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Outline

We will mainly focus in six dimensions on the classification of Lie
algebras g admitting a complex structure with closed (3,0)-form Ψ.

The main reason is that they allow to construct compact complex
quotients M = Γ\G whose canonical bundle is trivial.

Some of them admit balanced metrics, which provide solutions of the
Hull-Strominger system with respect to metric connections ∇ε,ρ in the
plane that contains Levi-Civita and the Gauduchon line.

We will show when ∇ε,ρ satisfies the Hermitian-Yang-Mills condition.

• Nilmanifolds and solvmanifolds

• The non-solvable case

• Hull-Strominger system and invariant solutions

• The Hermitian-Yang-Mills condition for ∇ε,ρ
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Complex structures with trivial canonical bundle

Given a compact complex manifold X , dimC X = n, the canonical
bundle KX is holomorphically trivial if there is a nowhere vanishing
(n,0)-form Ψ such that dΨ = 0.

If dimC X = 2 then, KX is trivial if and only if X is
• Torus (Kähler and nilmanifold), T = Γ\C2,
• Kodaira surface (non-Kähler and nilmanifold), KT ,
• K3 surface (Kähler).

• No classification for dimC(X ) ≥ 3.

• An interesting class: compact quotients Γ\G endowed with J coming
from complex structures on the Lie algebra g of G having a non-zero
closed (n,0)-form Ψ ∈ Λn,0(g∗)

Problem (n≥3): classify (unimodular) Lie algebras admitting such a J
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Complex structures with non-zero closed (n,0)-form on g

The Lie algebra g of G has an endomorphism J : g −→ g such that
J2 = −Id , and [JU, JV ] = J[JU,V ] + J[U, JV ] + [U,V ], U,V ∈ g.

Equivalently, d(g1,0) ⊂
∧2,0(g∗)⊕

∧1,1(g∗)

• Suppose J is almost complex (i.e. J2 = −Id) and that there is a
non-zero closed (n,0)-form Ψ.

Then, dΨ = 0 ⇒ J is complex (integrable):

For any ω ∈ g1,0 one has ω ∧Ψ = 0,

then 0 = d(ω ∧Ψ) = dω ∧Ψ = (dω)0,2 ∧Ψ,

which implies that d(g1,0) has zero component in
∧0,2(g∗).
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The goal is to classify the unimodular Lie algebras g with dimR g = 6
admitting a complex structure with closed (3,0)-form Ψ 6= 0

g NILPOTENT g SOLVABLE g NON-SOLVABLE

[Salamon] [Fino-Otal-U] [Otal-U]

⇓ ⇓ ⇓

Nilmanifolds Solvmanifolds Quotient manifolds

with complex structures and holomorphically trivial canonical bundle
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Nilmanifolds (g nilpotent)

The Lie algebra g of G is s-step nilpotent, i.e. the descending series
{gi} satisfies
g0 = g ⊃ g1 = [g, g] ⊃ · · · ⊃ gi+1 = [gi , g] ⊃ · · · ⊃ gs = [gs−1, g] = {0}.

Some important well-known properties:

• g is unimodular.

• G has a lattice Γ if and only if the structure constants of g are rational
numbers [Mal’cev].

• By [Nomizu], [Deligne-Griffiths-Morgan-Sullivan], [Hasegawa],
for complex nilmanifolds: Kähler⇐⇒ ∂∂̄-property. Hence,

Γ\G cannot admit Kähler metrics, except for a torus

• Any complex structure J on g has non-zero closed (n,0)-form:
dωi ∈ I(ω1, . . . , ωi−1) ⇒ d(ω1 ∧ · · · ∧ ωn) = 0 [Salamon]
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Solvmanifolds (g solvable)

The Lie algebra g of G is s-step solvable, i.e. the series {g(i)} satisfies
g(0) = g ⊃ g(1) = [g, g] ⊃ · · · ⊃ g(i+1) = [g(i), g(i)] ⊃ · · ·

· · · ⊃ g(s) = [g(s−1), g(s−1)] = {0}.

Important differences with respect to nilmanifolds:

• There is no a simple condition for the existence of lattice.
Necessary condition [Milnor]: if G has a lattice, then it is unimodular,
i.e. tr ad X = 0, ∀X ∈ g.

• There exist non-Kähler ∂∂̄-solvmanifolds.
A solvmanifold has a Kähler metric if and only if it is a finite quotient of
a complex torus [Hasegawa].

• There exist complex structures J with no closed (n,0)-form.

• There may exist non-invariant trivializing sections, even when J is
invariant with no invariant closed (n,0)-form [Andrada-Tolcachier 2023].
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6-dimensional Lie algebras underlying complex nilmanifolds

THEOREM [Salamon]. In dimension 6, a nilpotent Lie algebra admitting
a complex structure J is isomorphic to one of the following

n1 = (0,0,0,0,0,0),

n2 = (0,0,0,0,12,34),

n3 = (0,0,0,0,0,12+34),

n4 = (0,0,0,0,12,14+23),

n5 = (0,0,0,0,13+42,14+23),

n6 = (0,0,0,0,12,13),

n7 = (0,0,0,12,13,23),

n8 = (0,0,0,0,0,12),

n9 = (0,0,0,0,12,14+25),

n10 = (0,0,0,12,13,14),

n11 = (0,0,0,12,13,14+23),

n12 = (0,0,0,12,13,24),

n13 = (0,0,0,12,13+14,24),

n14 = (0,0,0,12,14,13+42),

n15 = (0,0,0,12,13+42,14+23),

n16 = (0,0,0,12,14,24),

n−19 = (0,0,0,12,23,14−35),

n+
26 = (0,0,12,13,23,14+25).
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n2 is the product of two 3-dimensional Heisenberg algebras
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n3 is the product of the 5-dimensional Heisenberg algebra by R
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n5 is the underlying Lie algebra to the Iwasawa manifold
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6-dimensional Lie algebras underlying complex solvmanifolds

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable
Lie algebra g admitting J with closed (3,0)-form Ψ 6= 0 is isomorphic to

s1 = (15,−25,−35,45,0,0),

sα≥0
2 = (α·15+25,−15+α·25,−α·35+45,−35−α·45,0,0),

s3 = (0,−13,12,0,−46,−45),

s4 = (23,−36,26,−56,46,0),

s5 = (24 + 35,26,36,−46,−56,0),

s6 = (24 + 35,−36,26,−56,46,0),

s7 = (24 + 35,46,56,−26,−36,0),

s8 = (16− 25,15 + 26,−36 + 45,−35− 46,0,0),

s9 = (45,15 + 36,14− 26 + 56,−56,46,0).
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Decomposable Lie algebras
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s9 = (45,15 + 36,14− 26 + 56,−56,46,0).

sα2 with α ≥ 0 is an infinite family of non-isomorphic Lie algebras

L. Ugarte (I.U.M.A. – Univ. Zaragoza) Hermitian geometry of quotient manifolds Symmetry&Shape 2024 9 / 25



6-dimensional Lie algebras underlying complex solvmanifolds

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable
Lie algebra g admitting J with closed (3,0)-form Ψ 6= 0 is isomorphic to

s1 = (15,−25,−35,45,0,0),

sα≥0
2 = (α·15+25,−15+α·25,−α·35+45,−35−α·45,0,0),

s3 = (0,−13,12,0,−46,−45),

s4 = (23,−36,26,−56,46,0),

s5 = (24 + 35,26,36,−46,−56,0),

s6 = (24 + 35,−36,26,−56,46,0),

s7 = (24 + 35,46,56,−26,−36,0),

s8 = (16− 25,15 + 26,−36 + 45,−35− 46,0,0),

s9 = (45,15 + 36,14− 26 + 56,−56,46,0).

Indecomposable Lie algebras

L. Ugarte (I.U.M.A. – Univ. Zaragoza) Hermitian geometry of quotient manifolds Symmetry&Shape 2024 9 / 25



6-dimensional Lie algebras underlying complex solvmanifolds

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable
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s8 = (16− 25,15 + 26,−36 + 45,−35− 46,0,0),

s9 = (45,15 + 36,14− 26 + 56,−56,46,0).

s8 is the underlying Lie algebra to the Nakamura manifold
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6-dimensional Lie algebras underlying complex solvmanifolds

THEOREM [Fino-Otal-U]. A 6-dim. unimodular (non-nilpotent) solvable
Lie algebra g admitting J with closed (3,0)-form Ψ 6= 0 is isomorphic to

s1 = (15,−25,−35,45,0,0),

sα≥0
2 = (α·15+25,−15+α·25,−α·35+45,−35−α·45,0,0),
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s6 = (24 + 35,−36,26,−56,46,0),

s7 = (24 + 35,46,56,−26,−36,0),

s8 = (16− 25,15 + 26,−36 + 45,−35− 46,0,0),

s9 = (45,15 + 36,14− 26 + 56,−56,46,0).

PROPOSITION [Fino-Otal-U]. The corresponding connected and
simply-connected solvable Lie groups admit a lattice (for a countable
number of α’s, including α = 0).
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The non-solvable case in dimension 6

THEOREM [Otal-U]. Let g be an unimodular non-solvable Lie algebra
of dimension 6. Then, g admits a complex structure with a non-zero
closed (3,0)-form if and only if it is isomorphic to so(3,1).

The real Lie algebra so(3,1) underlies the 3-dimensional complex Lie
algebra sl(2,C) given by the complex structure equations

dω1 = ω2 ∧ ω3, dω2 = −ω1 ∧ ω3, dω3 = ω1 ∧ ω2.

Clearly, d(ω1 ∧ ω2 ∧ ω3) = 0.

Consider the real basis {ej}6j=1 given by

ω1 = e3 − i e6, ω2 = e1 − i e4, ω3 = e2 − i e5.

Then we get

so(3,1) = (23−56, −13 + 46, 12−45, 26−35, −16 + 34, 15−24)
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The idea of the proofs: stable forms in dimension 6

Key obs.: the (3,0)-form Ψ is determined by its real part ρ = ReΨ,
which is a stable form.

Let (V , ν) be an oriented 6-dimensional vector space.

A form ρ ∈ Λ3V ∗ is stable if its orbit under the action of GL(V ) is open.

Consider the isomorphism k : Λ5V ∗ → V , given by η 7→ y ,
where y is such that ιyν = η,
and the endomorphism Kρ : V → V , given by x 7→ k(ιxρ ∧ ρ).

[Reichel; Hitchin]: ρ stable ⇐⇒ λ(ρ) = 1
6 trace (K 2

ρ ) 6= 0.

The sign of λ(ρ) only depends on ρ (not on ν).

If λ(ρ) < 0, then Jρ := 1√
|λ(ρ)|

Kρ is an almost complex structure on V ,

which is given by:√
|λ(ρ)| (J∗ρα)(x) ν = α ∧ ιxρ ∧ ρ, α ∈ V ∗, x ∈ V .

The complex form Ψ = ρ+ iJ∗ρ (ρ) has bidegree (3,0) w.r.t. Jρ.
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The real and complex classifications

STEP 1. Classify real Lie algebras g admitting complex structures.
Given a Lie algebra g, let Z 3(g) = {ρ ∈ Λ3g∗ | dρ = 0}
and look for ρ ∈ Z 3(g) such that λ(ρ) < 0 and d(J∗ρ ρ) = 0.

STEP 2. Moduli spaceM(g) of complex structures for every g.
M(g) = C(g)/ ∼

where J ∼ J ′ iff ∃A ∈ Aut(g) such that A ◦ J = J ′ ◦ A.

Conclusion: many compact complex 3-folds X = (M, J) defined by a
quotient of G by a lattice Γ, where one can study different questions, as

• complex invariants (Dolbeault, Bott-Chern, Aeppli cohomologies),
Frölicher spectral sequence H∗,∗

∂̄
(X )→ H∗dR(X ),...

• small deformations of complex structure, behaviour in central fiber,...
• existence of different types of special Hermitian metrics (Kähler, lcK,
pluriclosed, generalized Gauduchon, balanced,...)
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Existence of balanced metrics on X = (Γ\G, J)

Let F be a Hermitian metric on X , i.e. a positive (1,1)-form on X
(note that F (·, ·) = g(·, J·)).

Recall the Lee form of a Hermitian metric F is the 1-form θ = J d∗F .

A Hermitian metric F on X is balanced if the Lee 1-form θ = 0,
equivalently, dF n−1 = 0 (n = dimC X ).

Balanced metrics correspond to the Gray-Hervella classW3
(semi-Kähler). They are studied by many authors (Michelsohn,...)
and play an important role in geometry and physics (string theory).

PROPOSITION. Let X = (Γ\G, J) endowed with any invariant complex
structure J. If F is a balanced metric on X , then there is a balanced
metric on the Lie algebra g (obtained by symmetrization).

REDUCTION TO THE LIE ALGEBRA: For each pair (g, J), we are
reduced to study the existence of J-Hermitian inner products F
on g satisfying the balanced condition.
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Existence of balanced metrics: nilpotent case

[U] Balanced

n1 = (0, 0, 0, 0, 0, 0) X

n2 = (0, 0, 0, 0, 12, 34) X(J)

n3 = (0, 0, 0, 0, 0, 12+34) X(J)

n4 = (0, 0, 0, 0, 12, 14+23) X(J)

n5 = (0, 0, 0, 0, 13+42, 14+23) X(J)

n6 = (0, 0, 0, 0, 12, 13) X

n7 = (0, 0, 0, 12, 13, 23) −
n8 = (0, 0, 0, 0, 0, 12) −
n9 = (0, 0, 0, 0, 12, 14+25) −
n10 = (0, 0, 0, 12, 13, 14) −
n11 = (0, 0, 0, 12, 13, 14+23) −
n12 = (0, 0, 0, 12, 13, 24) −
n13 = (0, 0, 0, 12, 13+14, 24) −
n14 = (0, 0, 0, 12, 14, 13+42) −
n15 = (0, 0, 0, 12, 13+42, 14+23) −
n16 = (0, 0, 0, 12, 14, 24) −
n−19 = (0, 0, 0, 12, 23, 14−35) X

n+
26 = (0, 0, 12, 13, 23, 14+25) −
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Existence of balanced metrics: non-nilpotent case

[FOU] Balanced

s1 = (15,−25,−35, 45, 0, 0) X

s0
2 = (25,−15, 45,−35, 0, 0) X

sα2 = (α·15+25,−15+α·25,−α·35+45, X
−35−α·45, 0, 0), α > 0

s3 = (0,−13, 12, 0,−46,−45) X

s4 = (23,−36, 26,−56, 46, 0) −
s5 = (24+35, 26, 36,−46,−56, 0) X

s6 = (24+35,−36, 26,−56, 46, 0) −
s7 = (24+35, 46, 56,−26,−36, 0) X

s8 = (16−25, 15+26,−36+45,−35−46, 0, 0) X(J)

s9 = (45, 15+36, 14−26+56,−56, 46, 0) −

sl(2,C) Balanced

so(3,1) = (23− 56, −13 + 46, 12− 45, 26− 35, −16 + 34, 15− 24) X
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The Hull-Strominger system in six dimensions

Hull and Strominger proposed a 10-dim. space-time L1,9−d × X d ,
X compact, in order to compactify the heterotic strings with torsion.
It was proposed independently by
- C.M. Hull (Compactifications of the heterotic superstring, Physics Letters B 178 (4):357-364, 1986.)
- A. Strominger (Superstrings with torsion, Nuclear Phys. B 274 (1986), 253.)

X is a compact complex manifold, dimC X = 3, with holomorphically
trivial canonical bundle. The system consists of three equations:

(I) The conformally balanced equation.
Let Ψ be a nowhere vanishing holomorphic (3,0)-form on X .
Let F be a Hermitian metric on X and denote by ||Ψ||F the norm of Ψ
with respect to the metric F .
The first equation is d(||Ψ||F · F 2) = 0,

in the formulation of [Li-Yau, 2005].
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• The equation d(||Ψ||F · F 2) = 0 implies that F̃ = e−f/2F ,
with f = − log ||Ψ||F , is a balanced metric.

The function f is known as the dilaton function.

Let ∇+ be the Bismut connection, i.e. the unique Hermitian connection
(i.e. ∇J = 0 and ∇F = 0) with totally skew-symmetric torsion:

∇+ = ∇LC + 1
2T , where T = JdF torsion 3-form.

• The equation d(||Ψ||F · F 2) = 0 implies that the (3,0)-form ef Ψ,
f = − log ||Ψ||F , is parallel with respect to ∇+, i.e.

∇+(ef Ψ) = 0, hence Hol(∇+) ⊂ SU(3).
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(II) The instanton equation.
A Hermitian vector bundle E over X equipped with an instanton, i.e.
a connection A with curvature 2-form ΩA satisfying the Hermitian-
Yang-Mills equation
ΩA ∧ F 2 = 0, (ΩA)0,2 = (ΩA)2,0 = 0.
More explicitly, with respect to a local orthonormal basis {ek}

(ΩA)i
j(Jek , Jel) = (ΩA)i

j(ek ,el),
∑6

k=1(ΩA)i
j(ek , Jek ) = 0.

It is allowed (and also of interest) to take the trivial case ΩA = 0.

(III) The anomaly cancellation equation.

dT = α′

4

(
tr Ω ∧ Ω− tr ΩA ∧ ΩA) for α′ 6= 0 constant

α′ slope parameter (string tension α′ > 0)

Ω is the curvature form of some metric connection ∇
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Metric connections proposed for ∇

Strominger-Bismut ∇+ = ∇LC + 1
2T : torsion T (·, ·, ·) = JdF (·, ·, ·)

Chern ∇c = ∇LC + 1
2C: torsion C(·, ·, ·) = dF (J·, ·, ·)

Gauduchon (Hermitian) line ∇t = ∇LC + 1−t
4 T + 1+t

4 C, t ∈ R.

Hull (metric) connection ∇− = ∇LC − 1
2T

•
∇+
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The (ε, ρ)-plane of metric connections ∇ε,ρ [Otal-U-Villacampa]

Let (M2n, J,g) be any Hermitian manifold. For any (ε, ρ) ∈ R2, define:

g(∇ε,ρX Y ,Z ) = g(∇LC
X Y ,Z ) + εT (X ,Y ,Z ) + ρC(X ,Y ,Z ).

Then, ∇ε,ρg = 0, and ∇ε,ρJ = −2
(
ε+ ρ− 1

2

)
∇LCJ.

•
∇+

• ∇c

∇t

•
∇−

•
∇LC ε

ρ
∇ε,ρ
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Solutions of the Hull-Strominger system

1. Any Kähler CY manifold X solves the HS system (by Yau’s solution to the
Calabi conjecture X admits a Ricci-flat Kähler metric) taking e.g. ΩA = Ω.

2. [Li-Yau, 2005] obtained the first non-Kähler solutions to the HS system on
a Kähler CY 3-fold (further extended by [Andreas-Garcı́a, 2012]).
3. On non-Kähler 3-folds:
[Fu-Yau, 2008] proved the existence of solutions on non-Kähler 3-folds given
as a T2-bundle over a K3 surface.
[Fernández-Ivanov-U-Villacampa, 2009] first explicit invariant solutions.
[Fei-Yau, 2015] invariant solutions on complex Lie groups.
[Phong-Picard-Zhang, 2016] recover the Fu-Yau results via the anomaly flow.

[Fei-Huang-Picard, 2017] on hyperkähler fibrations over a Riemann surface.

[Otal-U-Villacampa, 2017] invariant solutions on solvmanifolds.
[Fino-Grantcharov-Vezzoni, 2021] Fu-Yau solution is generalized to torus
bundles over K3 orbifolds.
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From HS to the heterotic equations of motion

Theorem [Ivanov 2010]
A solution to the HS system satisfies the heterotic equations of motion
if and only if the connection ∇ is Hermitian-Yang-Mills (i.e. instanton).

The Hull-Strominger-Ivanov system

(I) d(||Ψ||F · F 2) = 0,
(II.a) ΩA ∧ F 2 = 0, (ΩA)0,2 = (ΩA)2,0 = 0,
(II.b) Ω ∧ F 2 = 0, Ω0,2 = Ω2,0 = 0,
(III) d(JdF ) = α′

4

(
tr Ω ∧ Ω− tr ΩA ∧ ΩA).

Theorem (Existence of invariant solutions)
The first solutions are given in [FIUV 2009] on the “nilmanifold” n3,
and later in [Otal-U-Villacampa 2017] on the “solvmanifold” s7,
and on the quotient of (SO(3,1),J0) = SL(2,C).
Moreover, ∇ = ∇+, and it is a non-flat instanton.
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Moreover, ∇ = ∇+, and it is a non-flat instanton.
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Existence of invariant solutions of the H-S-I system: an example

Simplest solutions given by the “nilmanifold” n3 =(0,0,0,0,0,12+34).

Two complex structures (up to equivalence), one is locally conformally
Kähler, and the other one is given by:

dω1 = dω2 = 0, dω3 = ω1∧ ω1̄− ω2∧ ω2̄.

The (3,0)-form Ψ = ω1∧ ω2∧ ω3 is holomorphic.

(I) An infinite family Ft of balanced metrics with Hol(∇+
t ) ⊂ SU(3)

Ft = i
2(ω1∧ ω1̄ + ω2∧ ω2̄ + t2 ω3∧ ω3̄), t ∈ R− {0}.

(II.a) There is an instanton A with tr ΩA ∧ ΩA = ω1∧ω1̄∧ω2∧ω2̄.

(II.b) ∇+
t is an instanton with tr Ω+

t ∧ Ω+
t = 16 t4 ω1∧ω1̄∧ω2∧ω2̄.

(III) The anomaly cancellation equation

dTt = 2t2 ω1∧ω1̄∧ω2∧ω2̄ = α′

4

(
tr Ω+

t ∧ Ω+
t − tr ΩA ∧ ΩA),

is equivalent to α′ = 8t2/(16t4−1). Any t> 1
2 solves the H-S-I system.
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An uniqueness result for invariant non-flat solutions of the H-S-I system

An uniqueness result: the spaces n3, s7 and so(3,1) are the unique
admitting invariant solutions of the H-S-I system. More concretely,

Theorem [Otal-U, 2023]
M = Γ\G six-dimensional compact quotient of a simply connected Lie
group G by a lattice Γ. Suppose that M possesses an invariant
balanced Hermitian structure (J,F ) with invariant non-zero closed
(3,0)-form. Let ∇ε,ρ(J,F ) be any metric connection in the (ε, ρ)-plane.

If ∇ε,ρ(J,F ) is a non-flat instanton, then g is isomorphic to n3, s7, or so(3,1).

PROOF: We studied the whole space of balanced Hermitian structures
on the remaining Lie algebras from the previous classifications: n2, n4,
n5, n6, n−19, s1, s0

2, sα2 (α > 0), s3, s5, and s8.
We found that if ∇ε,ρ(J,F ) satisfies the Hermitian-Yang-Mills condition,
then it is flat (and in this case, the connection is necessarily the Chern
connection ∇c).
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