^{2,3}$ with scalar product $\langle X, Y \rangle = -(X^0Y^4 + X^4Y^0) - X^1Y^1 + X^2Y^2 + X^3Y^3 = {^t}XhY, h = (h_{ij}).$
- \blacktriangleright $\bigcirc_+^{\uparrow} (2,3)$ is identified with the space of ligthcone frames, i.e., the bases (F_0,\ldots,F_4) of $\mathbb{R}^{2,3}$, such that $\langle F_i,F_j\rangle=h_{ij}.$
- ► $O_+^{\uparrow}(2,3)$ acts transitively on $\mathcal{E}^{1,2}$ by $A \cdot [X] = [AX], \forall [X] \in \mathcal{E}^{1,2}$.
- ► The map $\pi_{\mathcal{E}}: \mathrm{O}_{+}^{\uparrow}(2,3) \ni A \mapsto [A_0] \in \mathcal{E}^{1,2}$ makes $\mathrm{O}_{+}^{\uparrow}(2,3)$ into a principal bundle with structure group

 $H_0 = \{A \in O_+^{\uparrow}(2,3) \mid A \cdot [E_0] = [E_0]\} = O_+^{\uparrow}(2,3)_{[E_0]}.$

$\mathcal{E}^{1,2}$ as symmetric R -space

- ► As a homogeneous space, $\mathcal{E}^{1,2} \cong \mathrm{O}_+^{\uparrow}(2,3)/H_0$.
- Eet $\mathfrak{h}_0 \leq \mathfrak{o}(2,3)$ be the Lie algebra of H_0 .
- ► The polar \mathfrak{h}_0^{\perp} is an abelian subalgebra of $\mathfrak{o}(2,3)$.
- In Thus \mathfrak{h}_0 is a parabolic subalgebra of $o(2, 3)$ of height 1.
- $\blacktriangleright \forall [V] \in \mathcal{E}^{1,2}$, $\mathfrak{h}_{[V]}$ is a height 1 parabolic subalgebra of $\mathfrak{o}(2,3)$.
- ► The adjoint representation of $\mathrm{O}_+^{\uparrow}(2,3)$ induces a transitive action of $O_+^{\uparrow}(2,3)$ on the orbit $\mathcal O$ through $\mathfrak h_0=\mathfrak h_{[E_0]}.$
- \blacktriangleright Accordingly, the orbit $\mathcal O$ acted upon transitively by $\mathrm{O}_+^{\uparrow}(2,3)$ is a symmetric R-space [Tits, Gindikin, Kaneyuki, Nagano, ...].
- \blacktriangleright The map $\mathcal{E}^{1,2} \ni [V] \mapsto \mathfrak{h}_{[V]} \in \mathcal{O}$ is an equivariant smooth diffeomorphism.
- \blacktriangleright This describes $\mathcal{E}^{1,2}$ as the symmetric R-space given by the conjugacy class $\mathcal O$ of height 1 parabolic subalgebras of $o(2, 3)$.

[Preliminaries and preparatory Material](#page-4-0)

[A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

The AdS chambers and the AdS walls of $\mathcal{E}^{1,2}$

- ► Let $S \in \mathbb{R}^{2,3}$ be a unit spacelike vector: $\langle S, S \rangle = 1$.
- \blacktriangleright The positive and negative anti-de Sitter (AdS) chambers of $\mathcal{E}^{1,2}$ determined by S are the open sets

 $\mathcal{A}_{\mathcal{S}}^{\varepsilon}:=\{[V]\in\mathcal{E}^{1,2} \mid \mathsf{sgn}\langle V,S\rangle=\varepsilon\}\subset\mathcal{E}^{1,2} \quad (\varepsilon=\pm 1).$

 \blacktriangleright The common boundary of the AdS chambers $\mathcal{A}_{\mathcal{S}}^{\varepsilon}$

 $\partial \mathcal{A}_\mathcal{S} = \{[V] \in \mathcal{E}^{1,2} \mid \langle V, \mathcal{S} \rangle = 0\} \cong \mathcal{S}^1 \times \mathcal{S}^1,$

is called the AdS wall determined by S .

- The AdS walls are totally umbilical timelike tori of $\mathcal{E}^{1,2}$.
- \triangleright Contracting $dV_{\mathcal{E}}$ with S defines a volume form on $\partial A_{\mathcal{S}}$.
- ► $\mathcal{E}^{1,2}$ is the disjoint union of the $\mathcal{A}_{\mathcal{S}}^{\varepsilon}$ and $\partial \mathcal{A}_{\mathcal{S}}$.

The neutral space form $S^{2,2}$

 \triangleright Accordingly, the smooth hyperquadric

 $\mathcal{S}^{2,2} = \{ \mathcal{S} \in \mathbb{R}^{2,3} \mid \langle \mathcal{S}, \mathcal{S} \rangle = 1 \} \cong \mathbb{R}^2 \times \mathcal{S}^2 \subset \mathbb{R}^{2,3}$

can be viewed as the set of all (oriented) AdS walls of $\mathcal{E}^{1,2}$, i.e., the set of all (oriented) totally umbilical timelike tori of $\mathcal{E}^{1,2}$

- \blacktriangleright $S^{2,2}$ inherits from $\mathbb{R}^{2,3}$ a (2, 2) neutral pseudo-metric g_S .
- ► $O_+^{\uparrow}(2,3)$ acts transitively on $S^{2,2}$ on the left preserving g_S .
- ► $S^{2,2} \cong O_+^{\uparrow}(2,3)/O_+^{\uparrow}(2,2)$.

Remark

Consider as a model for AdS_3 the hyperquadric $\mathcal{A} \subset \mathbb{R}^4$, $A: -(x^1)^2 - (x^2)^2 + (x^3)^2 + (x^4)^2 = -1$, with the Lorentzian structure induced by the neutral scalar product $-x^1y^1 - x^1y^2 + x^3y^3 + x^4y^4$. The AdS chambers $\mathcal{A}_{\mathsf{S}}^{\varepsilon}$ are conformal embeddings of AdS_{3} in $\mathcal{E}^{1,2}.$

Visualization of the Einstein universe

- ► Let $T \subset \mathbb{R}^3$ be the open solid torus obtained by rotating around the z-axis the (open) unit xz-plane disk at $(2, 0, 0)$.
- \triangleright The points of Γ can be suitably parametrized: $P(r, \phi, \theta) = ((r \cos \phi + 2) \cos \theta, (r \cos \phi + 2) \sin \theta, r \sin \phi)$
- \blacktriangleright There are smooth diffeomorphisms $\mathcal{T}_{\varepsilon}: {\rm T} \to \mathcal{A}_{\mathsf{S}}^{\varepsilon}$, which extend to a diffeomorphism $\partial T \cong \partial \mathcal{A}_S$ between the boundary ∂ T of T and the AdS wall ∂ As.
- ► Thus, $\mathcal{E}^{1,2}$ is identified with the disjoint union $\overline{\mathrm{T}}\times\{-1,1\}$ of two copies of the closed solid torus modulo the equivalence relation: $\begin{cases} [(P, \epsilon)]_{\sim} = \{ (P, \epsilon) \}, & P \in \text{Int}(T) \} \{ (P, \epsilon) \} & (P, \epsilon) \end{cases}$ $[(P, \epsilon)]_{\sim} = \{(P, 1)(P, -1)\}, \quad P \in \partial \mathbf{T}$
- ► We will use the "toroidal" projections $\mathcal{T}_\varepsilon^{-1}:\overline{\mathcal{A}}^\varepsilon_\mathcal{S}\to \overline{\mathrm{T}}$ to visualize the geometry of curves and surfaces in $\mathcal{E}^{1,2}.$

Visualization of the Einstein universe

Figure: The negative (left) and positive (rigth) AdS chambers. The Einstein universe $\mathcal{E}^{1,2}$ can be thought of as two closed solid tori of revolution of \mathbb{R}^3 glued along the boundary. The AdS wall, i.e., the surface obtained by identifying the two boundaries, is a totally umbilical torus of signature $(1,1)$. The yellow singular surface is a lightcone of $\mathcal{E}^{1,2}$.

[Preliminaries and preparatory Material](#page-4-0)

[A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

Moving frames and timelike immersions

- I et $f: X \to \mathcal{E}^{1,2}$ be a timelike immersion.
- In Let $\pi_0 : \mathcal{F}_0(f) \to X$, where

 $\mathcal{F}_0(f) = \{ (x, F) \in X \times \mathrm{O}_+^{\uparrow}(2,3) \mid f(x) = \pi_0(F) = [F_0] \},$

be the pullback on X of the H_0 -bundle $\pi_{\mathcal{E}}: \mathrm{O}_+^{\uparrow}(2,3) \to \mathcal{E}^{1,2}.$

- A conformal frame field along f is a local section of $\mathcal{F}_0(f)$, i.e., a smooth map $F:U\to \mathrm{O}_{+}^{\uparrow}(2,3)$, such that $f=\pi_{0}\circ F.$
- ► For any F we put $\phi = F^*\varphi = (\phi^i_j)$. Any other frame on U is given by $\tilde{F} = FR$, where $R : U \rightarrow H_0$ is a smooth map.
- \blacktriangleright If $\tilde{\phi} = (\tilde{F})^* \varphi$, then $\tilde{\phi} = R^{-1} \phi R + R^{-1} dR$.

Second order frames and the Conformal Gauss Map

- A conformal frame field $F: U \to O^{\uparrow}_{+}(2,3)$ is of second order if $\phi_0^3 = 0$, $\phi_0^1 \wedge \phi_0^2 > 0$, $\phi_1^3 \wedge \phi_0^2 + \phi_2^3 \wedge \phi_0^1 = 0$.
- If F is of second order, any other on U is given by $\tilde{F} = FR$. for a smooth map $R: U \rightarrow H_2$, where H_2 is a subgroup of H_0 .
- \triangleright The totality of second order frames along f gives rise to an H_2 -bundle $\pi_2 : \mathcal{F}_2(f) \to X$, $\mathcal{F}_2(f) = \{ (x, F) \in X \times \mathrm{O}_{+}^{\uparrow}(2,3) \},$ being \overline{F} any local second order frame field along \overline{f} .

Proposition

Second order frame fields exist near any point of X . The second order frame fields along f are the local sections of a reduced subbundle $\pi_2 : \mathcal{F}_2(f) \to X$ of π_0 , with structure group H_2 .

Remark (Definition)

Since $\mathcal{F}_2(f) \ni (x, F) \mapsto F_3 \in S^{2,2}$ is constant along the fibers of $\pi_2:\mathcal{F}_2(f)\to X$, there exists a unique smooth map $\mathcal{N}_f:X\to S^{2,2}$, the conformal Gauss map of f, such that $F_3 = \mathcal{N}_f \circ \pi_2 = \pi_2^*(\mathcal{N}_f)$.

The Conformal Gauss Map

Remark

For $x\in\mathsf{X}$, the AdS wall $\partial\mathcal{A}_{\mathcal{N}_f(x)}$ is characterized by having second order analytic contact with f at $f(x)$ and is called the central torus of the surface at $f(x)$. The order of contact is strictly bigger than two if and only if x is an umbilical point of f.

Remark
\nOn
$$
\mathcal{F}_2(f)
$$
, $\begin{cases} \phi_1^3 = h_{11}\phi_0^1 + h_{12}\phi_0^2 \\ \phi_2^3 = h_{12}\phi_0^1 + h_{22}\phi_0^2 \end{cases}$, with $h_{11} = h_{22}$, and we compute
\n
$$
(\star) \quad \langle dF_3, dF_3 \rangle = (h_{11}^2 - h_{12}^2) \left(-(\phi_0^1)^2 + (\phi_0^2)^2 \right).
$$

Since $\mathcal{N}_f = F_3$ on $\mathcal{F}_2(f)$ and $-(\phi_0^1)^2 + (\phi_0^2)^2$ defines the induced conformal Lorentz structure on X, it follows from (\star) that the conformal Gauss map $\mathcal{N}_f:X\to S^{2,2}$ is weakly conformal.

[Preliminaries and preparatory Material](#page-4-0)

[A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

Isothermic maps

- \triangleright Classically, a Riemannian surface is called isothermic if there is an isothermal coordinate system for which the shape operator is diagonalized (a conformally invariant condition).
- \blacktriangleright The classical theory of isothermic surfaces in \mathbb{R}^3 (in the conformal 3-sphere S^3) continues to hold when the conformal 3-sphere S^3 is replaced by an arbitrary symmetric R -space [Burstall, Donaldson, Pedit, Pinkall, 2011].
- \blacktriangleright A Lorentzian surface in $\mathbb{R}^{1,2}$ (in the Einstein universe $\mathcal{E}^{1,2})$ is isothermic if there is an isothermal coordinate system for which the shape operator has one of the 3 possible canonical forms for a self-adjoint operator on a Lorentz vector space.

Isothermic maps in $\mathcal{E}^{1,2}$

- \blacktriangleright Consider $\mathcal{E}^{1,2}$ as a symmetric R-space, i.e., as the orbit $\mathcal O$ of the height 1 parabolic subalgebra $\mathfrak{h}_0 \leq \mathfrak{o}(2,3)$.
- ► Let $f : X \to \mathcal{E}^{1,2} \cong \mathcal{O}$ be a timelike immersion. Consider the vector bundle

$$
\mathfrak{H}_f^{\perp} = \left\{ (x, \mathbf{h}) \in X \times \mathfrak{o}(2,3) \mid \mathbf{h} \in \mathfrak{h}_x^{\perp} \right\},\
$$

where, $\forall x \in X$, \mathfrak{h}_x is the Lie algebra of the stabilizer of $f(x)$.

Definition

A timelike immersion $f:X\to \mathcal{E}^{1,2}$ is isothermic if there is a nonzero closed 1-form $\delta \in \Omega^1(\mathcal{X})\otimes \mathfrak{H}^{\perp}_f.$ Thus δ takes values in $\mathfrak{H}^{\perp}_{\mathsf{f}}$ and is closed when viewed as an $\mathfrak{o}(2,3)$ -valued form. The 1-form δ is called an infinitesimal deformation of f

Isothermic maps and deformation

The notion of isothermic map is related to the deformation pbm of submanifolds in homogeneous spaces [Cartan, Griffiths, Jensen,...].

- ► Two maps $f : M \to G/H$, $\hat{f} : \hat{M} \to G/H$ are kth order deformations of each other (with unfixed parameters) if there exist a diffeomorphism $\Phi : M \to \hat{M}$, the change of parameters, and a nonconstant map $\Delta : M \to G$, the deformation, such that f and $\Delta(p) \cdot \hat{f} \circ \Phi$ have kth order contact at p, for every $p \in M$.
- If $M = \hat{M}$ and $\Phi = \text{Id}_M$, then f and \hat{f} are kth order deformations of each other (with fixed parameters).

Proposition (Burstall et al)

If G/H is a symmetric R-space and $f : M \to G/H$ is isothermic, then f has second order deformations.

Isothermic maps and deformation

- In our case, let $f : X \to \mathcal{E}^{1,2}$ be an isothermic timelike immersion, let $p : \tilde{X} \to X$ be a simply connected covering of X , and δ be an infinitesimal deformation of f.
- ► Since \mathfrak{h}_x^{\perp} is abelian, δ satisfies the Maurer–Cartan equation. So, there exists a smooth map $\Delta: \tilde{X} \rightarrow \mathrm{O}_{+}^{\uparrow}(2,3)$, such that $\Delta^{-1}d\Delta=p^*\delta$ Then,

 $\hat{f}: \tilde{X} \ni \tilde{\mathsf{x}} \longmapsto \Delta(\tilde{\mathsf{x}}) \cdot \overline{f}|_{\boldsymbol{\rho}(\tilde{\mathsf{x}})} \in \mathcal{E}^{1,2}$

is a second order deformation (with fixed parameters) of $f \circ p$.

 \triangleright The deformability of f depends on the existence of an infinitesimal deformation originating a map $\Delta: \tilde{X} \rightarrow \mathrm{O}_{+}^{\uparrow}(2,3)$ which is invariant under the deck transformations of p .

[Preliminaries and preparatory Material](#page-4-0) [A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$ [The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$ [The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

Quasi-umbilical timelike immersions

Definition

If $f: X \to \mathcal{E}^{1,2}$ is a timelike immersion, $\langle d\mathcal{N}_f, d\mathcal{N}_f \rangle = \varrho_f f^*(g_{\mathcal{E}})$, for a smooth real-valued function ϱ_f . A point $x\in X$ is called

- a 2-elliptic point if $\rho_f(x) < 0$;
- **a** 2-hyperbolic point if $\rho_f(x) > 0$;
- **a** quasi-umbilical point (or a 2-parabolic point) if $\rho_f(x) = 0$, with $f(x) \wedge d\mathcal{N}_f|_x \neq 0$;
- ► an umbilical point if $f(x) \wedge d\mathcal{N}_f\vert_x = 0$. If x is umbilical, $\rho_f(x) = 0.$

If all points of X are of a fixed type, f is said to be, respectively, elliptic, hyperbolic, quasi-umbilical, and totally umbilical.

- \triangleright x is quasi-umbilical \iff the shape operator of f at x is non-diagonalizable over C.
- A timelike immersion f is totally umbilical \iff $f(X)$ is an open set of an AdS wall (a totally umbilical timelike torus).

Regular quasi-umbilical immersions

Lemma

Let $f: X \to \mathcal{E}^{1,2}$ be a quasi-umbilical immersion. Then

- \blacktriangleright The conformal Gauss map \mathcal{N}_f has rank 1.
- \blacktriangleright Im d \mathcal{N}_f is a null line bundle such that Im d $\mathcal{N}_f = \operatorname{Ker} d\mathcal{N}_f$. $(d \mathcal{N}_f|_{\mathsf{x}}$ is a nilpotent self-adjoint endomorphism of $T_{\mathsf{x}}{\mathsf{X}}$.)

Definition

- \triangleright A quasi-umbilical immersion f is regular if the leaf space Λ of the distribution $\operatorname{Ker} d\mathcal{N}_f$ is a connected 1-dim manifold.
- \blacktriangleright Thus, \mathcal{N}_f factors on Λ through a submersion $\pi_\Lambda : X \to \Lambda$ with connected fibers and a null curve $\Gamma: \Lambda \to S^{2,2}$, i.e. $\mathcal{N}_f = \Gamma \circ \pi$
- \blacktriangleright $\Gamma : \Lambda \to S^{2,2}$ is an immersed curve, the directrix curve of f.
- \triangleright Locally, every quasi-umbilical immersion is regular.

General properties of quasi-umbilical immersions

- Theorem (Musso, -, Pember 2024)
- Let $f: X \to \mathcal{E}^{1,2}$ be a quasi-umbilical immersion.
	- 1. The conformal Gauss map $\mathcal{N}_f:X\to S^{2,2}$ of f is harmonic.
	- 2. If f is regular, then f is isothermic and its infinitesimal deformations depend on one arbitrary function in one variable.
	- 3. In particular, a quasi-umbilical immersion is locally isothermic.

The dual map of a quasi-umbilical surface

Let $f: X \to \mathcal{E}^{1,2}$ be quasi-umbilical immersion. A second order frame field along f is said to be adapted if $h_{11} = h_{22} = \pm 1$, $\phi_4^3 = \phi_0^0 - 2\phi_1^2 = 0$, $(\phi_4^1 + \phi_4^2) \wedge (\phi_0^1 + \phi_0^2) = 0$. **Proposition**

Adapted frame fields exist near any point of X. If F , \hat{F} are adapted frame fields, then $\hat{F} = F R$, where $R : U \rightarrow H_*$ is a smooth map into an abelian 1-dimensional closed subgroup H_* of H_0 . The adapted frame fields along f are the local sections of a reduced subbundle $\mathcal{F}_*(f)$ of $\mathcal{F}_2(f)$, with structure group H_* .

Remark (Definition)

The map $\mathcal{F}_*(f) \ni (x, F) \mapsto [F_4] \in \mathcal{E}^{1,2}$ is constant along the fibers. It descends to a map $f^{\sharp}: X \to \mathcal{E}^{1,2}$, called the dual of f.

Remark

 f^{\sharp} is the second envelope of the 1-parameter family of central tori of f , i.e., $f^{\sharp}(x)\in \partial \mathcal{A}|_{x},\,d f^{\sharp}|_{x}(\mathcal{T}_{x}X)\subset \mathcal{T}_{f^{\sharp}(x)}(\partial \mathcal{A}|_{x}),\,\forall\,x\in X,$ where $\partial A|_{x}$ is the AdS wall of $\mathcal{N}_f(x)$.

[Preliminaries and preparatory Material](#page-4-0) [A model of conformal Lorentz geometry:](#page-4-0) $\mathcal{E}^{1,2}$

[The restricted conformal group of](#page-6-0) $\mathcal{E}^{1,2}$

[The neutral space form](#page-9-0) $S^{2,2}$

[Conformal geometry of timelike immersions](#page-14-0) [Moving frames and timelike immersions](#page-14-0) [Isothermic timelike immersions and deformation](#page-18-0)

[Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical timelike immersions](#page-23-0) [Quasi-umbilical immersions and null curves in](#page-28-0) $S^{2,2}$

Exceptional and general quasi-umbilical surfaces

Definition

Let $f: X \to \mathcal{E}^{1,2}$ be quasi-umbilical and let f^\sharp be its dual map:

- ► f is called exceptional if the form $\langle d\mathcal{N}_f, df^\sharp \rangle \equiv 0;$
- If is called general if the form $\langle d\mathcal{N}_f, df^\sharp \rangle \neq 0$.

Let Λ be a connected 1-dimensional manifold and ζ be a nonzero 1-form (line element) on $\Lambda.$ For a smooth map $G:\Lambda\to \mathbb{R}^k$, let G' , G'' , etc., denote the derivatives with respect to ζ .

Definition

An immersed curve Γ : $\Lambda \rightarrow \mathcal{S}^{2,2}$ is called biisotropic if $\langle \Gamma', \Gamma' \rangle = \langle \Gamma'', \Gamma'' \rangle = 0$ and $(\Gamma' \wedge \Gamma'')|_{\tau} \neq 0$, for every $\tau \in \Lambda$.

Proposition

Let $f: X \to \mathcal{E}^{1,2}$ be a regular quasi-umbilical immersion. Then, f is exceptional \iff its directrix curve Γ is biisotropic.

Lemma

Let $\Gamma: \Lambda \to S^{2,2}$ be biisotropic. There exist an null 2-dim subspace $\mathbb{V}_\mathsf{\Gamma} \subset \mathbb{R}^{2,3}$ and a 3-dim subspace $\mathbb{W}_\mathsf{\Gamma} \subset \mathbb{R}^{2,3}$, such that

 $[(\Gamma' \wedge \Gamma'')|_{\tau}] = \mathbb{V}_{\Gamma} \subset \mathbb{W}_{\Gamma} = [(\Gamma \wedge \Gamma' \wedge \Gamma'')|_{\tau}], \quad \forall \tau \in \Lambda.$

- \blacktriangleright $S^{2,2} \cap \mathbb{W}_{\Gamma}$, the set of unit vectors in \mathbb{W}_{Γ} , is the union of two disjoint affine (oriented) planes parallel to V_{Γ} .
- **I** Thus $\Gamma(\Lambda)$ is contained in either plane, say V_{Γ} , and Γ can be viewed as an affine plane curve in V_{Γ} .
- Eet dA be a positive element of $\Lambda^2(\mathbb V_\Gamma)$.
- Since $\Gamma' \wedge \Gamma'' \neq 0$, there exists a (unique) affine line element of Γ , such that $dA(\Gamma', \Gamma'') = 1$.
- Fixing the affine element, $\Gamma \wedge \Gamma' \wedge \Gamma''$ and $\Gamma' \wedge \Gamma''$ are constant.
- Then, $\Gamma''' = h\Gamma'$, where $h : \Lambda \to \mathbb{R}$ is a smooth function, the affine curvature of Γ relative to dA.

Definition

A lightcone basis $\mathfrak{C} = (C_0, \ldots, C_4)$ is calibrated to Γ and ζ if $\Gamma' \wedge \Gamma'' = C_4 \wedge (C_1 - C_2), \quad \Gamma \wedge \Gamma' \wedge \Gamma'' = C_3 \wedge C_4 \wedge (C_1 - C_2).$

- If C is calibrated, $\Gamma = C_3 + x(C_1 C_2) + yC_4$, where (x, y) : $\Lambda \to \mathbb{R}^2$ is an affine plane curve, the affine reduction of Γ relative to C.
- Elettting $v = \sqrt{(x')^2 + (y')^2}$ and $\mu = xy' x'y$, the vector field

$$
R = -x'C_0 + \frac{1}{2}y'(C_1 + C_2) + \frac{\mu^2}{2v^2}y'(C_1 - C_2) + \mu C_3 - \frac{\mu^2}{2v^2}x'C_4
$$

is an null normal vector field along Γ relative to \mathfrak{C} .

- By construction, $\langle R, R \rangle = \langle R, \Gamma \rangle = \langle R, \Gamma' \rangle = 0$, $\langle R, \Gamma'' \rangle = 1$.
- ► The null plane $[(R \wedge \Gamma')]_{\tau}$ is independent of the choice of R.

- \triangleright The normal tube of Γ is the circle bundle over Λ given by $\pi_{\mathsf{\Lambda}}: \mathbb{T}_{\mathsf{\Gamma}} = \big\{ (\tau, [V]) \in \mathsf{\Lambda} \times \mathcal{E}^{1,2} \mid V \in [(R \land \mathsf{\Gamma}')|_{\tau} \big\} \longrightarrow \mathsf{\Lambda}.$
- ► If R is a null normal vector, the elements of the fiber π_{Λ}^{-1} $\bar{\Lambda}^{-1}(\tau)$ are described by $[V(\tau,\theta)] = [\cos(\theta)R|_{\tau} + \frac{1}{2}\sin(\theta)\Gamma'|_{\tau}], \ \theta \in \mathbb{R}/2\pi\mathbb{Z}$.
- \blacktriangleright \mathbb{T}_{F} can be identified with $\mathsf{\Lambda} \times S^1$ by the mapping

 $\Lambda \times \mathcal{S}^1 \ni (\tau, \theta) \mapsto (\tau, [\mathcal{V}(\tau, \theta)]) \in \mathbb{T}_\mathsf{\Gamma}.$

- \triangleright Consider $C_+ = \{(\tau, [V(\tau, \pm \pi/2)]) | \tau \in \Lambda\} \subset \mathbb{T}_\Gamma$, and call them the umbilical curves of T_r .
- \triangleright The complement of $C_+ \cup C_-$ are the two connected open sets

 $\mathbb{T}_{\mathsf{\Gamma}}^{\pm}=\{(\tau,[\mathsf{V}(\tau,\theta)])\mid\tau\in\mathsf{\Lambda},\,\mathsf{sgn}(\cos\theta)=\pm1\},$

called the positive and negative parabolic components of \mathbb{T}_{Γ} .

Definition Call $f_{\Gamma}:\mathbb{T}_{\Gamma}\rightarrow\mathcal{E}^{1,2},$ $(\tau,[V])\longmapsto[V]$, the tautological map of $\Gamma.$ Denote by f_{Γ}^{\pm} $\frac{c\pm}{\Gamma}$ the restrictions of f_{Γ} to $\mathbb{T}^{\pm}_{\Gamma}$ $\frac{1}{\Gamma}$, respectively.

- Theorem (Musso, -, Pember 2024) Let $\Gamma : \Lambda \to S^{2,2}$ be a biisotropic curve.
	- The tautological map f_{Γ} of Γ is a timelike immersion with conformal Gauss map $\Gamma \circ \pi_{\Lambda}$.
	- \triangleright The umbilic locus of f_{Γ} is the disjoint union of the two null curves $\mathrm{C}_{\pm}\subset \mathbb{T}_{\mathsf{F}}$ that disconnect \mathbb{T}_{F} into the open sets $\mathbb{T}_{\mathsf{F}}^{\pm}$ Γ .
	- \blacktriangleright The restrictions f_{Γ}^{\pm} $\frac{c\pm}{\Gamma}$ of f_{Γ} to $\mathbb{T}^{\pm}_{\Gamma}$ $^{\pm}_{\mathsf{\Gamma}}$ are exceptional quasi-umbilical immersions.

Conversely, if $f : X \to \mathcal{E}^{1,2}$ is a regular quasi-umbilical immersion of exceptional type and $\Gamma: \Lambda \to S^{2,2}$ is its directrix curve, then $f(X)$ is contained in either $f_{\Gamma}(\mathbb{T}_{\Gamma}^{+})$ $^{+}_{\Gamma}$) or $f_{\Gamma}(\mathbb{T}_{\Gamma}^{-})$ Γ).

Figure: The positive (left) and negative (right) parabolic cylinders $f_{\Gamma}^{\pm}(\mathbb{T}_{\Gamma}^+)$ and $f_{\Gamma}^-(\mathbb{T}_{\Gamma}^-)$ and the central torus of $f_{\Gamma}(\mathbb{T}_{\Gamma})$ for the tube \mathbb{T}_{Γ} along the biisotropic "circle" $\Gamma = E_3 + \cos(s)(E_1 - E_2) + \sin(s)E_4$. On the left, the positive part of the central torus; on the right, its negative part. The red and blue curves are the positive and negative parts of the line of tangency of the osculating torus with $f_{\Gamma}(\mathbb{T}_{\Gamma})$. The yellow line is the umbilical line.

General quasi-umbilical surfaces

- **EXTE** The directrix curve Γ of a general quasi-umbilical immersion is a generic null curve, i.e., Γ" can be either timelike or spacelike.
- **For a generic Γ** we introduce a preferred parameter (proper time) and construct a canonical moving frame along the curve, from which one determines the two fundamental differential invariants of Γ : the left and right curvatures κ_{λ} and κ_{o} .
- \blacktriangleright The canonical moving frame is used to build two normal tubes \mathbb{T}_{λ} and \mathbb{T}_{o} along Γ , the left and right normal tubes of Γ , naturally identified by a diffeomorphism J^{ϱ}_{λ} $\frac{10}{\lambda}$.
- \triangleright The left and right tubes intersect along two null curves C_{+} , whose complementary set has two connected components, $\mathbb{T}_{\lambda}^{\pm}$ λ and $\mathbb{T}_{\varrho}^{\pm}$, the parabolic components of the normal tubes.
- **Fig.** The canonical projections $\pi_{\lambda}: \mathbb{T}_{\lambda} \to \Lambda$ and $\pi_{\rho}: \mathbb{T}_{\rho} \to \Lambda$ make \mathbb{T}_{λ} and \mathbb{T}_{o} into circle bundles over Λ . We then construct two canonical maps, $f_\lambda: \mathbb{T}_\lambda \to \mathcal{E}^{1,2}$ and $f_\varrho: \mathbb{T}_\varrho \to \mathcal{E}^{1,2}$, the left and right tautological maps of Γ.

General quasi-umbilical surfaces

Theorem (Musso, -, Pember 2024)

Let $\Gamma: \Lambda \to S^{2,2}$ be a generic null curve.

- \triangleright The tautological map f_{λ} is a timelike immersion with umbilic locus $C_+ \cup C_-$ and conformal Gauss map $\mathcal{N}_{f_1} = \Gamma \circ \pi_{\lambda}$. The restrictions f_λ^\pm $\frac{c\pm}{\lambda}$ of f_λ to the parabolic components \mathbb{T}^\pm_λ $\frac{1}{\lambda}$ of the left normal tube \mathbb{T}_{λ} are quasi-umbilical immersions of general type with dual maps (f_{λ}^{\pm}) $(f_{\lambda}^{\pm})^{\sharp} = f_{\varrho}^{\pm} \circ J_{\lambda}^{\varrho}$ λ .
- A similar statement holds for λ replaced by ρ .

Conversely, let $f : X \to \mathcal{E}^{1,2}$ be a regular quasi-umbilical immersion of general type. Then $f(X)$ is contained in either $f_{\lambda}(\mathbb{T}^{+}_{\lambda})$ $_{\lambda}^{+}$) or $f_{\lambda}(\mathbb{T}^-_{\lambda})$ $_{\lambda}^{-})$, where f_{λ} is the left tautological immersion originated by the directrix curve $Γ$ of f .

Further developments and comments

- \triangleright Study the Exterior Differential System defining second order deformable timelike surfaces in $\mathcal{E}^{1,2}.$
- \triangleright Are deformable timelike surfaces necessarily isothermic?
- \triangleright Are quasi-umbilical surfaces singular solutions of such an EDS?
- \triangleright Study elliptic and hyperbolic timelike surfaces.