Conformal Lorentz geometry of quasi-umbilical timelike surfaces

Lorenzo Nicolodi

Università di Parma

Symmetry and Shape, Celebrating E. García Río Santiago de Compostela, 23 - 27 September, 2024

(Joint with E. Musso and M. Pember)

Background and motivations

- Let $f: X^2 \to \mathbb{R}^{1,2}$ be a timelike immersion in Minkowski space.
- At umbilical points, $II \propto I$ and $H^2 K = 0$.
- ► For timelike surfaces, H² K can vanish also at nonumbilics. (For timelike surfaces the quantity H² - K can take on any real value.)
- In this case, I and II must share a null direction and the shape operator A of f is non-diagonalizable over ℂ.
- ► Following Clelland [2012], a timelike immersion f is called (totally) quasi-umbilical if A is is non-diagonalizable over C.
- Equivalently, if at every point of X the trace-free part A⁰ of the shape operator satisfies det(A⁰) = 0, with A⁰ ≠ 0.

Remark (Conformal invariance)

Since the quasi-umbilical property only depends on the conformal class of the induced Lorentz metric, we study it in the more appropriate context of conformal Lorentz geometry.

Related work

- ► J. Clelland [2012] classified quasi-umbilical surfaces in ℝ^{1,2} as ruled surfaces whose rulings are all null lines and such that any null curve γ on the surface transversal to the rulings is nondegenerate, i.e., γ' ∧ γ" ≠ 0 at each point.
- D. The [2012] investigated the conformal Lorentz geometry of timelike surfaces, including quasi-umbilical ones, which he called 2-parabolic, in connection with his study of the geometry of second-order Monge-Ampere equations.
- Burstall–Musso–Pember [2022] proved that quasi-umbilical surfaces arise as one of the four classes of orthogonal surfaces of codimension 2 harmonic sphere congruences, which also include
 - ► S-Willmore surfaces,
 - CMC surfaces in 3-dimensional space forms,
 - surfaces of constant lightcone mean curvature in 3-dim lightcones.

Preliminaries and preparatory Material

A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in $S^{2,2}$

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in S^{2,2}

The Einstein universe $\mathcal{E}^{1,2}$

Projective model

- For each nonzero $X \in \mathbb{R}^{2,3}$, let [X] denote the ray of X.
- Let $\mathcal{E}^{1,2}$ be the manifold of null rays of $\mathbb{R}^{2,3}$.
- Endow $\mathcal{E}^{1,2}$ with the Lorentz metric $g_{\mathcal{E}}$ induced from $\mathbb{R}^{2,3}$.
- (E^{1,2}, [g_E]) is a conformally flat Lorentz manifold, oriented and time-oriented. (E^{1,2} ≅ S¹ × S²)
- $\mathcal{E}^{1,2}$ is a conformal compactification of Minkowski space $\mathbb{R}^{1,2}$.

Pseudo-metric model

Writing ℝ^{2,3} = V²₋ ⊕ V³₊, where V²₋ is negative definite and V³₊ is positive-definite, then the orientable, time-orientable submanifold S¹₋ × S²₊ ⊂ ℝ^{2,3}, with the induced Lorentzian structure, gives another model of the Einstein universe.

Other models for $\mathcal{E}^{1,2}$:

- as a symmetric *R*-space;
- ▶ as Grassmannian of oriented Lagrangian 2-planes of \mathbb{R}^4 .

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in S^{2,2}

The restricted conformal group of $\mathcal{E}^{1,2}$

- Let C[↑]₊(E^{1,2}) be the group of conformal transformations preserving orientation and time-orientation.
- ► $\mathbb{C}^{\uparrow}_{+}(\mathcal{E}^{1,2}) \cong \mathrm{O}^{\uparrow}_{+}(2,3)$, the identity component of $\mathrm{O}(2,3)$, the pseudo-orthogonal group of $\mathbb{R}^{2,3}$ with scalar product $\langle X, Y \rangle = -(X^0Y^4 + X^4Y^0) X^1Y^1 + X^2Y^2 + X^3Y^3 = {}^tXhY$, $h = (h_{ij})$.
- ► $O^{\uparrow}_{+}(2,3)$ is identified with the space of ligthcone frames, i.e., the bases (F_0, \ldots, F_4) of $\mathbb{R}^{2,3}$, such that $\langle F_i, F_j \rangle = h_{ij}$.
- $O^{\uparrow}_{+}(2,3)$ acts transitively on $\mathcal{E}^{1,2}$ by $A \cdot [X] = [AX], \forall [X] \in \mathcal{E}^{1,2}$.
- The map π_ε : O[↑]₊(2,3) ∋ A ↦ [A₀] ∈ ε^{1,2} makes O[↑]₊(2,3) into a principal bundle with structure group

 $H_0 = \{A \in O^{\uparrow}_+(2,3) \mid A \cdot [E_0] = [E_0]\} = O^{\uparrow}_+(2,3)_{[E_0]}.$

$\mathcal{E}^{1,2}$ as symmetric *R*-space

- As a homogeneous space, $\mathcal{E}^{1,2} \cong O^{\uparrow}_{+}(2,3)/H_0$.
- Let $\mathfrak{h}_0 \leq \mathfrak{o}(2,3)$ be the Lie algebra of H_0 .
- The polar \mathfrak{h}_0^{\perp} is an abelian subalgebra of $\mathfrak{o}(2,3)$.
- Thus \mathfrak{h}_0 is a parabolic subalgebra of $\mathfrak{o}(2,3)$ of height 1.
- ► \forall [V] $\in \mathcal{E}^{1,2}$, $\mathfrak{h}_{[V]}$ is a height 1 parabolic subalgebra of $\mathfrak{o}(2,3)$.
- The adjoint representation of O[↑]₊(2,3) induces a transitive action of O[↑]₊(2,3) on the orbit O through h₀ = h_[E₀].
- ► Accordingly, the orbit O acted upon transitively by O[↑]₊(2,3) is a symmetric *R*-space [Tits, Gindikin, Kaneyuki, Nagano, ...].
- The map *E*^{1,2} ∋ [*V*] → *h*_[*V*] ∈ *O* is an equivariant smooth diffeomorphism.
- ► This describes E^{1,2} as the symmetric R-space given by the conjugacy class O of height 1 parabolic subalgebras of o(2, 3).

Preliminaries and preparatory Material

A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformatior

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in S^{2,2}

The AdS chambers and the AdS walls of $\mathcal{E}^{1,2}$

• Let $S \in \mathbb{R}^{2,3}$ be a unit spacelike vector: $\langle S, S \rangle = 1$.

► The positive and negative anti-de Sitter (AdS) chambers of *E*^{1,2} determined by *S* are the open sets

 $\mathcal{A}_{S}^{\varepsilon} := \{ [V] \in \mathcal{E}^{1,2} \mid \operatorname{sgn} \langle V, S \rangle = \varepsilon \} \subset \mathcal{E}^{1,2} \quad (\varepsilon = \pm 1).$

► The common boundary of the AdS chambers A^ε_S

 $\partial \mathcal{A}_{\mathcal{S}} = \{ [V] \in \mathcal{E}^{1,2} \mid \langle V, \mathcal{S} \rangle = 0 \} \cong \mathcal{S}^1 \times \mathcal{S}^1,$

is called the AdS wall determined by S.

- The AdS walls are totally umbilical timelike tori of $\mathcal{E}^{1,2}$.
- Contracting $dV_{\mathcal{E}}$ with *S* defines a volume form on $\partial \mathcal{A}_S$.
- $\mathcal{E}^{1,2}$ is the disjoint union of the $\mathcal{A}_{S}^{\varepsilon}$ and $\partial \mathcal{A}_{S}$.

The neutral space form $S^{2,2}$

Accordingly, the smooth hyperquadric

 $S^{2,2} = \{S \in \mathbb{R}^{2,3} \mid \langle S, S
angle = 1\} \cong \mathbb{R}^2 imes S^2 \subset \mathbb{R}^{2,3}$

can be viewed as the set of all (oriented) AdS walls of $\mathcal{E}^{1,2}$, i.e., the set of all (oriented) totally umbilical timelike tori of $\mathcal{E}^{1,2}$.

- ► $S^{2,2}$ inherits from $\mathbb{R}^{2,3}$ a (2,2) neutral pseudo-metric g_S .
- $O^{\uparrow}_{+}(2,3)$ acts transitively on $S^{2,2}$ on the left preserving g_{S} .
- $S^{2,2} \cong O^{\uparrow}_{+}(2,3)/O^{\uparrow}_{+}(2,2).$

Remark

Consider as a model for AdS_3 the hyperquadric $\mathcal{A} \subset \mathbb{R}^4$, $\mathcal{A} : -(x^1)^2 - (x^2)^2 + (x^3)^2 + (x^4)^2 = -1$, with the Lorentzian structure induced by the neutral scalar product $-x^1y^1 - x^1y^2 + x^3y^3 + x^4y^4$. The AdS chambers $\mathcal{A}_S^{\varepsilon}$ are conformal embeddings of AdS_3 in $\mathcal{E}^{1,2}$.

Visualization of the Einstein universe

- Let T ⊂ ℝ³ be the open solid torus obtained by rotating around the z-axis the (open) unit xz-plane disk at (2,0,0).
- ► The points of T can be suitably parametrized: $P(r, \phi, \theta) = ((r \cos \phi + 2) \cos \theta, (r \cos \phi + 2) \sin \theta, r \sin \phi)$
- There are smooth diffeomorphisms $\mathcal{T}_{\varepsilon} : T \to \mathcal{A}_{S}^{\varepsilon}$, which extend to a diffeomorphism $\partial T \cong \partial \mathcal{A}_{S}$ between the boundary ∂T of T and the AdS wall $\partial \mathcal{A}_{S}$.
- Thus, E^{1,2} is identified with the disjoint union T × {−1, 1} of two copies of the closed solid torus modulo the equivalence relation: {[(P, ε)]_∼ = {(P, ε)}, P ∈ Int(T) [(P, ε)]_∼ = {(P, 1)(P, −1)}, P ∈ ∂T
- We will use the "toroidal" projections T_ε⁻¹ : A_S^ε → T to visualize the geometry of curves and surfaces in E^{1,2}.

Visualization of the Einstein universe

Figure: The negative (left) and positive (rigth) AdS chambers. The Einstein universe $\mathcal{E}^{1,2}$ can be thought of as two closed solid tori of revolution of \mathbb{R}^3 glued along the boundary. The AdS wall, i.e., the surface obtained by identifying the two boundaries, is a totally umbilical torus of signature (1, 1). The yellow singular surface is a lightcone of $\mathcal{E}^{1,2}$.

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformati

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions

Quasi-umbilical immersions and null curves in $S^{2,2}$

Moving frames and timelike immersions

- Let $f : X \to \mathcal{E}^{1,2}$ be a timelike immersion.
- Let $\pi_0 : \mathcal{F}_0(f) \to X$, where

 $\mathcal{F}_0(f) = \{(x, F) \in X \times \mathrm{O}^{\uparrow}_+(2, 3) \mid f(x) = \pi_0(F) = [F_0]\},\$

be the pullback on X of the H_0 -bundle $\pi_{\mathcal{E}} : O^{\uparrow}_+(2,3) \to \mathcal{E}^{1,2}$.

- A conformal frame field along f is a local section of F₀(f), i.e., a smooth map F : U → O[↑]₊(2,3), such that f = π₀ ∘ F.
- ▶ For any F we put $\phi = F^* \varphi = (\phi_j^i)$. Any other frame on U is given by $\tilde{F} = FR$, where $R : U \to H_0$ is a smooth map.
- If $\tilde{\phi} = (\tilde{F})^* \varphi$, then $\tilde{\phi} = R^{-1} \phi R + R^{-1} dR$.

Second order frames and the Conformal Gauss Map

- ► A conformal frame field $F: U \to O^{\uparrow}_{+}(2,3)$ is of second order if $\phi_0^3 = 0, \quad \phi_0^1 \land \phi_0^2 > 0, \quad \phi_1^3 \land \phi_0^2 + \phi_2^3 \land \phi_0^1 = 0.$
- ▶ If F is of second order, any other on U is given by $\tilde{F} = FR$, for a smooth map $R : U \to H_2$, where H_2 is a subgroup of H_0 .
- ▶ The totality of second order frames along f gives rise to an H_2 -bundle $\pi_2 : \mathcal{F}_2(f) \to X$, $\mathcal{F}_2(f) = \{(x, F) \in X \times O^{\uparrow}_+(2, 3)\}$, being F any local second order frame field along f.

Proposition

Second order frame fields exist near any point of X. The second order frame fields along f are the local sections of a reduced subbundle $\pi_2 : \mathcal{F}_2(f) \to X$ of π_0 , with structure group H_2 .

Remark (Definition)

Since $\mathcal{F}_2(f) \ni (x, F) \mapsto F_3 \in S^{2,2}$ is constant along the fibers of $\pi_2 : \mathcal{F}_2(f) \to X$, there exists a unique smooth map $\mathcal{N}_f : X \to S^{2,2}$, the conformal Gauss map of f, such that $F_3 = \mathcal{N}_f \circ \pi_2 = \pi_2^*(\mathcal{N}_f)$.

The Conformal Gauss Map

Remark

For $x \in X$, the AdS wall $\partial A_{N_f(x)}$ is characterized by having second order analytic contact with f at f(x) and is called the central torus of the surface at f(x). The order of contact is strictly bigger than two if and only if x is an umbilical point of f.

Remark On $\mathcal{F}_{2}(f)$, $\begin{cases} \phi_{1}^{3} = h_{11}\phi_{0}^{1} + h_{12}\phi_{0}^{2} \\ \phi_{2}^{3} = h_{12}\phi_{0}^{1} + h_{22}\phi_{0}^{2} \end{cases}$, with $h_{11} = h_{22}$, and we compute (*) $\langle dF_{3}, dF_{3} \rangle = (h_{11}^{2} - h_{12}^{2}) \left(-(\phi_{0}^{1})^{2} + (\phi_{0}^{2})^{2} \right).$

Since $\mathcal{N}_f = F_3$ on $\mathcal{F}_2(f)$ and $-(\phi_0^1)^2 + (\phi_0^2)^2$ defines the induced conformal Lorentz structure on X, it follows from (\star) that the conformal Gauss map $\mathcal{N}_f : X \to S^{2,2}$ is weakly conformal.

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in S^{2,2}

Isothermic maps

- Classically, a Riemannian surface is called isothermic if there is an isothermal coordinate system for which the shape operator is diagonalized (a conformally invariant condition).
- ► The classical theory of isothermic surfaces in ℝ³ (in the conformal 3-sphere S³) continues to hold when the conformal 3-sphere S³ is replaced by an arbitrary symmetric *R*-space [Burstall, Donaldson, Pedit, Pinkall, 2011].
- ► A Lorentzian surface in R^{1,2} (in the Einstein universe E^{1,2}) is isothermic if there is an isothermal coordinate system for which the shape operator has one of the 3 possible canonical forms for a self-adjoint operator on a Lorentz vector space.

Isothermic maps in $\mathcal{E}^{1,2}$

- Consider E^{1,2} as a symmetric *R*-space, i.e., as the orbit O of the height 1 parabolic subalgebra h₀ ≤ o(2,3).
- Let f : X → E^{1,2} ≅ O be a timelike immersion. Consider the vector bundle

$$\mathfrak{H}_{f}^{\perp} = \left\{ (x, \mathbf{h}) \in X \times \mathfrak{o}(2, 3) \mid \mathbf{h} \in \mathfrak{h}_{x}^{\perp}
ight\},$$

where, $\forall x \in X$, \mathfrak{h}_x is the Lie algebra of the stabilizer of f(x).

Definition

A timelike immersion $f: X \to \mathcal{E}^{1,2}$ is isothermic if there is a nonzero closed 1-form $\delta \in \Omega^1(X) \otimes \mathfrak{H}_f^{\perp}$. Thus δ takes values in \mathfrak{H}_f^{\perp} and is closed when viewed as an $\mathfrak{o}(2,3)$ -valued form. The 1-form δ is called an infinitesimal deformation of f.

Isothermic maps and deformation

The notion of isothermic map is related to the deformation pbm of submanifolds in homogeneous spaces [Cartan, Griffiths, Jensen,...].

- Two maps f : M → G/H, f̂ : M̂ → G/H are kth order deformations of each other (with unfixed parameters) if there exist a diffeomorphism Φ : M → M̂, the change of parameters, and a nonconstant map Δ : M → G, the deformation, such that f and Δ(p) · f̂ ∘ Φ have kth order contact at p, for every p ∈ M.
- If $M = \hat{M}$ and $\Phi = \text{Id}_M$, then f and \hat{f} are kth order deformations of each other (with fixed parameters).

Proposition (Burstall et al)

If G/H is a symmetric R-space and $f : M \to G/H$ is isothermic, then f has second order deformations.

Isothermic maps and deformation

- In our case, let f : X → E^{1,2} be an isothermic timelike immersion, let p : X̃ → X be a simply connected covering of X, and δ be an infinitesimal deformation of f.
- Since $\mathfrak{h}_{\chi}^{\perp}$ is abelian, δ satisfies the Maurer–Cartan equation. So, there exists a smooth map $\Delta : \tilde{X} \to \mathrm{O}_{+}^{\uparrow}(2,3)$, such that $\Delta^{-1}d\Delta = p^*\delta$. Then,

$$\hat{f}: ilde{X}
i ilde{x} \longmapsto \Delta(ilde{x}) \cdot f|_{p(ilde{x})} \in \mathcal{E}^{1,2}$$

is a second order deformation (with fixed parameters) of $f \circ p$.

The deformability of f depends on the existence of an infinitesimal deformation originating a map Δ : X̃ → O[↑]₊(2,3) which is invariant under the deck transformations of p.

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in $S^{2,2}$

Quasi-umbilical timelike immersions

Definition

If $f: X \to \mathcal{E}^{1,2}$ is a timelike immersion, $\langle d\mathcal{N}_f, d\mathcal{N}_f \rangle = \varrho_f f^*(g_{\mathcal{E}})$, for a smooth real-valued function ϱ_f . A point $x \in X$ is called

- a 2-elliptic point if $\rho_f(x) < 0$;
- a 2-hyperbolic point if $\rho_f(x) > 0$;
- ▶ a quasi-umbilical point (or a 2-parabolic point) if $\rho_f(x) = 0$, with $f(x) \wedge d\mathcal{N}_f|_x \neq 0$;
- ► an umbilical point if $f(x) \wedge d\mathcal{N}_f|_x = 0$. If x is umbilical, $\varrho_f(x) = 0$.

If all points of X are of a fixed type, f is said to be, respectively, elliptic, hyperbolic, quasi-umbilical, and totally umbilical.

- ➤ x is quasi-umbilical ⇔ the shape operator of f at x is non-diagonalizable over C.
- ► A timelike immersion f is totally umbilical ⇔ f(X) is an open set of an AdS wall (a totally umbilical timelike torus).

Regular quasi-umbilical immersions

Lemma

Let $f: X \to \mathcal{E}^{1,2}$ be a quasi-umbilical immersion. Then

- The conformal Gauss map \mathcal{N}_{f} has rank 1.
- Im $d\mathcal{N}_f$ is a null line bundle such that Im $d\mathcal{N}_f = \text{Ker } d\mathcal{N}_f$. $(d\mathcal{N}_f|_x$ is a nilpotent self-adjoint endomorphism of T_xX .)

Definition

- ► A quasi-umbilical immersion f is regular if the leaf space A of the distribution Ker dN_f is a connected 1-dim manifold.
- ► Thus, \mathcal{N}_f factors on Λ through a submersion $\pi_{\Lambda} : X \to \Lambda$ with connected fibers and a null curve $\Gamma : \Lambda \to S^{2,2}$, i.e. $\mathcal{N}_f = \Gamma \circ \pi$
- $\Gamma : \Lambda \to S^{2,2}$ is an immersed curve, the directrix curve of f.
- Locally, every quasi-umbilical immersion is regular.

General properties of quasi-umbilical immersions

- Theorem (Musso, -, Pember 2024)
- Let $f: X \to \mathcal{E}^{1,2}$ be a quasi-umbilical immersion.
 - 1. The conformal Gauss map $\mathcal{N}_f : X \to S^{2,2}$ of f is harmonic.
 - 2. If f is regular, then f is isothermic and its infinitesimal deformations depend on one arbitrary function in one variable.
 - 3. In particular, a quasi-umbilical immersion is locally isothermic.

The dual map of a quasi-umbilical surface

Let $f: X \to \mathcal{E}^{1,2}$ be quasi-umbilical immersion. A second order frame field along f is said to be adapted if $h_{11} = h_{22} = \pm 1$, $\phi_4^3 = \phi_0^0 - 2\phi_1^2 = 0$, $(\phi_4^1 + \phi_4^2) \wedge (\phi_0^1 + \phi_0^2) = 0$. Proposition

Adapted frame fields exist near any point of X. If F, \hat{F} are adapted frame fields, then $\hat{F} = F R$, where $R : U \to H_*$ is a smooth map into an abelian 1-dimensional closed subgroup H_* of H_0 . The adapted frame fields along f are the local sections of a reduced subbundle $\mathcal{F}_*(f)$ of $\mathcal{F}_2(f)$, with structure group H_* .

Remark (Definition)

The map $\mathcal{F}_*(f) \ni (x, F) \mapsto [F_4] \in \mathcal{E}^{1,2}$ is constant along the fibers. It descends to a map $f^{\sharp} : X \to \mathcal{E}^{1,2}$, called the dual of f.

Remark

 f^{\sharp} is the second envelope of the 1-parameter family of central tori of f, i.e., $f^{\sharp}(x) \in \partial \mathcal{A}|_{x}$, $df^{\sharp}|_{x}(T_{x}X) \subset T_{f^{\sharp}(x)}(\partial \mathcal{A}|_{x})$, $\forall x \in X$, where $\partial \mathcal{A}|_{x}$ is the AdS wall of $\mathcal{N}_{f}(x)$.

Preliminaries and preparatory Material A model of conformal Lorentz geometry: $\mathcal{E}^{1,2}$ The restricted conformal group of $\mathcal{E}^{1,2}$ The neutral space form $S^{2,2}$

Conformal geometry of timelike immersions Moving frames and timelike immersions Isothermic timelike immersions and deformation

Quasi-umbilical timelike immersions Quasi-umbilical timelike immersions Quasi-umbilical immersions and null curves in $S^{2,2}$

Exceptional and general quasi-umbilical surfaces

Definition

Let $f : X \to \mathcal{E}^{1,2}$ be quasi-umbilical and let f^{\sharp} be its dual map:

- *f* is called exceptional if the form $\langle d\mathcal{N}_f, df^{\sharp} \rangle \equiv 0$;
- *f* is called general if the form $\langle d\mathcal{N}_f, df^{\sharp} \rangle \neq 0$.

Let Λ be a connected 1-dimensional manifold and ζ be a nonzero 1-form (line element) on Λ . For a smooth map $G : \Lambda \to \mathbb{R}^k$, let G', G'', etc., denote the derivatives with respect to ζ .

Definition

An immersed curve $\Gamma : \Lambda \to S^{2,2}$ is called bijsotropic if $\langle \Gamma', \Gamma' \rangle = \langle \Gamma'', \Gamma'' \rangle = 0$ and $(\Gamma' \wedge \Gamma'')|_{\tau} \neq 0$, for every $\tau \in \Lambda$.

Proposition

Let $f : X \to \mathcal{E}^{1,2}$ be a regular quasi-umbilical immersion. Then, f is exceptional \iff its directrix curve Γ is biisotropic.

Lemma

Let $\Gamma : \Lambda \to S^{2,2}$ be biisotropic. There exist an null 2-dim subspace $\mathbb{V}_{\Gamma} \subset \mathbb{R}^{2,3}$ and a 3-dim subspace $\mathbb{W}_{\Gamma} \subset \mathbb{R}^{2,3}$, such that

 $[(\Gamma' \wedge \Gamma'')|_{\tau}] = \mathbb{V}_{\Gamma} \subset \mathbb{W}_{\Gamma} = [(\Gamma \wedge \Gamma' \wedge \Gamma'')|_{\tau}], \quad \forall \tau \in \Lambda.$

- S^{2,2} ∩ W_Γ, the set of unit vectors in W_Γ, is the union of two disjoint affine (oriented) planes parallel to V_Γ.
- ► Thus Γ(Λ) is contained in either plane, say V_Γ, and Γ can be viewed as an affine plane curve in V_Γ.
- Let dA be a positive element of $\Lambda^2(\mathbb{V}_{\Gamma})$.
- Since Γ' ∧ Γ" ≠ 0, there exists a (unique) affine line element of Γ, such that dA(Γ', Γ") = 1.
- Fixing the affine element, $\Gamma \wedge \Gamma' \wedge \Gamma''$ and $\Gamma' \wedge \Gamma''$ are constant.
- ► Then, $\Gamma''' = h\Gamma'$, where $h : \Lambda \to \mathbb{R}$ is a smooth function, the affine curvature of Γ relative to dA.

Definition

A lightcone basis $\mathfrak{C} = (C_0, \ldots, C_4)$ is calibrated to Γ and ζ if $\Gamma' \wedge \Gamma'' = C_4 \wedge (C_1 - C_2), \quad \Gamma \wedge \Gamma' \wedge \Gamma'' = C_3 \wedge C_4 \wedge (C_1 - C_2).$

- If 𝔅 is calibrated, Γ = C₃ + x(C₁ − C₂) + yC₄, where (x, y) : Λ → ℝ² is an affine plane curve, the affine reduction of Γ relative to 𝔅.
- Letting $v = \sqrt{(x')^2 + (y')^2}$ and $\mu = xy' x'y$, the vector field

$$\mathbf{R} = -x'C_0 + \frac{1}{2}y'(C_1 + C_2) + \frac{\mu^2}{2v^2}y'(C_1 - C_2) + \mu C_3 - \frac{\mu^2}{2v^2}x'\mathbf{C}_4$$

is an null normal vector field along Γ relative to C.

- ► By construction, $\langle \mathrm{R},\mathrm{R}\rangle = \langle \mathrm{R},\Gamma\rangle = \langle \mathrm{R},\Gamma'\rangle = 0$, $\langle \mathrm{R},\Gamma''\rangle = 1$.
- The null plane $[(\mathbf{R} \wedge \Gamma')]_{\tau}$ is independent of the choice of **R**.

- ► The normal tube of Γ is the circle bundle over Λ given by $\pi_{\Lambda} : \mathbb{T}_{\Gamma} = \{(\tau, [V]) \in \Lambda \times \mathcal{E}^{1,2} \mid V \in [(\mathbb{R} \land \Gamma')|_{\tau}\} \longrightarrow \Lambda.$
- ▶ If R is a null normal vector, the elements of the fiber $\pi_{\Lambda}^{-1}(\tau)$ are described by $[V(\tau, \theta)] = [\cos(\theta)R|_{\tau} + \frac{1}{2}\sin(\theta)\Gamma'|_{\tau}], \theta \in \mathbb{R}/2\pi\mathbb{Z}.$
- \mathbb{T}_{Γ} can be identified with $\Lambda \times S^1$ by the mapping

 $\Lambda \times S^1 \ni (\tau, \theta) \mapsto (\tau, [V(\tau, \theta)]) \in \mathbb{T}_{\Gamma}.$

- Consider C_± = {(τ, [V(τ, ±π/2)]) | τ ∈ Λ} ⊂ T_Γ, and call them the umbilical curves of T_Γ.
- ▶ The complement of $C_+ \cup C_-$ are the two connected open sets

 $\mathbb{T}_{\Gamma}^{\pm} = \{ (\tau, [V(\tau, \theta)]) \mid \tau \in \Lambda, \operatorname{sgn}(\cos \theta) = \pm 1 \},\$

called the positive and negative parabolic components of $\mathbb{T}_{\Gamma}.$

Definition Call $f_{\Gamma} : \mathbb{T}_{\Gamma} \to \mathcal{E}^{1,2}$, $(\tau, [V]) \longmapsto [V]$, the tautological map of Γ . Denote by f_{Γ}^{\pm} the restrictions of f_{Γ} to $\mathbb{T}_{\Gamma}^{\pm}$, respectively.

Theorem (Musso, -, Pember 2024) Let $\Gamma : \Lambda \to S^{2,2}$ be a bijsotropic curve.

- ► The tautological map f_{Γ} of Γ is a timelike immersion with conformal Gauss map $\Gamma \circ \pi_{\Lambda}$.
- The umbilic locus of f_Γ is the disjoint union of the two null curves C_± ⊂ T_Γ that disconnect T_Γ into the open sets T_Γ[±].
- ► The restrictions f[±]_Γ of f_Γ to T[±]_Γ are exceptional quasi-umbilical immersions.

Conversely, if $f : X \to \mathcal{E}^{1,2}$ is a regular quasi-umbilical immersion of exceptional type and $\Gamma : \Lambda \to S^{2,2}$ is its directrix curve, then f(X) is contained in either $f_{\Gamma}(\mathbb{T}_{\Gamma}^+)$ or $f_{\Gamma}(\mathbb{T}_{\Gamma}^-)$.

Figure: The positive (left) and negative (right) parabolic cylinders $f_{\Gamma}^+(\mathbb{T}_{\Gamma}^+)$ and $f_{\Gamma}^-(\mathbb{T}_{\Gamma}^-)$ and the central torus of $f_{\Gamma}(\mathbb{T}_{\Gamma})$ for the tube \mathbb{T}_{Γ} along the bisotropic "circle" $\Gamma = E_3 + \cos(s)(E_1 - E_2) + \sin(s)E_4$. On the left, the positive part of the central torus; on the right, its negative part. The red and blue curves are the positive and negative parts of the line of tangency of the osculating torus with $f_{\Gamma}(\mathbb{T}_{\Gamma})$. The yellow line is the umbilical line.

General quasi-umbilical surfaces

- The directrix curve Γ of a general quasi-umbilical immersion is a generic null curve, i.e., Γ" can be either timelike or spacelike.
- For a generic Γ we introduce a preferred parameter (proper time) and construct a canonical moving frame along the curve, from which one determines the two fundamental differential invariants of Γ: the left and right curvatures κ_λ and κ_ρ.
- The left and right tubes intersect along two null curves C_±, whose complementary set has two connected components, T[±]_λ and T[±]_ρ, the parabolic components of the normal tubes.
- The canonical projections π_λ : T_λ → Λ and π_ρ : T_ρ → Λ make T_λ and T_ρ into circle bundles over Λ. We then construct two canonical maps, f_λ : T_λ → E^{1,2} and f_ρ : T_ρ → E^{1,2}, the left and right tautological maps of Γ.

General quasi-umbilical surfaces

Theorem (Musso, -, Pember 2024)

Let $\Gamma : \Lambda \to S^{2,2}$ be a generic null curve.

- The tautological map f_λ is a timelike immersion with umbilic locus C₊ ∪ C_− and conformal Gauss map N_{f_λ} = Γ ∘ π_λ. The restrictions f[±]_λ of f_λ to the parabolic components T[±]_λ of the left normal tube T_λ are quasi-umbilical immersions of general type with dual maps (f[±]_λ)[#] = f[±]_ρ ∘ J^ρ_λ.
- A similar statement holds for λ replaced by ϱ .

Conversely, let $f : X \to \mathcal{E}^{1,2}$ be a regular quasi-umbilical immersion of general type. Then f(X) is contained in either $f_{\lambda}(\mathbb{T}^+_{\lambda})$ or $f_{\lambda}(\mathbb{T}^-_{\lambda})$, where f_{λ} is the left tautological immersion originated by the directrix curve Γ of f.

Further developments and comments

- ► Study the Exterior Differential System defining second order deformable timelike surfaces in *E*^{1,2}.
- Are deformable timelike surfaces necessarily isothermic?
- Are quasi-umbilical surfaces singular solutions of such an EDS?
- Study elliptic and hyperbolic timelike surfaces.