Geometric analysis of the Lorentzian distance function

Luis J. Alías 1

Departamento de Matemáticas Universidad de Murcia, Spain

Symmetry and shape 2024

Celebrating the 60th birthday of Prof. E. García Río Universidade de Santiago de Compostela, Spain Santiago de Compostela, September 23-57, 2024

¹Partially supported by MICIN/FEDER project PID2021-124157NB-I00, Spain, and Fundación Séneca project reference 21899/PI/22, Spain, and the second second

• The results I am going to introduce in this talk were obtained some years ago in collaboration with the following colleagues:

- The results I am going to introduce in this talk were obtained some years ago in collaboration with the following colleagues:
- * Ana Hurtado, from Universidad de Granada, and Vicente Palmer, from Universitat Jaume I, Castelló (Spain):

Geometric analysis of Lorentzian distance function on spacelike hypersurfaces, Transactions of the American Mathematical Society **362** (2010), 5083–5106.

- The results I am going to introduce in this talk were obtained some years ago in collaboration with the following colleagues:
- * Ana Hurtado, from Universidad de Granada, and Vicente Palmer, from Universitat Jaume I, Castelló (Spain):

Geometric analysis of Lorentzian distance function on spacelike hypersurfaces, Transactions of the American Mathematical Society **362** (2010), 5083–5106.

★ G. Pacelli Bessa and Jorge H.S. de Lira, from Universidade Federal do Ceará, Fortaleza (Brasil):

Geometric analysis of the Lorentzian distance function on trapped submanifolds, Classical and Quantum Gravity 33 (2016) 125007 (28 pp.).

- The results I am going to introduce in this talk were obtained some years ago in collaboration with the following colleagues:
- * Ana Hurtado, from Universidad de Granada, and Vicente Palmer, from Universitat Jaume I, Castelló (Spain):

Geometric analysis of Lorentzian distance function on spacelike hypersurfaces, Transactions of the American Mathematical Society **362** (2010), 5083–5106.

★ G. Pacelli Bessa and Jorge H.S. de Lira, from Universidade Federal do Ceará, Fortaleza (Brasil):

Geometric analysis of the Lorentzian distance function on trapped submanifolds, Classical and Quantum Gravity **33** (2016) 125007 (28 pp.).

• Our results where strongly based on a previous work by Erkekoglu, García-Río and Kupeli, where they established the basis for the comparison analysis of the (Lorentzian) Hessian and Laplacian operators of the Lorentzian distance function:

On level sets of Lorentzian distance function, General Relativity and Gravitation 35 (2003), 1597–1615.

• Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written $p \ll q$, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies p < q. As usual, $p \le q$ means that either p < q or p = q.

- Consider M^n an *n*-dimensional spacetime, that is, a time-oriented Lorentzian manifold of dimension $n \ge 2$.
- Let p, q be points in M. Using the standard terminology and notation from Lorentzian geometry, one says that q is in the chronological future of p, written p ≪ q, if there exists a future-directed timelike curve from p to q.
- Similarly, q is in the causal future of p, written p < q, if there exists a future-directed causal (i.e., nonspacelike) curve from p to q.
- Obviously, $p \ll q$ implies p < q. As usual, $p \le q$ means that either p < q or p = q.
- For a subset $S \subset M$, one defines the chronological future of S as

$$I^+(S) = \{q \in M : p \ll q \text{ for some } p \in S\},\$$

and the causal future of S as

$$J^+(S) = \{q \in M : p \leq q \text{ for some } p \in S\}.$$

Thus $S \cup I^+(S) \subset J^+(S)$.

In a dual way, *I*[−](*S*) = {*q* ∈ *M* : *q* ≪ *p* for some *p* ∈ *S*} and *J*[−](*S*) = {*q* ∈ *M* : *q* ≤ *p* for some *p* ∈ *S*} are the chronological past and causal past of *S*.

- In a dual way, *I*[−](*S*) = {*q* ∈ *M* : *q* ≪ *p* for some *p* ∈ *S*} and *J*[−](*S*) = {*q* ∈ *M* : *q* ≤ *p* for some *p* ∈ *S*} are the chronological past and causal past of *S*.
- In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

$$I^+(p) = \{q \in M : p \ll q\}, \text{ and } J^+(p) = \{q \in M : p \leq q\}.$$

- In a dual way, *I*[−](*S*) = {*q* ∈ *M* : *q* ≪ *p* for some *p* ∈ *S*} and *J*[−](*S*) = {*q* ∈ *M* : *q* ≤ *p* for some *p* ∈ *S*} are the chronological past and causal past of *S*.
- In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

$$I^+(p)=\{q\in M:p\ll q\}, \hspace{1em} ext{and} \hspace{1em} J^+(p)=\{q\in M:p\leq q\}.$$

 For instance, for a point p ∈ M in Minkowski space, I⁺(p) is just the future timecone of p,

$$I^+(p) = \{q \in \overline{M} \ : \langle q - p, q - p \rangle < 0 \text{ and } \langle q - p, e_{n+1} \rangle < 0 \},$$

and

$$J^+(p) = \overline{I^+(p)} = \{p\} \cup \{q: \langle q-p, q-p\rangle \leq 0 \text{ and } \langle q-p, e_{n+1}\rangle < 0\}$$

- In a dual way, *I*[−](*S*) = {*q* ∈ *M* : *q* ≪ *p* for some *p* ∈ *S*} and *J*[−](*S*) = {*q* ∈ *M* : *q* ≤ *p* for some *p* ∈ *S*} are the chronological past and causal past of *S*.
- In particular, the chronological future $I^+(p)$ and the causal future $J^+(p)$ of a point $p \in M$ are

$$I^+(p)=\{q\in M:p\ll q\}, \hspace{1em} ext{and} \hspace{1em} J^+(p)=\{q\in M:p\leq q\}.$$

• For instance, for a point $p \in \overline{M}$ in Minkowski space, $I^+(p)$ is just the future timecone of p,

$$I^+(p) = \{q \in \overline{M} \ : \langle q - p, q - p \rangle < 0 \text{ and } \langle q - p, e_{n+1} \rangle < 0 \},$$

and

$$J^+(p) = \overline{I^+(p)} = \{p\} \cup \{q: \langle q-p, q-p\rangle \leq 0 \text{ and } \langle q-p, e_{n+1}\rangle < 0\}$$

• $I^+(p)$ is always open. $J^+(p)$ is neither open nor closed in general.

If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow [0, +\infty]$ is always lower semicontinuous.

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow [0, +\infty]$ is always lower semicontinuous.
- However, for an arbitrary spacetime it may fail to be continuous in general, and may also fail to be finite valued.

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow [0, +\infty]$ is always lower semicontinuous.
- However, for an arbitrary spacetime it may fail to be continuous in general, and may also fail to be finite valued.
- Globally hyperbolic spacetimes turn out to be the natural class of spacetimes for which the Lorentzian distance function is finite-valued and continuous.

- If q ∈ J⁺(p), then the Lorentzian distance d(p, q) is the supremum of the Lorentzian lengths of all the future-directed causal curves from p to q (possibly, d(p, q) = +∞).
- If $q \notin J^+(p)$, then the Lorentzian distance d(p,q) = 0 by definition.
- In particular, d(p,q) > 0 if and only is $q \in I^+(p)$.
- The Lorentzian distance function $d: M \times M \rightarrow [0, +\infty]$ is always lower semicontinuous.
- However, for an arbitrary spacetime it may fail to be continuous in general, and may also fail to be finite valued.
- Globally hyperbolic spacetimes turn out to be the natural class of spacetimes for which the Lorentzian distance function is finite-valued and continuous.
- Recall that a spacetime *M* is said to be globally hyperbolic if
 - (i) it is causal, that is, there exists no causal loop in M, and
 - (ii) the intersections $J^+(p) \cap J^-(q)$ are compact for every $p, q \in M$.

(A) = (A) = (A)

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

 $d_p(q)=d(p,q).$

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

• In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

- In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.
- Let $T_{-1}M|_p$ be the fiber of the unit future observer bundle of M at p, that is,

 $T_{-1}M|_{p} = \{v \in T_{p}M : v \text{ is a future-directed timelike unit vector}\}.$

 Given a point p ∈ M, one can define the Lorentzian distance function from p by d_p : M → [0, +∞]

$$d_p(q)=d(p,q).$$

- In order to guarantee the smoothness of d_p , we need to restrict this function on certain special subsets of M.
- Let $T_{-1}M|_p$ be the fiber of the unit future observer bundle of M at p, that is,

 $T_{-1}M|_{p} = \{v \in T_{p}M : v \text{ is a future-directed timelike unit vector}\}.$

• Define the function $s_{\rho}: T_{-1}M|_{\rho} \rightarrow [0, +\infty]$ by

$$s_{\rho}(v) = \sup\{t \geq 0 : d_{\rho}(\gamma_{v}(t)) = t\},$$

where $\gamma_v : [0, a) \to M$ is the future inextendible geodesic starting at p with initial velocity v.

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

Observe that

$$\exp_{p}: \mathsf{int}(\tilde{\mathcal{I}}^{+}(p))
ightarrow \mathcal{I}^{+}(p)$$

is a diffeomorphism and $\mathcal{I}^+(p)$ is an open subset (possible empty).

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(p) = \{tv: ext{ for all } v \in T_{-1}M|_p ext{ and } 0 < t < s_p(v)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(p) = \exp_p(\operatorname{int}(\tilde{\mathcal{I}}^+(p))) \subset I^+(p).$

Observe that

$$\exp_{
ho}: \operatorname{int}(ilde{\mathcal{I}}^+(
ho))
ightarrow au^+(
ho)$$

is a diffeomorphism and $\mathcal{I}^+(p)$ is an open subset (possible empty).

Lemma 1 (Erkekoglu, García-Río and Kupeli, GRG 2003)

Let M be a spacetime and $p \in M$.

• If *M* is strongly causal at *p*, then $s_p(v) > 0$ for all $v \in T_{-1}M|_p$ and $\mathcal{I}^+(p) \neq \emptyset$.

• Then, one can define the subset $ilde{\mathcal{I}}^+(p) \subset T_p M$ given by

 $ilde{\mathcal{I}}^+(
ho) = \{t
u: ext{ for all }
u \in T_{-1} M|_{
ho} ext{ and } 0 < t < s_{
ho}(
u)\}$

and consider the subset $\mathcal{I}^+(p) \subset M$ given by

 $\mathcal{I}^+(\rho) = \exp_{\rho}(\operatorname{int}(\tilde{\mathcal{I}}^+(\rho))) \subset I^+(\rho).$

Observe that

$$\exp_{
ho}: \operatorname{int}(ilde{\mathcal{I}}^+(
ho))
ightarrow au^+(
ho)$$

is a diffeomorphism and $\mathcal{I}^+(p)$ is an open subset (possible empty).

Lemma 1 (Erkekoglu, García-Río and Kupeli, GRG 2003)

Let M be a spacetime and $p \in M$.

- If *M* is strongly causal at *p*, then $s_p(v) > 0$ for all $v \in T_{-1}M|_p$ and $\mathcal{I}^+(p) \neq \emptyset$.
- If I⁺(p) ≠ Ø, then the Lorentzian distance function d_p is smooth on I⁺(p) and its gradient V
 d_p is a past-directed timelike (geodesic) unit vector field on I⁺(p).

• For every $c \in \mathbb{R}$, let us define

$$h_{c}(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• For every $c \in \mathbb{R}$, let us define

$$h_{c}(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature *c* is given by

$$I_{\gamma_c}(J_c, J_c) = -rac{h_c'(t)}{h_c(t)} \langle x, x
angle.$$

• For every $c \in \mathbb{R}$, let us define

$$h_{c}(t) = \begin{cases} \frac{1}{\sqrt{c}} \sinh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0 \\ t & \text{if } c = 0 \text{ and } t > 0 \\ \frac{1}{\sqrt{-c}} \sin(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Observe that the index of a Jacobi field along a timelike geodesic in a Lorentzian space form of constant curvature *c* is given by

$$I_{\gamma_c}(J_c,J_c)=-rac{h_c'(t)}{h_c(t)}\langle x,x
angle.$$

• On the other hand, $\frac{h'_c(t)}{h_c(t)}$ is the future mean curvature of the level set $\Sigma_c(t) = \{q \in \mathcal{I}^+(p) : d_p(q) = t\} \subset M_c^n.$

Lemma 2

Let M be a spacetime such that $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$

$$\overline{
abla}^2 d_{
ho}(x,x) \leq -rac{h_c'}{h_c}(d_{
ho}(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

Lemma 2

Let M be a spacetime such that $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$

$$\overline{
abla}^2 d_{
ho}(x,x) \leq -rac{h_c'}{h_c}(d_{
ho}(q))\langle x,x
angle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

• The proof of Lemma 2 follows from the fact that

$$\overline{\nabla}^2 d_p(x,x) = I_\gamma(J,J)$$

where γ is the radial future directed unit timelike geodesic from p to q and J is the Jacobi field along γ with J(0) = 0 and J(s) = x, and is strongly based on the maximality of the index of Jacobi fields.

• On the other hand, under the assumption that the sectional curvatures of the timelike planes of *M* are bounded from above by a constant *c*, we get the following result.

Lemma 3

Let *M* be a spacetime such that $K_M(\Pi) \leq c \ c \in \mathbb{R}$, for all timelike planes in *M*. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$ it holds that

$$\overline{\nabla}^2 d_p(x,x) \geq -\frac{h'_c}{h_c}(d_p(q))\langle x,x\rangle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

• On the other hand, under the assumption that the sectional curvatures of the timelike planes of *M* are bounded from above by a constant *c*, we get the following result.

Lemma 3

Let *M* be a spacetime such that $K_M(\Pi) \leq c \ c \in \mathbb{R}$, for all timelike planes in *M*. Assume that there exists a point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $q \in \mathcal{I}^+(p)$ (with $d_p(q) < \pi/\sqrt{-c}$ when c < 0). Then for every spacelike vector $x \in T_q M$ orthogonal to $\overline{\nabla} d_p(q)$ it holds that

$$\overline{\nabla}^2 d_p(x,x) \geq -\frac{h'_c}{h_c}(d_p(q))\langle x,x\rangle,$$

where $\overline{\nabla}^2$ stands for the Hessian operator on M.

• The proof is similar to that of Lemma 2.
Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let r = d_p denote the Lorentzian distance function with respect to p, and let u = r ∘ ψ : Σ→(0,∞) be the function r along the submanifold, which is a smooth function on Σ.

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let r = d_p denote the Lorentzian distance function with respect to p, and let u = r ∘ ψ : Σ→(0,∞) be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of *u*. To do that, observe that

$$\overline{\nabla}r = \nabla u + (\overline{\nabla}r)^{\perp}$$

along Σ , where $\nabla u = (\overline{\nabla}r)^{\top}$ stands for the gradient of u on Σ and $(\overline{\nabla}r)^{\perp}$ denotes the normal component of $\overline{\nabla}r$.

- Consider ψ : Σ^m → Mⁿ an m-dimensional spacelike submanifold immersed into a spacetime M.
- We will assume that there exists a point p ∈ M such that I⁺(p) ≠ Ø and that ψ(Σ) ⊂ I⁺(p).
- Let r = d_p denote the Lorentzian distance function with respect to p, and let u = r ∘ ψ : Σ→(0,∞) be the function r along the submanifold, which is a smooth function on Σ.
- Our first objective is to compute the Hessian of *u*. To do that, observe that

$$\overline{\nabla}r = \nabla u + (\overline{\nabla}r)^{\perp}$$

along Σ , where $\nabla u = (\overline{\nabla}r)^{\top}$ stands for the gradient of u on Σ and $(\overline{\nabla}r)^{\perp}$ denotes the normal component of $\overline{\nabla}r$.

• By Gauss and Weingarten formulae we get

$$\overline{\nabla}_X \overline{\nabla} r = \nabla_X \nabla u - A_{(\overline{\nabla} r)^{\perp}} X + \operatorname{II}(X, \nabla u) + \nabla_X^{\perp} (\overline{\nabla} r)^{\perp},$$

for every tangent vector $X \in T\Sigma$, where II denotes the second fundamental form of the submanifold and, for every normal vector η , A_{η} denotes the Weingarten endomorphism with respect to η .

It follows from here that

$$\nabla^2 u(X,Y) = \overline{\nabla}^2 r(X,Y) + \langle \mathrm{II}(X,Y), \overline{\nabla} r \rangle$$

for every tangent vector fields $X, Y \in T\Sigma$, where $\overline{\nabla}^2 r$ and $\nabla^2 u$ stand for the Hessian of r and u in M and Σ , respectively.

It follows from here that

$$abla^2 u(X,Y) = \overline{
abla}^2 r(X,Y) + \langle \operatorname{II}(X,Y), \overline{
abla} r \rangle$$

for every tangent vector fields $X, Y \in T\Sigma$, where $\overline{\nabla}^2 r$ and $\nabla^2 u$ stand for the Hessian of r and u in M and Σ , respectively.

• Tracing this expression, one gets that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathsf{H}, \overline{\nabla} r \rangle,$$

where $\{E_1, \ldots, E_m\}$ is a local orthonormal frame on Σ , and

$$\mathsf{H} := \frac{1}{m} \mathsf{tr}(\mathrm{II}) = \frac{1}{m} \sum_{i=1}^{m} \mathrm{II}(E_i, E_i)$$

defines the mean curvature vector field of the submanifold.

 Since M^{m+1} is time-oriented and Σ^m is spacelike, there is a unique future-directed timelike unit normal field N globally defined on Σ.

- Since M^{m+1} is time-oriented and Σ^m is spacelike, there is a unique future-directed timelike unit normal field N globally defined on Σ.
- Let A stand for the shape operator of Σ with respect to N. Then

$$\mathsf{H} = -\frac{1}{m}\mathsf{tr}(A)\mathsf{N} = H\mathsf{N},$$

where H = -(1/m)tr(A) is the future mean curvature function of Σ .

- Since M^{m+1} is time-oriented and Σ^m is spacelike, there is a unique future-directed timelike unit normal field N globally defined on Σ.
- Let A stand for the shape operator of Σ with respect to N. Then

$$\mathsf{H}=-\frac{1}{m}\mathsf{tr}(A)\mathsf{N}=\mathsf{H}\mathsf{N},$$

where H = -(1/m)tr(A) is the future mean curvature function of Σ .

• On the other hand, $\overline{
abla} r =
abla u - \langle \overline{
abla} r, N \rangle N$ and, in particular,

$$\langle \overline{\nabla}r, N \rangle = \sqrt{1 + |\nabla u|^2} \ge 1.$$

- Since M^{m+1} is time-oriented and Σ^m is spacelike, there is a unique future-directed timelike unit normal field N globally defined on Σ.
- Let A stand for the shape operator of Σ with respect to N. Then

$$\mathsf{H}=-\frac{1}{m}\mathsf{tr}(A)\mathsf{N}=\mathsf{H}\mathsf{N},$$

where H = -(1/m)tr(A) is the future mean curvature function of Σ .

• On the other hand, $\overline{
abla} r =
abla u - \langle \overline{
abla} r, N
angle N$ and, in particular,

$$\langle \overline{\nabla}r, N \rangle = \sqrt{1 + |\nabla u|^2} \ge 1.$$

• Therefore, the Laplacian of *u* becomes in this case

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^{2} r(E_{i}, E_{i}) + mH\langle N, \overline{\nabla}r \rangle$$
$$= \sum_{i=1}^{m} \overline{\nabla}^{2} r(E_{i}, E_{i}) + mH\sqrt{1 + |\nabla u|^{2}}$$

• Assume now that $K_M(\Pi) \ge c$ (resp. $K_M(\Pi) \le c$) for all timelike planes in M.

-

- Assume now that $K_M(\Pi) \ge c$ (resp. $K_M(\Pi) \le c$) for all timelike planes in M.
- Then by the Hessian comparison results for *r* given in Lemma 2 (resp. Lemma 3), one gets the following inequality for the Laplacian of *u*

$$\Delta u \leq (\geq) - f_c(u)(m + |\nabla u|^2) + mH\sqrt{1 + |\nabla u|^2},$$

where

$$f_c(t) = rac{h_c'(t)}{h_c(t)} = egin{cases} \sqrt{c} \coth(\sqrt{c} \ t) & ext{if } c > 0 ext{ and } t > 0 \ 1/t & ext{if } c = 0 ext{ and } t > 0 \ \sqrt{-c} \cot(\sqrt{-c} \ t) & ext{if } c < 0 ext{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

- Assume now that $K_M(\Pi) \ge c$ (resp. $K_M(\Pi) \le c$) for all timelike planes in M.
- Then by the Hessian comparison results for *r* given in Lemma 2 (resp. Lemma 3), one gets the following inequality for the Laplacian of *u*

$$\Delta u \leq (\geq) - f_c(u)(m + |\nabla u|^2) + mH\sqrt{1 + |\nabla u|^2},$$

where

$$f_c(t) = rac{h_c'(t)}{h_c(t)} = egin{cases} \sqrt{c} \coth(\sqrt{c} \ t) & ext{if } c > 0 ext{ and } t > 0 \ 1/t & ext{if } c = 0 ext{ and } t > 0 \ \sqrt{-c} \cot(\sqrt{-c} \ t) & ext{if } c < 0 ext{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

- Summarizing,
 - $K_M(\Pi) \ge c$ implies that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta u \geq -f_c(u)(m+|\nabla u|^2)+mH\sqrt{1+|\nabla u|^2}$$

- Assume now that $K_M(\Pi) \ge c$ (resp. $K_M(\Pi) \le c$) for all timelike planes in M.
- Then by the Hessian comparison results for *r* given in Lemma 2 (resp. Lemma 3), one gets the following inequality for the Laplacian of *u*

$$\Delta u \leq (\geq) - f_c(u)(m + |\nabla u|^2) + mH\sqrt{1 + |\nabla u|^2},$$

where

$$f_c(t) = rac{h_c'(t)}{h_c(t)} = egin{cases} \sqrt{c} \coth(\sqrt{c} \ t) & ext{if } c > 0 ext{ and } t > 0 \ 1/t & ext{if } c = 0 ext{ and } t > 0 \ \sqrt{-c} \cot(\sqrt{-c} \ t) & ext{if } c < 0 ext{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

- Summarizing,
 - $K_M(\Pi) \ge c$ implies that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta u \geq -f_c(u)(m+|\nabla u|^2)+mH\sqrt{1+|\nabla u|^2}.$$

• Before stating our main results, we need to introduce some terminology.

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

Equivalently, for any u ∈ C²(Σ) with u_{*} = inf_Σ u > -∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ satisfying

(i)
$$u(p_k) < u_* + \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) > -\frac{1}{k}$.

The Omori-Yau maximum principle

Following the terminology introduced by Pigola, Rigoli and Setti (2005), the Omori-Yau maximum principle is said to hold on an *n*-dimensional Riemannian manifold Σ if, for any smooth function u ∈ C²(Σ) with u* = sup_Σ u < +∞ there exists a sequence of points {p_k}_{k∈ℕ} in Σ with the properties

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

• Equivalently, for any $u \in C^2(\Sigma)$ with $u_* = \inf_{\Sigma} u > -\infty$ there exists a sequence of points $\{p_k\}_{k \in \mathbb{N}}$ in Σ satisfying

(i)
$$u(p_k) < u_* + \frac{1}{k}$$
, (ii) $|\nabla u(p_k)| < \frac{1}{k}$, and (iii) $\Delta u(p_k) > -\frac{1}{k}$.

 In this sense, the classical maximum principle given by Omori (1967) and Yau (1975) stays that the Omori-Yau maximum principle holds on every complete Riemannian manifold with Ricci curvature bounded from below.

First applications: Hypersurfaces bounded by a level set of the Lorentzian distance. Case $K_M(\Pi) \ge c$

Theorem 1 (Alías, Hurtado, Palmer, TAMS 2010)

Let M^{m+1} be an (m + 1)-dimensional spacetime such that $\mathcal{K}_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M. Let $p \in M$ be such that $\mathcal{I}^+(p) \neq \emptyset$, and let $\psi : \Sigma^m \to M^{m+1}$ be a spacelike hypersurface such that $\psi(\Sigma) \subset \mathcal{I}^+(p)$. If the Omori-Yau maximum principle holds on Σ (and $\inf_{\Sigma} u < \pi/\sqrt{-c}$ when c < 0), then its future mean curvature H satisfies

$$\sup_{\Sigma} H \geq f_c(\inf_{\Sigma} u),$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In particular, if $\inf_{\Sigma} u = 0$ then $\sup_{\Sigma} H = +\infty$.

First applications: Hypersurfaces bounded by a level set of the Lorentzian distance. Case $K_M(\Pi) \ge c$

Theorem 1 (Alías, Hurtado, Palmer, TAMS 2010)

Let M^{m+1} be an (m + 1)-dimensional spacetime such that $\mathcal{K}_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M. Let $p \in M$ be such that $\mathcal{I}^+(p) \neq \emptyset$, and let $\psi : \Sigma^m \to M^{m+1}$ be a spacelike hypersurface such that $\psi(\Sigma) \subset \mathcal{I}^+(p)$. If the Omori-Yau maximum principle holds on Σ (and $\inf_{\Sigma} u < \pi/\sqrt{-c}$ when c < 0), then its future mean curvature H satisfies

$$\sup_{\Sigma} H \geq f_c(\inf_{\Sigma} u),$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In particular, if $\inf_{\Sigma} u = 0$ then $\sup_{\Sigma} H = +\infty$.

Corollary 1 (Alías, Hurtado, Palmer, TAMS 2010)

Under the assumptions of Theorem 1, if *H* is bounded from above on Σ , then there exists some $\delta > 0$ such that $\psi(\Sigma) \subset O^+(p, \delta)$, where $O^+(p, \delta)$ denotes the future outer ball of radius δ ,

$$\mathcal{O}^+(p,\delta)=\{q\in I^+(p): d_p(q)>\delta\}.$$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

-

• As $K_M(\Pi) \ge c$, we know that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• Applying Omori-Yau maximum principle to the positive function *u*, we get that

$$-rac{1}{k} < \Delta u(p_k) \leq -f_c(u(p_k))(m+|
abla u(p_k)|^2)+mH(p_k)\sqrt{1+|
abla u(p_k)|^2}$$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• Applying Omori-Yau maximum principle to the positive function *u*, we get that

$$-rac{1}{k} < \Delta u(p_k) \leq -f_c(u(p_k))(m+|
abla u(p_k)|^2)+mH(p_k)\sqrt{1+|
abla u(p_k)|^2}$$

It follows from here that

$$\sup_{\Sigma} H \geq H(p_k) \geq \frac{-1/k + f_c(u(p_k))(m + |\nabla u(p_k)|^2)}{m\sqrt{1 + |\nabla u(p_k)|^2}}$$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• Applying Omori-Yau maximum principle to the positive function *u*, we get that

$$-rac{1}{k} < \Delta u(p_k) \leq -f_c(u(p_k))(m+|
abla u(p_k)|^2)+mH(p_k)\sqrt{1+|
abla u(p_k)|^2}.$$

It follows from here that

$$\sup_{\Sigma} H \geq H(p_k) \geq \frac{-1/k + f_c(u(p_k))(m + |\nabla u(p_k)|^2)}{m\sqrt{1 + |\nabla u(p_k)|^2}}$$

• Therefore, making $k \to \infty$ here we get the result.

• As $K_M(\Pi) \ge c$, we know that

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}.$$

• Applying Omori-Yau maximum principle to the positive function *u*, we get that

$$-rac{1}{k} < \Delta u(p_k) \leq -f_c(u(p_k))(m+|
abla u(p_k)|^2)+mH(p_k)\sqrt{1+|
abla u(p_k)|^2}$$

It follows from here that

$$\sup_{\Sigma} H \geq H(p_k) \geq \frac{-1/k + f_c(u(p_k))(m + |\nabla u(p_k)|^2)}{m\sqrt{1 + |\nabla u(p_k)|^2}}$$

- Therefore, making $k \to \infty$ here we get the result.
- The last assertion follows from the fact that $\lim_{s\to 0} f_c(s) = +\infty$.

Hypersurfaces in Lorentzian space forms

Theorem 2 (Alías, Hurtado, Palmer, TAMS 2010)

Let M_c^{m+1} be a Lorentzian space form of constant sectional curvature cand let $p \in M_c^{m+1}$. Let us consider $\psi : \Sigma^m \to M_c^{m+1}$ a spacelike hypersurface such that $\psi(\Sigma) \subset \mathcal{I}^+(p) \cap B^+(p,\delta)$ for some $\delta > 0$ (with $\delta \le \pi/\sqrt{-c}$ if c < 0). If the Omori-Yau maximum principle holds on Σ , then $\inf H \le f(\sup u) \le f(\inf u) \le \sup H$

$$\inf_{\Sigma} H \leq f_c(\sup_{\Sigma} u) \leq f_c(\inf_{\Sigma} u) \leq \sup_{\Sigma} H,$$

where u denotes the Lorentzian distance d_p along the hypersurface.

Hypersurfaces in Lorentzian space forms

Theorem 2 (Alías, Hurtado, Palmer, TAMS 2010)

Let M_c^{m+1} be a Lorentzian space form of constant sectional curvature cand let $p \in M_c^{m+1}$. Let us consider $\psi : \Sigma^m \to M_c^{m+1}$ a spacelike hypersurface such that $\psi(\Sigma) \subset \mathcal{I}^+(p) \cap B^+(p,\delta)$ for some $\delta > 0$ (with $\delta \le \pi/\sqrt{-c}$ if c < 0). If the Omori-Yau maximum principle holds on Σ , then $\inf H \le f(\sup u) \le f(\inf u) \le \sup H$

$$\inf_{\Sigma} H \leq f_c(\sup_{\Sigma} u) \leq f_c(\inf_{\Sigma} u) \leq \sup_{\Sigma} H,$$

where u denotes the Lorentzian distance d_p along the hypersurface.

• Here, for $\delta > 0$, the subset $B^+(p, \delta)$ denotes the future inner ball of radius δ , that is,

 $B^+(p,\delta) = \{q \in I^+(p) : d_p(q) < \delta\}.$

Hypersurfaces in Lorentzian space forms

Theorem 2 (Alías, Hurtado, Palmer, TAMS 2010)

Let M_c^{m+1} be a Lorentzian space form of constant sectional curvature cand let $p \in M_c^{m+1}$. Let us consider $\psi : \Sigma^m \to M_c^{m+1}$ a spacelike hypersurface such that $\psi(\Sigma) \subset \mathcal{I}^+(p) \cap B^+(p,\delta)$ for some $\delta > 0$ (with $\delta \le \pi/\sqrt{-c}$ if c < 0). If the Omori-Yau maximum principle holds on Σ , then $\inf H \le f(\sup u) \le f(\inf u) \le \sup H$

$$\inf_{\Sigma} H \leq f_c(\sup_{\Sigma} u) \leq f_c(\inf_{\Sigma} u) \leq \sup_{\Sigma} H,$$

where u denotes the Lorentzian distance d_p along the hypersurface.

 Here, for δ > 0, the subset B⁺(p, δ) denotes the future inner ball of radius δ, that is, B⁺(p, δ) = {q ∈ I⁺(p) : d_p(q) < δ}.

$B (p, 0) = \{q \in I (p) : a_p(q) < 0\}$

Corollary 2 (Alías, Hurtado, Palmer, TAMS 2010)

Let M_c^{m+1} be a Lorentzian space form of constant sectional curvature cand let $p \in M_c^{m+1}$. If Σ is a complete spacelike hypersurface in M_c^{m+1} with constant mean curvature H which is contained in $\mathcal{I}^+(p)$ and bounded from above by a level set of the Lorentzian distance function d_p (with $d_p < \pi/\sqrt{-c}$ if c < 0), then Σ is necessarily a level set of d_p .

Geometric analysis of the Lorentzian distance function. Symmetry and shap

$$\operatorname{Ric}(X,X) = \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2} + |AX + \frac{m}{2}X$$
$$\geq \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2}.$$

$$\operatorname{Ric}(X,X) = \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2} + |AX + \frac{m}{2}X$$
$$\geq \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2}.$$

 In particular, when M_c^{m+1} is a Lorentzian space form of constant sectional curvature c then

$$\operatorname{Ric}(X,X) \geq \left((m-1)c - \frac{m^2H^2}{4}\right)|X|^2.$$

$$\operatorname{Ric}(X,X) = \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2} + |AX + \frac{m}{2}X$$
$$\geq \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2}.$$

 In particular, when M_c^{m+1} is a Lorentzian space form of constant sectional curvature c then

$$\operatorname{Ric}(X,X) \geq \left((m-1)c - \frac{m^2 H^2}{4}\right) |X|^2.$$

 Therefore, every spacelike hypersurface Σ with bounded mean curvature in M_c^{m+1} has Ricci curvature bounded from below. Hence, if Σ is complete, it satisfies the Omori-Yau maximum principle.

$$\operatorname{Ric}(X,X) = \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2} + |AX + \frac{m}{2}X$$
$$\geq \operatorname{Ric}_{M}(X,X) - \left(K_{M}(X \wedge N) + \frac{m^{2}H^{2}}{4}\right)|X|^{2}.$$

• In particular, when M_c^{m+1} is a Lorentzian space form of constant sectional curvature c then

$$\operatorname{Ric}(X,X) \geq \left((m-1)c - \frac{m^2H^2}{4}\right)|X|^2.$$

• Therefore, every spacelike hypersurface Σ with bounded mean curvature in M_c^{m+1} has Ricci curvature bounded from below. Hence, if Σ is complete, it satisfies the Omori-Yau maximum principle.

Corollary 3 (Alías, Hurtado, Palmer, TAMS 2010)

The only complete spacelike hypersurfaces with constant mean curvature in the Lorentz-Minkowski space \mathbb{L}^{m+1} which are contained in $\mathcal{I}^+(p)$ (for some fixed $p \in \mathbb{L}^{m+1}$) and bounded from above by a hyperbolic space centered at p are precisely the hyperbolic spaces centered at p.

• Let us recall that a Riemannian manifold Σ is hyperbolic if there exists a non-constant positive superharmonic function globally defined on Σ .

- Let us recall that a Riemannian manifold Σ is hyperbolic if there exists a non-constant positive superharmonic function globally defined on Σ.
- As another application of our comparison results, we have:

- Let us recall that a Riemannian manifold Σ is hyperbolic if there exists a non-constant positive superharmonic function globally defined on Σ .
- As another application of our comparison results, we have:

Theorem 3 (Alías, Hurtado, Palmer, TAMS 2010)

Let M^{m+1} be an (m + 1)-dimensional spacetime, $m \ge 2$, such that $K_M(\Pi) \ge c$ for all timelike planes in M. Assume that there exists a point $p \in M^{m+1}$ such that $\mathcal{I}^+(p) \ne \emptyset$, and let $\psi : \Sigma^m \to M^{m+1}$ be a spacelike hypersurface with $\psi(\Sigma) \subset \mathcal{I}^+(p)$. Let us denote by u the function d_p along the hypersurface, and assume that $u \le \pi/(2\sqrt{-c})$ if c < 0. Then

- Let us recall that a Riemannian manifold Σ is hyperbolic if there exists a non-constant positive superharmonic function globally defined on Σ .
- As another application of our comparison results, we have:

Theorem 3 (Alías, Hurtado, Palmer, TAMS 2010)

Let M^{m+1} be an (m + 1)-dimensional spacetime, $m \ge 2$, such that $\mathcal{K}_{\mathcal{M}}(\Pi) \ge c$ for all timelike planes in M. Assume that there exists a point $p \in M^{m+1}$ such that $\mathcal{I}^+(p) \ne \emptyset$, and let $\psi : \Sigma^m \to M^{m+1}$ be a spacelike hypersurface with $\psi(\Sigma) \subset \mathcal{I}^+(p)$. Let us denote by u the function d_p along the hypersurface, and assume that $u \le \pi/(2\sqrt{-c})$ if c < 0. Then

(i) If the future mean curvature of Σ satisfies $H \leq \frac{2\sqrt{m-1}}{m} f_c(u)$ with

 $H < f_c(u)$ at some point of Σ if m = 2, then Σ is hyperbolic.

(ii) If c = 0 and $H \leq 0$, then Σ is hyperbolic.

(iii) If c > 0 and $H \le \frac{2\sqrt{m-1}}{m}\sqrt{c}$, then Σ is hyperbolic.
Hyperbolicity of spacelike hypersurfaces

- Let us recall that a Riemannian manifold Σ is hyperbolic if there exists a non-constant positive superharmonic function globally defined on Σ .
- As another application of our comparison results, we have:

Theorem 3 (Alías, Hurtado, Palmer, TAMS 2010)

Let M^{m+1} be an (m+1)-dimensional spacetime, $m \ge 2$, such that $K_M(\Pi) \ge c$ for all timelike planes in M. Assume that there exists a point $p \in M^{m+1}$ such that $\mathcal{I}^+(p) \neq \emptyset$, and let $\psi : \Sigma^m \to M^{m+1}$ be a spacelike hypersurface with $\psi(\Sigma) \subset \mathcal{I}^+(p)$. Let us denote by *u* the function d_p along the hypersurface, and assume that $u \leq \pi/(2\sqrt{-c})$ if c < 0. Then

(i) If the future mean curvature of Σ satisfies $H \leq \frac{2\sqrt{m-1}}{m} f_c(u)$ with

 $H < f_c(u)$ at some point of Σ if m = 2, then Σ is hyperbolic.

- (ii) If c = 0 and $H \leq 0$, then Σ is hyperbolic.
- (iii) If c > 0 and $H \le \frac{2\sqrt{m-1}}{m}\sqrt{c}$, then Σ is hyperbolic.

In particular, every maximal hypersurface contained in $\mathcal{I}^+(p)$ (and satisfying $u < (\pi/2\sqrt{-c})$ if c < 0 is hyperbolic.

 In order to proof (i), observe that under our assumptions on H we have

$$mH \leq 2\sqrt{m-1} f_c(u) \leq \frac{f_c(u)(m+|\nabla u|^2)}{\sqrt{1+|\nabla u|^2}}.$$

• In order to proof (i), observe that under our assumptions on H we have

$$mH \leq 2\sqrt{m-1} \ f_c(u) \leq rac{f_c(u)(m+|
abla u|^2)}{\sqrt{1+|
abla u|^2}}.$$

• Therefore, by the Hessian comparison result in Lemma 2 we conclude

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}\leq 0$$

and u defines a non-constant positive superharmonic function on Σ .

In order to proof (i), observe that under our assumptions on H we have

$$mH \leq 2\sqrt{m-1} \ f_c(u) \leq rac{f_c(u)(m+|
abla u|^2)}{\sqrt{1+|
abla u|^2}}.$$

• Therefore, by the Hessian comparison result in Lemma 2 we conclude

$$\Delta u \leq -f_c(u)(m+|
abla u|^2)+mH\sqrt{1+|
abla u|^2}\leq 0$$

and u defines a non-constant positive superharmonic function on Σ .

• To prove (ii) and (iii), simply observe that $f_0(u) = 1/u > 0$ and $f_c(u) = \sqrt{c} \coth(\sqrt{c}u) > \sqrt{c}$ on Σ .

• Recall that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathsf{H}, \overline{\nabla} r \rangle.$$

• Recall that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathsf{H}, \overline{\nabla} r \rangle.$$

• Consider the function $v = \phi_c(u)$, where $\phi_c(t)$ is a primitive of $h_c(t)$:

$$\phi_c(t) = \begin{cases} \frac{1}{c} \cosh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0\\ \frac{t^2}{2} & \text{if } c = 0 \text{ and } t > 0\\ \frac{1}{c} \cos(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Recall that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathsf{H}, \overline{\nabla} r \rangle.$$

• Consider the function $v = \phi_c(u)$, where $\phi_c(t)$ is a primitive of $h_c(t)$:

$$\phi_c(t) = \begin{cases} \frac{1}{c} \cosh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0\\ \frac{t^2}{2} & \text{if } c = 0 \text{ and } t > 0\\ \frac{1}{c} \cos(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Then, the Laplacian of v is given by

$$\begin{aligned} \Delta v &= \phi_c'(u) \Delta u + \phi_c''(u) |\nabla u|^2 \\ &= h_c(u) \sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) + m h_c(u) \langle \mathsf{H}, \overline{\nabla} r \rangle + h_c'(u) |\nabla u|^2. \end{aligned}$$

• Recall that the Laplacian of *u* is given by

$$\Delta u = \sum_{i=1}^{m} \overline{\nabla}^2 r(E_i, E_i) + m \langle \mathsf{H}, \overline{\nabla} r \rangle.$$

• Consider the function $v = \phi_c(u)$, where $\phi_c(t)$ is a primitive of $h_c(t)$:

$$\phi_c(t) = \begin{cases} \frac{1}{c} \cosh(\sqrt{c} t) & \text{if } c > 0 \text{ and } t > 0\\ \frac{t^2}{2} & \text{if } c = 0 \text{ and } t > 0\\ \frac{1}{c} \cos(\sqrt{-c} t) & \text{if } c < 0 \text{ and } 0 < t < \pi/\sqrt{-c}. \end{cases}$$

• Then, the Laplacian of v is given by

$$\begin{aligned} \Delta v &= \phi_c'(u) \Delta u + \phi_c''(u) |\nabla u|^2 \\ &= h_c(u) \sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) + m h_c(u) \langle \mathsf{H}, \overline{\nabla} r \rangle + h_c'(u) |\nabla u|^2. \end{aligned}$$

• Assume now that $K_M(\Pi) \ge c$ (resp. $K_M(\Pi) \le c$) for all timelike planes in M.

$$\overline{
abla}^2 r(X,X) \leq (\geq) - rac{h_c'}{h_c}(u)(1 + \langle X,
abla u
angle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

$$\overline{\nabla}^2 r(X,X) \leq (\geq) - \frac{h'_c}{h_c}(u)(1 + \langle X, \nabla u \rangle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

• Therefore,

$$h_c(u)\sum_{i=1}^m \overline{\nabla}^2 r(E_i,E_i) \leq (\geq) - h'_c(u)(m+|\nabla u|^2),$$

which, jointly with the expression above, gives the following inequality for the Laplacian of \boldsymbol{v}

$$\Delta v \leq (\geq) - mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

$$\overline{\nabla}^2 r(X,X) \leq (\geq) - \frac{h'_c}{h_c}(u)(1 + \langle X, \nabla u \rangle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

• Therefore,

$$h_c(u)\sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) \leq (\geq) - h'_c(u)(m+|\nabla u|^2),$$

which, jointly with the expression above, gives the following inequality for the Laplacian of \boldsymbol{v}

$$\Delta v \leq (\geq) - mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

Summarizing:

• $K_M(\Pi) \ge c$ implies that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta v \geq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

where $v = \phi_c(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ .

$$\overline{\nabla}^2 r(X,X) \leq (\geq) - \frac{h'_c}{h_c}(u)(1 + \langle X, \nabla u \rangle^2)$$

for every unit tangent vector field $X \in T\Sigma$.

• Therefore,

$$h_c(u)\sum_{i=1}^m \overline{\nabla}^2 r(E_i, E_i) \leq (\geq) - h'_c(u)(m+|\nabla u|^2),$$

which, jointly with the expression above, gives the following inequality for the Laplacian of \boldsymbol{v}

$$\Delta v \leq (\geq) - mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

Summarizing:

• $K_M(\Pi) \ge c$ implies that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• $K_M(\Pi) \leq c$ implies that

$$\Delta v \geq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

where $v = \phi_c(u)$ and u is the Lorentzian distance function of M restricted on the spacelike submanifold Σ .

● For statement of our main results, we introduce some terminology. ■ 🔗 🔍

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (iii) $\Delta u(p_k) < \frac{1}{k}$

 Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.
- This is equivalent (among other conditions) to the fact that for every λ > 0, the only non-negative bounded smooth solution u of Δu ≥ λu on Σ is the constant u = 0.

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (iii) $\Delta u(p_k) < \frac{1}{k}$.

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on Σ if and only if Σ is stochastically complete.
- Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.
- This is equivalent (among other conditions) to the fact that for every λ > 0, the only non-negative bounded smooth solution u of Δu ≥ λu on Σ is the constant u = 0.
- In particular, every parabolic manifold is stochastically complete. Hence, the weak max principle holds on every parabolic manifold.

 Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if H is lightlike and past-pointing on $\Sigma.$

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if H is lightlike and past-pointing on Σ .
- Finally, Σ is said to be weakly future trapped if H is causal (that is, timelike or lightlike) and future-pointing everywhere.

- Following the standard terminology in General Relativity, a spacelike submanifold Σ^m (of arbitrary codimension) of a spacetime Mⁿ is said to be a future trapped submanifold if its mean curvature vector field H is timelike and future-pointing everywhere on Σ.
- Similarly, Σ^m is said to be a past trapped submanifold if H is timelike and past-pointing everywhere on Σ.
- On the other hand, if H is lightlike and future-pointing everywhere on Σ then the spacelike submanifold is said to be marginally future trapped.
- Similarly, Σ is said to be marginally past trapped if H is lightlike and past-pointing on Σ .
- Finally, Σ is said to be weakly future trapped if H is causal (that is, timelike or lightlike) and future-pointing everywhere.
- Analogously, Σ is said to be weakly past trapped if H is causal and past-pointing on Σ .

Weakly trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 4 (Alías, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \ge c$, $c \in \mathbb{R}$, for all timelike planes in M.

- If c ≥ 0 there exists no stochastically complete, weakly past trapped submanifold contained in *I*⁺(p).
- If c < 0 and Σ is a stochastically complete, weakly past trapped submanifold contained in *I*⁺(p) ∩ B⁺(p, π/√-c), then

$$u_* = \inf_{\Sigma} u \ge \frac{\pi}{2\sqrt{-c}},$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In other words, Σ is contained in $B^+(p, \pi/\sqrt{-c}) \cap O^+(p, \pi/2\sqrt{-c})$.

Weakly trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 4 (Alías, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M.

- If c ≥ 0 there exists no stochastically complete, weakly past trapped submanifold contained in *I*⁺(p).
- If c < 0 and Σ is a stochastically complete, weakly past trapped submanifold contained in *I*⁺(p) ∩ B⁺(p, π/√-c), then

$$u_* = \inf_{\Sigma} u \ge \frac{\pi}{2\sqrt{-c}},$$

where *u* denotes the Lorentzian distance d_p along the hypersurface. In other words, Σ is contained in $B^+(p, \pi/\sqrt{-c}) \cap O^+(p, \pi/2\sqrt{-c})$.

• Recall that the subsets $B^+(p, \delta)$ and $O^+(p, \delta)$ denote the future inner ball and the future outer ball of radius $\delta > 0$, that is, $B^+(p, \delta) = \{q \in I^+(p) : d_p(q) < \delta\}$ $O^+(p, \delta) = \{q \in I^+(p) : d_p(q) > \delta\}.$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathsf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k \to \infty} v(p_k) = v_*$ and $\lim_{k \to \infty} u(p_k) = u_*$.

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathsf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle H, \overline{\nabla} r \rangle < 0 \quad \text{ everywhere on } \Sigma.$

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathsf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle H, \overline{\nabla} r \rangle < 0 \quad \text{ everywhere on } \Sigma.$

• Therefore,

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'(u(p_k))$$

and, making $k \to \infty$ here we get $h'_c(u_*) \leq 0$.

• As $K_M(\Pi) \ge c$, we know that

$$\Delta v \leq -mh'_c(u) + mh_c(u)\langle \mathsf{H}, \overline{\nabla}r \rangle.$$

• Applying the weak max principle to the function v, which satisfies $v_* = \inf_{\Sigma} v = \phi_c(u_*)$ with $u_* = \inf_{\Sigma} u \ge 0$, we get that $-\frac{1}{k} < \Delta v(p_k) \le -mh'(u(p_k)) + mh(u(p_k))\langle \mathsf{H}, \overline{\nabla}r \rangle(p_k),$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$. • Observe that, since Σ is weakly past trapped, then

 $\langle H, \overline{\nabla} r \rangle < 0 \quad \text{ everywhere on } \Sigma.$

• Therefore,

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'(u(p_k))$$

and, making $k \to \infty$ here we get $h_c'(u_*) \leq 0$.

• The result then follows by observing that, when $c \ge 0$ then $h'_c(t) > 0$, and if c < 0 then $h'_c(t) \le 0$ when $\pi/2\sqrt{-c} \le t < \pi/\sqrt{-c}$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 5 (Alías, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $\mathcal{K}_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^+(p)$ (with $u_* < \pi/2\sqrt{-c}$ in the case c < 0). Then

$$\sup_{\Sigma} |\mathsf{H}_0| \geq \frac{h_c'}{h_c}(u_*),$$

where H₀ stands for the spacelike component of the lightlike vector field H which is orthogonal to $\overline{\nabla}r$, and $u_* = \inf_{\Sigma} u$. In particular, if $u_* = 0$ then $\sup_M |H_0| = +\infty$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \ge c$

Theorem 5 (Alías, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $\mathcal{K}_M(\Pi) \geq c$, $c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally trapped submanifold contained in $\mathcal{I}^+(p)$ (with $u_* < \pi/2\sqrt{-c}$ in the case c < 0). Then

$$\sup_{\Sigma} |\mathsf{H}_0| \geq \frac{h_c'}{h_c}(u_*),$$

where H₀ stands for the spacelike component of the lightlike vector field H which is orthogonal to $\overline{\nabla}r$, and $u_* = \inf_{\Sigma} u$. In particular, if $u_* = 0$ then $\sup_M |H_0| = +\infty$.

Corollary 4 (Alías, Bessa, de Lira, CQG 2016)

Under the assumptions of Theorem 5, if $|H_0|$ is bounded from above on Σ , then there exists some $\delta > 0$ such that $\Sigma \subset O^+(p, \delta)$, where $O^+(p, \delta)$ denotes the future outer ball of radius δ .

• We know from Theorem 4 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.

- We know from Theorem 4 that Σ must be in fact marginally future trapped.
- Let us write

$$\mathsf{H} = \mathsf{H}_0 - \langle \mathsf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle H_0, \overline{\nabla}r \rangle = 0.$

- We know from Theorem 4 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathsf{H} = \mathsf{H}_0 - \langle \mathsf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle \mathsf{H}_0, \overline{\nabla}r \rangle = 0$.

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathsf{H}, \overline{\nabla} r \rangle = |\mathsf{H}_0| > 0 \quad \text{on } \Sigma.$$

- We know from Theorem 4 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathsf{H} = \mathsf{H}_0 - \langle \mathsf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle H_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathsf{H}, \overline{
abla} r
angle = |\mathsf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$$
- We know from Theorem 4 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathsf{H} = \mathsf{H}_0 - \langle \mathsf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle H_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathsf{H}, \overline{
abla} r
angle = |\mathsf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$$

• If $\text{sup}_{\Sigma}\left|H_{0}\right|=+\infty$ then there is nothing to prove.

- We know from Theorem 4 that $\boldsymbol{\Sigma}$ must be in fact marginally future trapped.
- Let us write

$$\mathsf{H} = \mathsf{H}_0 - \langle \mathsf{H}, \overline{\nabla} r \rangle \overline{\nabla} r,$$

with $\langle H_0, \overline{\nabla} r \rangle = 0.$

• Since H is lightlike and future-pointing we derive from here that

$$\langle \mathsf{H}, \overline{
abla} r
angle = |\mathsf{H}_0| > 0 \quad \text{on } \Sigma.$$

• Therefore, as $K_M(\Pi) \ge c$, we have

$$\Delta v \leq -mh'_c(u) + mh_c(u)|\mathsf{H}_0|.$$

- If $\text{sup}_{\Sigma}\left|H_{0}\right|=+\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \leq -mh_c'(u) + mh_c(u)|\mathsf{H}_0| \leq -mh_c'(u) + mh_c(u)\sup_{\Sigma}|\mathsf{H}_0|.$$

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathsf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k \to \infty} v(p_k) = v_*$ and $\lim_{k \to \infty} u(p_k) = u_*$.

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathsf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$.

• Letting $k \to +\infty$ we conclude that

$$\sup_{\Sigma} |\mathsf{H}_0| \geq \frac{h_c'(u_*)}{h_c(u_*)}.$$

• Applying again the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v_* = \inf_{\Sigma} v = \phi_c(u_*)$, we have

$$-\frac{1}{k} < \Delta v(p_k) \leq -mh'_c(u(p_k)) + mh_c(u(p_k)) \sup_{\Sigma} |\mathsf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v_*$ and $\lim_{k\to\infty} u(p_k) = u_*$.

• Letting $k \to +\infty$ we conclude that

$$\sup_{\Sigma} |\mathsf{H}_0| \geq \frac{h_c'(u_*)}{h_c(u_*)}.$$

• The last assertion follows from the fact that $h_c(0) = 0$ and $h'_c(0) = 1$.

Marginally trapped submanifolds in the chronological future of a point. Case $K_M(\Pi) \leq c$

Theorem 6 (Alías, Bessa, de Lira, CQG 2016)

Let M be a spacetime with a reference point $p \in M$ such that $\mathcal{I}^+(p) \neq \emptyset$, and assume $K_M(\Pi) \leq c, c \in \mathbb{R}$, for all timelike planes in M. Let Σ be a stochastically complete, marginally future trapped submanifold contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \leq \pi/\sqrt{-c}$ when c < 0). Then

$$\inf_{\Sigma} |\mathsf{H}_0| \leq \frac{h_c'}{h_c}(u^*),$$

where H₀ stands for the spacelike component of the lightlike vector field H which is orthogonal to $\overline{\nabla}r$, and $u^* = \sup_{\Sigma} u$.

• Since $K_M(\Pi) \leq c$ and $\langle \mathsf{H}, \overline{\nabla} r \rangle = |\mathsf{H}_0| > 0$ on Σ , we have

 $\Delta v \geq -mh'_c(u) + mh_c(u)|\mathsf{H}_0|.$

• Since $K_M(\Pi) \leq c$ and $\langle \mathsf{H}, \overline{
abla} r \rangle = |\mathsf{H}_0| > 0$ on Σ , we have

 $\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$

• If $inf_{\Sigma}\left|H_{0}\right|=-\infty$ then there is nothing to prove.

• Since $K_M(\Pi) \leq c$ and $\langle \mathsf{H}, \overline{\nabla} r \rangle = |\mathsf{H}_0| > 0$ on Σ , we have

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$$

- If $\inf_{\Sigma} |H_0| = -\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u)+mh_c(u)|\mathsf{H}_0| \geq -mh_c'(u)+mh_c(u)\inf_{\Sigma}|\mathsf{H}_0|.$$

• Since $K_M(\Pi) \leq c$ and $\langle \mathsf{H}, \overline{\nabla} r \rangle = |\mathsf{H}_0| > 0$ on Σ , we have

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$$

- If $\text{inf}_{\Sigma}\left|H_{0}\right|=-\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0| \geq -mh_c'(u) + mh_c(u)\inf_{\Sigma}|\mathsf{H}_0|.$$

• Applying the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v^* = \sup_{\Sigma} v = \phi_c(u^*)$, we have

$$\frac{1}{k} > \Delta v(p_k) \ge -mh'_c(u(p_k)) + mh_c(u(p_k)) \inf_{\Sigma} |\mathsf{H}_0|,$$

 $\text{for } \{p_k\} \subset \Sigma \text{ with } \lim_{k \to \infty} v(p_k) = v^* \text{ and } \lim_{k \to \infty} u(p_k) = u^*.$

• Since $K_M(\Pi) \leq c$ and $\langle \mathsf{H}, \overline{\nabla} r \rangle = |\mathsf{H}_0| > 0$ on Σ , we have

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0|.$$

- If $\text{inf}_{\Sigma}\left|H_{0}\right|=-\infty$ then there is nothing to prove.
- Otherwise, let us write

$$\Delta v \geq -mh_c'(u) + mh_c(u)|\mathsf{H}_0| \geq -mh_c'(u) + mh_c(u)\inf_{\Sigma}|\mathsf{H}_0|.$$

• Applying the weak maximum principle on Σ to the function $v = \phi_c(u)$, with $v^* = \sup_{\Sigma} v = \phi_c(u^*)$, we have

$$\frac{1}{k} > \Delta v(p_k) \geq -mh'_c(u(p_k)) + mh_c(u(p_k)) \inf_{\Sigma} |\mathsf{H}_0|,$$

for $\{p_k\} \subset \Sigma$ with $\lim_{k\to\infty} v(p_k) = v^*$ and $\lim_{k\to\infty} u(p_k) = u^*$. • Making $k \to +\infty$ we conclude that

$$\inf_{\Sigma} |\mathsf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)}$$

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 4, 5 and 6 we obtain the following consequence.

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 4, 5 and 6 we obtain the following consequence.

Theorem 7 (Alías, Bessa, de Lira, CQG 2016)

Let M_c^n be a Lorentzian space form of constant sectional curvature c and let $p \in M_c^n$. Let Σ be a stochastically complete, marginally trapped submanifold of M_c^n which is contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \le \pi/2\sqrt{-c}$ if c < 0). Then

$$\inf_{\Sigma} |\mathsf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)} \leq \frac{h_c'(u_*)}{h_c(u_*)} \leq \sup_{\Sigma} |\mathsf{H}_0|,$$

where $u_* = \inf_{\Sigma} u$ and $u^* = \sup_{\Sigma} u$.

Marginally future trapped submanifolds in Lorentzian space forms

• In particular, when the ambient spacetime is a Lorentzian space form, by putting together Theorems 4, 5 and 6 we obtain the following consequence.

Theorem 7 (Alías, Bessa, de Lira, CQG 2016)

Let M_c^n be a Lorentzian space form of constant sectional curvature c and let $p \in M_c^n$. Let Σ be a stochastically complete, marginally trapped submanifold of M_c^n which is contained in $\mathcal{I}^+(p) \cap B^+(p, \delta)$ for some $\delta > 0$ (with $\delta \le \pi/2\sqrt{-c}$ if c < 0). Then

$$\inf_{\Sigma} |\mathsf{H}_0| \leq \frac{h_c'(u^*)}{h_c(u^*)} \leq \frac{h_c'(u_*)}{h_c(u_*)} \leq \sup_{\Sigma} |\mathsf{H}_0|,$$

where $u_* = \inf_{\Sigma} u$ and $u^* = \sup_{\Sigma} u$.

 The estimates are sharp as proved by considering Σ as a constant mean curvature hypersurface of a level set of the Lorentzian distance in Mⁿ_c.

That's all !! Thanks a lot for your attention...

That's all !! Thanks a lot for your attention...

and congratulations to Eduardo for his forthcoming first 60 years.