Vector fields and magnetic maps

Marian Ioan MUNTEANU

Al.I.Cuza University of Iasi, Romania webpage: http://www.math.uaic.ro/∼munteanu

Symmetry and Shape – Santiago de Compostela

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IASI

FACULTADE DE MATEMÁTICAS

A T

 Ω

Outline

[Critical points of the LH integral](#page-2-0)

2 [Vector fields; magnetic maps; \(unit\) tangent bundle](#page-29-0)

- [Vector fields as magnetic maps](#page-31-0)
- [Magnetic unit vector fields](#page-49-0)

 QQ

医下半面

4 ロ ト ィ *同* ト

Geodesics

. . . are given by a second order nonlinear differential equation: **Euler-Lagrange equation of motions**

More precisely, a *geodesic* γ in a Riemannian manifold (*M*, *g*) is characterized as critical point of the **kinetic energy** (also called the **action integral**)

$$
E(\gamma)=\int \frac{1}{2} |\gamma'(s)|^2 ds
$$

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Geodesics

... are given by a second order nonlinear differential equation: **Euler-Lagrange equation of motions**

$$
\ddot{x}^{k}(s) + \Gamma_{ij}^{k}(x(s))\dot{x}^{j}(s)\dot{x}^{j}(s) = 0
$$
\n(EL)

\n
$$
\frac{d}{ds}\left(\frac{\partial L}{\partial \dot{x}^{h}}\right) - \frac{\partial L}{\partial x^{h}} = 0
$$
\nLagrangian :

\n
$$
L(x, \dot{x}) = g_{ij}(x(s))\dot{x}^{j}(s)\dot{x}^{j}(s)
$$

 Ω

イロト イ押ト イヨト イヨト

Let ω be the **potential** 1-form.

For a curve γ : [a, b] \longrightarrow *M* consider the functional

$$
LH(\gamma) = \int_{a}^{b} \left(\frac{1}{2} \langle \gamma'(t), \gamma'(t) \rangle + \omega(\gamma'(t)) \right) dt.
$$

It is often called the **Landau Hall functional** for the curve γ with the potential 1-form ω .

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

巖

Magnetic curves

Consider a variation of γ :

 $\Gamma : [a, b] \times (-v, v) \rightarrow M$, $\Gamma(t, 0) = \gamma(t)$, $\Gamma(a, \cdot) = \gamma(a)$, $\Gamma(b, \cdot) = \gamma(b)$

Simplify the notations: $\gamma_{\epsilon} : [a, b] \longrightarrow M$, $\gamma_{\epsilon}(t) = \Gamma(t, \epsilon)$

The variation vector on $\gamma\colon\mathsf{V}=\frac{\partial\gamma_\epsilon}{\partial\epsilon}:[\mathsf{a},\mathsf{b}]\longrightarrow\mathsf{M},$ that is $V(a) = V(b) = 0$.

KON KAN KEN KEN EL KORA

Consider a variation of γ :

 $\Gamma : [a, b] \times (-v, v) \rightarrow M$, $\Gamma(t, 0) = \gamma(t)$, $\Gamma(a, \cdot) = \gamma(a)$, $\Gamma(b, \cdot) = \gamma(b)$

Simplify the notations: $\gamma_{\epsilon} : [a, b] \longrightarrow M$, $\gamma_{\epsilon}(t) = \Gamma(t, \epsilon)$

The variation vector on $\gamma\colon\mathsf{V}=\frac{\partial\gamma_\epsilon}{\partial\epsilon}:[\mathsf{a},\mathsf{b}]\longrightarrow\mathsf{M},$ that is $V(a) = V(b) = 0$.

In order to find the critical points of the functional LH we compute:

$$
\left. \frac{d}{d\epsilon} LH(\gamma_{\epsilon}) \right|_{\epsilon=0} = -\int\limits_{a}^{b} g(\nabla_{\gamma'}\gamma' - \phi(\gamma'), V) dt.
$$

KOLKAR KELKEL E VAN

The critical points of the LH functional are solutions of the equation $\left.\frac{d}{d\epsilon}LH(\gamma_\epsilon)\right|_{\epsilon=0}=0,$ that is

$$
\left.\frac{d}{d\epsilon} LH(\gamma_{\epsilon})\right|_{\epsilon=0}=-\int\limits_{a}^{b}g(\nabla_{\gamma'}\gamma'-\phi(\gamma'),V)dt=0,
$$

 Ω

(ロトイ部)→(理)→(理)→

The critical points of the LH functional are solutions of the equation $\left.\frac{d}{d\epsilon}LH(\gamma_\epsilon)\right|_{\epsilon=0}=0,$ that is

$$
\left. \frac{d}{d\epsilon} LH(\gamma_{\epsilon}) \right|_{\epsilon=0} = -\int\limits_{a}^{b} g(\nabla_{\gamma'}\gamma' - \phi(\gamma'), V) dt = 0,
$$

which is equivalent to

 $\nabla_{\gamma'}\gamma'-\phi(\gamma')=\mathbf{0}$

known as the **Lorentz equation**.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 6/ ∞

 QQQ

Background

 (M, g) Riemannian manifold; (dim $M = n \geq 2$)

Lorentz force ϕ : $g(\phi(X), Y) = d\omega(X, Y), X, Y$ tangent to M

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 7/∞

 QQ

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Background

 (M, g) Riemannian manifold; (dim $M = n > 2$) magnetic field: *F* - closed 2-form on *M* Lorentz force ϕ : $g(\phi(X), Y) = F(X, Y)$, X, Y tangent to M

 Ω

イロト イ押ト イヨト イヨト ニヨ

Background

 (M, g) Riemannian manifold; (dim $M = n > 2$) magnetic field: *F* - closed 2-form on *M* Lorentz force ϕ : $g(\phi(X), Y) = F(X, Y), X, Y$ tangent to M A smooth curve γ in (M, q, F) is called magnetic curve/trajectory of (*M*, *g*, *F*)

lf its velocity vector field γ' satisfies the Lorentz equation:

$\nabla_{\gamma'}\gamma' = \phi(\gamma')$
$\nabla_{\gamma'}\gamma' = \phi(\gamma')$

螺

Examples of magnetic fields

- **•** in dimension 2: any *f d*σ
- the Kähler 2-form (almost Kaehlerian manifolds)
- **•** the fundamental 2-form in almost contact metric manifolds (Sasakian, cosymplectic, quasi-Sasakian manifolds)

 Ω

Harmonic maps

The notion of geodesic is generalized to maps between Riemannian manifolds.

A map $f : (N, h) \to (M, g)$ between Riemannian manifolds is said to be **harmonic** if it is a critical point of the energy functional:

$$
E(f)=\int_N\frac{1}{2}|df|^2dV_h
$$

under compactly supported variations. The Euler-Lagrange equation of this variational problem is given by

 $\tau(f) = \text{div } df = 0.$

Here $\tau(f)$ is called the tension field of *f*.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 9/ ∞

 Ω

イロト イ押ト イヨト イヨト ニヨ

Harmonic maps

The notion of geodesic is generalized to maps between Riemannian manifolds.

A map $f : (N, h) \rightarrow (M, g)$ between Riemannian manifolds is said to be **harmonic** if it is a critical point of the energy functional:

$$
E(f)=\int_N\frac{1}{2}|df|^2dV_h
$$

under compactly supported variations. The Euler-Lagrange equation of this variational problem is given by

$$
\tau(f) = h^{ij}(x) \left(\frac{\partial f^{\alpha}}{\partial x^{i} \partial x^{j}} - {^{N}\Gamma^{k}_{ij}(x)} \frac{\partial f^{\alpha}}{\partial x^{k}} + {^{M}\Gamma^{\alpha}_{\beta \epsilon}(f(x))} \frac{\partial f^{\beta}}{\partial x^{i}} \frac{\partial f^{\epsilon}}{\partial x^{j}} \right) \frac{\partial}{\partial y^{\alpha}} \bigg|_{f(x)} = 0
$$

Here $\tau(f)$ is called the tension field of *f*.

 Ω

イロト イ押 トイラ トイラトー

The Landau Hall functional for maps

Let *f* : *N* −→ *M* be a smooth maps between two Riemannian manifolds (*N*, *h*) of dimension *n* and (*M*, *g*) of dimension *m*.

Let ξ be a divergence free vector field on *N* and ω be a 1-form on *M*.

The energy of *f* is $E(f) = \frac{1}{2}$ Z *N* $|df|^2$ *dv*_{*h*}.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

The Landau Hall functional for maps

Let *f* : *N* −→ *M* be a smooth maps between two Riemannian manifolds (*N*, *h*) of dimension *n* and (*M*, *g*) of dimension *m*.

Let ξ be a divergence free vector field on *N* and ω be a 1-form on *M*. The energy of *f* is $E(f) = \frac{1}{2}$ Z *N* $|df|^2$ *dv_h*.

Let us define the following functional for *f* associated to ξ and ω

$$
LH(f) = E(f) + \int_N \omega(df(\xi))dv_h.
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 10/∞

 Ω

First variation for the Landau Hall functional

A smooth variation $\{\mathcal{F}_{\epsilon}\}\$ of *f* means a smooth map $\mathcal{F}: N \times I \longrightarrow M$, such that $\mathcal{F}(p, 0) = f(p)$. For the sake of simplicity we use to write $f_{\epsilon}(p) = \mathcal{F}(p, \epsilon).$

 Ω

イロト イ押 トイラト イラト

First variation for the Landau Hall functional

A smooth variation $\{\mathcal{F}_{\epsilon}\}\$ of *f* means a smooth map $\mathcal{F}: N \times I \longrightarrow M$, such that $\mathcal{F}(p, 0) = f(p)$. For the sake of simplicity we use to write $f_{\epsilon}(p) = \mathcal{F}(p, \epsilon).$

Definition. The map *f* is called **magnetic** with respect to ξ and ω if it is a critical point of the Landau Hall integral defined above, i.e. the first variation

d $\frac{d}{d\epsilon} L H(f_{\epsilon})\big|_{\epsilon=0}$

is zero.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Magnetic maps

Theorem (Inoguchi, M. - 2014)

Let $f : (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then *f* satisfies the Lorentz equation

 $\tau(f) = \phi(f_*\xi).$

 Ω

4 ロ ト 4 何 ト 4 ラ ト 4 ラ ト

Magnetic maps

Theorem (Inoguchi, M. - 2014)

Let $f : (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then *f* satisfies the Lorentz equation

$$
\tau(f) = \phi(f_*\xi).
$$

Sometimes, this equation will be called the **magnetic equation.**

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Magnetic maps

Theorem (Inoguchi, M. - 2014)

Let $f : (N, h) \longrightarrow (M, g)$ be a magnetic map with respect to ξ and ω . Then *f* satisfies the Lorentz equation

$$
\tau(f) = \phi(f_*\xi).
$$

Sometimes, this equation will be called the **magnetic equation.**

Remark (remove assumptions) A magnetic map is defined without assumptions *N* compact and *F* exact. And sometimes remove also $div\xi = 0$. 4 0 8 4 4 9 8 4 9 8 4 9 8 Ω

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 12/ ∞

Examples of magnetic maps

¹ A *constant map f* : *N* −→ *M* is magnetic with respect to any $\xi \in \chi(N)$ and any closed 2-form F on M.

 Ω

イロト イ押 トイラト イラト

Examples of magnetic maps

2 Let $N = [a, b]$, and *t* be the parameter on *N*. Take $h = dt^2$ and $\xi = \frac{d}{dt}$. If *F* is a magnetic field on *M* and γ a magnetic curve on *M* corresponding to F, then γ is a magnetic map associated to ξ and *F*. This allows us to say that **magnetic maps extend magnetic curves**.

 Ω

 \mathbf{A} \mathbf{B} \mathbf{A} \mathbf{A} \mathbf{B} \mathbf{A}

Examples of magnetic maps

³ In the absence of a magnetic field the magnetic equation becomes $\tau(f) = 0$; hence *f* is a harmonic map. Therefore one may say that **magnetic maps extend harmonic maps**.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 13/ ∞

 Ω

イロト イ押 トイラト イラト

Isometric immersions

Let $f : (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds *N* and *M*.

E

 Ω

4 ロ ト 4 何 ト 4 ラ ト 4 ラ ト

Isometric immersions

Let $f : (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds *N* and *M*. Then, the tension field $\tau(f) = nH$, where **H** is the mean curvature vector field of *N* in *M*.

 Ω

Isometric immersions

Let $f : (N, h) \longrightarrow (M, g)$ be an isometric immersion between two Riemannian manifolds *N* and *M*. Then, the tension field $\tau(f) = nH$, where **H** is the mean curvature vector field of *N* in *M*. We have the following

Proposition (new form of the magnetic equation)

If ξ is a global vector field on N and ϕ is a Lorentz force on M , then f is magnetic if and only if

 $H = \frac{1}{a}$ *n* φ(*f*∗ξ).

 Ω

イロト イ押ト イヨト イヨト ニヨ

Magnetic maps in almost contact geometry

Example.

Let $(M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold. The identity map $\mathbf{1}_M : M \longrightarrow M$ is a magnetic map with respect to ξ and $F = d\eta$ if and only if

 $\iota_{\xi}d\eta=0.$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 15/ ∞

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Tangent bundle

 $(x; u)$, where $x \in M$ and $u \in T_xM$ $\pi : TM \longrightarrow M$ induces a foliation $\mathcal{V} = \text{Ker} (d\pi)$ $(\bar{x}^1, \bar{x}^2, \cdots, \bar{x}^n; u^1, u^2, \cdots, u^n), \ \ \bar{x}^i := x^i \circ \pi, \ \ u^i := dx^i(u)$ $U = U^i \frac{\partial}{\partial u}$ ∂*u i* is globally defined on *TM*: Liouville vector field

 (M, q, ∇) be a Riemannian manifold

 $T(TM) = H \oplus V$

KET KALLA SI YE KE YA GA

Tangent bundle

$X \in T_xM$

the **vertical lift** of X to u is a unique vector $X^{\mathrm{v}} \in \mathcal{V}_u$ such that $X^{\vee}(df) = Xf$ for all $f \in C^{\infty}(M)$

the **horizontal lift** of *X* to a point $(x; u) \in TM$ is a unique vector $X^\mathrm{h} \in \mathcal{H}_\mathit{u}$ such that $\pi_*{}_u X^\mathrm{h}_u = X$

The *Sasaki metric q^S* of *TM* and an almost complex structure

$$
g^{\mathrm{S}}(X^{\mathrm{h}}, Y^{\mathrm{h}}) = g^{\mathrm{S}}(X^{\mathrm{v}}, Y^{\mathrm{v}}) = g(X, Y) \circ \pi, \ g^{\mathrm{S}}(X^{\mathrm{h}}, Y^{\mathrm{v}}) = 0
$$

$$
JX^{\mathrm{h}} = X^{\mathrm{v}}, \ JX^{\mathrm{v}} = -X^{\mathrm{h}}, \ X \in \Gamma(TM).
$$

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Classical result: (*T*(*M*), *gS*, *JS*) is an almost Käherian manifold.

Hence, the Kähler 2-form

 $\Omega_S = g_S(J_S \cdot, \cdot)$

may be considered as a magnetic field on *T*(*M*).

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 18/ ∞

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$.

Compute the differential of this map: $\xi_{*,p}: T_pM \longrightarrow T_{(p,\xi(p))}T(M)$.

KEIN KALLA BIN KEIN DE VOOR

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$.

Compute the differential of this map: $\xi_{*,p}: T_pM \longrightarrow T_{(p,\xi(p))}T(M)$.

$$
\xi_{*,p}X(p)=X_{\xi(p)}^H+(\nabla_X\xi)_{\xi(p)}^V
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 18/ ∞

KEL KALLARIN (RINGEL AGA)

Let $\xi \in \mathfrak{X}(M)$ be thought as a map from (M, g) to $(T(M), g_S, J_S)$.

Compute the differential of this map: $\xi_{*,p}: T_pM \longrightarrow T_{(p,\xi(p))}T(M)$.

$$
\xi_{*,p}X(p)=X_{\xi(p)}^H+(\nabla_X\xi)_{\xi(p)}^V
$$

Well known result:

The map $\xi : (M, g) \longrightarrow (T(M), g_S)$ is an isometric immersion if and only if $\nabla \xi = 0$.

KET KALLA SI YE KE YA GA

Compact case:

the energy of ξ on M is

$$
E(\xi)=\frac{n}{2}\text{ vol}(M)+\frac{1}{2}\int_M||\nabla\xi||_g^2d\nu_g,
$$

The number

$$
\mathcal{B}(\xi) = \int_M ||\nabla \xi||_g^2 d\nu_g
$$

is called the *total bending* of the vector field ξ.

Result. (Ishihara and Nouhaud)

 ξ : $(M, g) \longrightarrow (T(M), g_S)$ is harmonic if and only if ξ is parallel. In such a case it is an absolute minimum of the energy functional *E*(ξ).

 Ω

イロメ イ押メ イヨメ イヨメー

Compact case:

the energy of ξ on M is

$$
E(\xi)=\frac{n}{2}\text{ vol}(M)+\frac{1}{2}\int_M||\nabla \xi||_g^2d\nu_g,
$$

The number

$$
\mathcal{B}(\xi)=\int_M ||\nabla \xi||_g^2 d\nu_g
$$

is called the *total bending* of the vector field ξ.

Remark. (Gil-Medrano) Even we restrict the variation (in the Dirichlet energy functional) to vector fields on *M*, the same conclusion holds.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 19/ ∞

 Ω

イロト イ押 トイラト イラト

Arbitrary case:

$$
\tau(\xi) = -\left\{ (\operatorname{trace}_{g} R(\nabla_{\bullet} \xi, \xi) \bullet)^{H} + (\overline{\Delta}_{g} \xi)^{V} \right\} \circ \xi
$$

∆*^g* denotes the *rough Laplacian* on vector fields:

$$
\overline{\Delta}_g X = - \sum_{k=1}^n \left[\nabla_{e_k} \nabla_{e_k} X - \nabla_{\nabla_{e_k} e_k} X \right],
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 19/∞

 Ω

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

4 ロト 4 何 ト

Theorem (Inoguchi, M. - 2015, 2018)

Let (M, g) be a Riemannian manifold and $(T(M), g_S, J_S)$ its tangent bundle endowed with the usual almost Kählerian structure.

Let ξ be a vector field on *M*.

Then ξ is a magnetic map with strength *q* associated to ξ itself and the Kähler magnetic field Ω*^S* if and only if the following conditions hold:

$$
(*) \quad \text{trace}_{g} R(\nabla_{\bullet} \xi, \xi) \bullet) = q \nabla_{\xi} \xi
$$

$$
(**) \quad \overline{\Delta}_{g} \xi = -q \xi.
$$

 Ω

イロト イ押 トイラト イラト

Proof.

The magnetic equation with strength *q*:

 $\tau(\xi) = q J_S(\xi_* \xi), q \in \mathbb{R}.$

We compute

 $J_S(\xi_*\xi) = \xi^V - (\nabla_{\xi}\xi)^H$.

Identify the vertical and the horizontal parts, respectively.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 20 / ∞

 Ω

不重 医不重 医

4 **D + 4 P +**

Interesting results may be obtained in cases when the curvature tensor has a certain expression.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 21/ ∞

 Ω

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

4 ロ ト ィ *同* ト

1. *M* is of constant sectional curvature *c*:

R(*X*, *Y*)*Z* = $c(g(Y, Z)X - g(X, Z)Y)$, for all *X*, $Y, Z \in \mathfrak{X}(M)$

We obtain:

$$
\mathrm{trace}_{g} R(\nabla_{\bullet} \xi, \xi) \bullet = c \left[\nabla_{\xi} \xi - (\mathrm{div} \xi) \xi \right].
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 21/ ∞

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

- **2.** *M* = *M*(*c*) is a Sasakian space form
	- $R(X, Y)Z = \frac{c+3}{4}$ $\frac{+3}{4}(g(Y,Z)X - g(X,Z)Y)$ $+\frac{c-1}{4}$ $\frac{-1}{4}\Big(\eta(X)\eta(Z)Y-\eta(Y)\eta(Z)X+g(X,Z)\eta(Y)\xi-g(Y,Z)\eta(X)\xi$ $+g(Z,\varphi Y)\varphi X-g(Z,\varphi X)\varphi Y+2g(X,\varphi Y)\varphi Z\Big)$
- (*) is automatically satisfied and (**) implies: $\overline{\Delta}_{q}\xi = 2n\xi$ Proposition (Inoguchi, M.)

The vector field ξ is magnetic with the strength $q = -2n$.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 21/ ∞

K ロ > K 何 > K 君 > K 君 > 「君」 のなで

Tangent sphere bundles

The *tangent sphere bundle* of radius *r* > 0 is the hypersurface of *TM*

 $T^{(r)}M := \{(x; u) \in TM \mid g_x(u, u) = r^2 \}$

 $T^{(1)}M \stackrel{\text{not}}{=} UM$: the *unit tangent sphere bundle* of *M*.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Tangent sphere bundles

The *tangent sphere bundle* of radius *r* > 0 is the hypersurface of *TM*

 $T^{(r)}M := \{(x; u) \in TM \mid g_x(u, u) = r^2 \}$

 $T^{(1)}M \stackrel{\text{not}}{=} UM$: the *unit tangent sphere bundle* of *M*.

 $\bm{n} := \bm{U}/r$ unit normal vector field to $T^{(r)}M$

 \bar{g} = the Riemannian metric on $\mathcal{T}^{(r)}M$ induced by $g^{\rm S}$

KET KALLA SI YE KE YA GA

Tangent sphere bundles

The *tangent sphere bundle* of radius *r* > 0 is the hypersurface of *TM*

 $T^{(r)}M := \{(x; u) \in TM \mid g_x(u, u) = r^2 \}$

 $T^{(1)}M \stackrel{\text{not}}{=} UM$: the *unit tangent sphere bundle* of *M*.

 $\bm{n} := \bm{U}/r$ unit normal vector field to $\mathcal{T}^{(r)}M$ \bar{g} = the Riemannian metric on $\mathcal{T}^{(r)}M$ induced by $g^{\rm S}$ [Boeckx and Vanhecke] : the *tangential lift X*^t of *X*

$$
X_u^{\mathrm{t}} = X_u^{\mathrm{v}} - \frac{1}{r^2} g_x(X, u) \mathbf{U}_u
$$

KET KALLA SI YE KE YA GA

Tangent sphere bundle

[Boeckx and Vanhecke] The tangent space $T_{\mathcal{U}}(T^{(r)}\mathcal{M})$ of $T^{(r)}\mathcal{M}$ at a point $u = (x; u)$ is given by

 $T_u(T^{(r)}M) = \{X^{\text{h}} + Y^{\text{t}} \mid X, Y \in T_xM, g_x(Y, u) = 0 \}.$

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Tangent sphere bundle

The a. K. str. (J, g^{S}) induces an a. ct. m. str. $(\varphi, \xi, \eta, \bar{g})$ on $\mathcal{T}^{(r)}M$: $JE = \varphi E + \eta(E)\mathbf{n}$, $\xi = -J\mathbf{n}$. $\overline{\Omega}(E, F) := \overline{g}(E, \varphi F) = 2r d\eta(E, F), \ \ E, F \in \Gamma(T(T^{(r)}M)).$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 23/ ∞

KEL KALLARIN (RINGEL AGA)

Tangent sphere bundle

The a. K. str. (J, g^{S}) induces an a. ct. m. str. $(\varphi, \xi, \eta, \bar{g})$ on $\mathcal{T}^{(r)}M$: $JE = \varphi E + \eta(E)\mathbf{n}$, $\xi = -J\mathbf{n}$. $\overline{\Omega}(E, F) := \overline{g}(E, \varphi F) = 2r d\eta(E, F), \ \ E, F \in \Gamma(T(T^{(r)}M)).$ $r = 1/2$: $(T^{(1/2)}M, \varphi, \xi, \eta, \bar{g})$ is a contact metric manifold.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 23/ ∞

KEL KALLARIN (RINGEL AGA)

Magnetic unit vector fields

Joint work with

Jun-ichi Inoguchi (University of Hokkaido, Japan),

RACSAM, Serie A. Matematicas, 117 (2023) 2, art. 71.

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 24/ ∞

G.

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Harmonic unit vector fields

We have seen that the study of vector fields as harmonic maps from *M* to *T*(*M*) (in the compact case) implies that the vector field is **parallel**. Therefore, another appropriate mapping space for Dirichlet or bending energy could be $C^{\infty}(M, UM)$ or the space of all smooth unit vector fields $\mathfrak{X}_1(M)$.

A unit vector field χ is a critical point of β through (compactly supported) variations in $\mathfrak{X}_1(M)$ if and only if

$$
(*) \qquad \overline{\Delta}_g X = |\nabla X|^2 X.
$$

Unit vector fields satisfying (∗) are called *harmonic unit vector fields*. (Dragomir and Perrone)

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 24/ ∞

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Harmonic unit vector fields

We have seen that the study of vector fields as harmonic maps from *M* to *T*(*M*) (in the compact case) implies that the vector field is **parallel**. Therefore, another appropriate mapping space for Dirichlet or bending energy could be $C^{\infty}(M, UM)$ or the space of all smooth unit vector fields $\mathfrak{X}_1(M)$.

X is a harmonic map into *UM*, that is, critical point of *E* through (compactly supported) variations in $C^{\infty}(M, UM)$ if and only if X satisfies $(*) \quad \overline{\Delta}_gX = |\nabla X|^2X$ together with

 $tr_{\alpha}R(\nabla \cdot X, X) = 0.$

 Ω

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The *canonical* 1*-form* ω of *TM*:

$$
\omega_{(\boldsymbol{\rho};\boldsymbol{u})}(X^{\rm h})=g(\boldsymbol{u},X_{\boldsymbol{\rho}}),\;\; \omega_{(\boldsymbol{\rho};\boldsymbol{u})}(X^{\rm v})=0
$$

The magnetic field on *TM*:

 $F = -d\omega = g_S(J \cdot, \cdot)$

 \equiv

 QQ

4 0 8 4 6 8 4 9 8 4 9 8 1

Variation through vector fields: *X* (*s*) is regarded as a map

 $X^{(\mathcal{\boldsymbol{s}})}:(-\varepsilon,\varepsilon)\times\textit{M}\rightarrow\textit{TM};~(\textit{\textbf{s}},\textit{\textbf{p}})\longmapsto X^{(\mathcal{\boldsymbol{s}})}(\textit{\textbf{p}})\in\textit{TM}$

 $X^{(0)}(\rho)=X_\rho,$ for any $\rho\in\mathcal{M}$ $\pi(X^{(\mathcal{S})}(p))=p,$ for any s and for any $p\in M,$ i.e. $X^{(\mathcal{S})}(p)\in \mathcal{T}_{p}M$

KET KALLA SI YE KE YA GA

Variation through vector fields: *X* (*s*) is regarded as a map

$$
\mathsf{X}^{(\mathsf{S})}: (-\varepsilon, \varepsilon) \times \mathsf{M} \rightarrow \mathsf{T M}; \ (\mathsf{s}, \mathsf{p}) \longmapsto \mathsf{X}^{(\mathsf{s})}(\mathsf{p}) \in \mathsf{T M}
$$

 $X^{(0)}(\rho)=X_\rho,$ for any $\rho\in\mathcal{M}$ $\pi(X^{(\mathcal{S})}(p))=p,$ for any s and for any $p\in M,$ i.e. $X^{(\mathcal{S})}(p)\in \mathcal{T}_{p}M$ The *variational vector field V* of $\{X^{(s)}\}$:

$$
V_{\rho} = \frac{d}{ds}\bigg|_{s=0} X^{(s)}(\rho) = \lim_{s\to 0} \frac{1}{s} \left(X^{(s)}(\rho) - X_{\rho} \right) \in \mathcal{T}_{\rho}M
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 25/ ∞

 Ω

イロト イ押ト イヨト イヨト ニヨ

The canonical 1-form satisfies

$$
\omega_{\chi^{(s)}(\rho)}((X^{(s)})_{*\rho}X^{(0)}(\rho))=\omega_{\chi^{(s)}(\rho)}((X^{(0)})^h_{X^{(s)}(\rho)})=g_{\rho}(X^{(s)}(\rho),X^{(0)}(\rho))
$$

Hence

$$
\frac{d}{ds}\bigg|_{s=0} \omega_{\chi(s)(\rho)}(({X^{(s)}})_*{}_\rho {X^{(0)}}(\rho))=g_\rho(V,X)
$$

The first variation of the magnetic term $\overline{}$ D $\omega(X_*^{(\mathcal{S})}X^{(0)})$ $d\mathsf{v}_g$

$$
\left. \frac{d}{ds} \right|_{s=0} \int_{D} \omega(X_{*}^{(s)} X^{(0)}) \, d\mathsf{v}_{g} = \int_{D} g(V, X) \, d\mathsf{v}_{g}
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 26/ ∞

в

 Ω

イロト イ押 トイラト イラト

Since [Dragomir and Perrone, Theorem 2.8]

$$
\left. \frac{d}{ds} \right|_{s=0} E(X^{(s)}; \mathsf{D}) = \int_{\mathsf{D}} g(V, \overline{\Delta}_g X) \, d\mathsf{v}_g
$$

we have

$$
\left. \frac{d}{ds} \right|_{s=0} \text{LH}(X^{(s)}; \text{D}) = \int_{\text{D}} g(V, \overline{\Delta}_g X + qX) \, d\mathsf{v}_g
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 27/ ∞

Þ

 QQ

 $A \equiv \mathbf{1} \times \mathbf{1} \times \mathbf{1} \times \mathbf{1}$

4 **D + 4 P +**

驟

Theorem (Inoguchi, M. - 2023)

A vector field *X* on an oriented Riemannian manifold (*M*, *g*) is a critical point of the Landau-Hall functional under compact supported variations in $\mathfrak{X}(M)$ if and only if

$$
\overline{\Delta}_g X = -qX.
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 28/ ∞

в

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Magnetic unit vector fields

Recall: *UM* is a hypersurface of *TM* with unit normal vector field *U*:

 $\boldsymbol{U}_{(p;w)} = \boldsymbol{w}^{\textsf{v}}_{\textsf{w}}$

for any $w \in T_pM$.

The magnetic field: $F_U(\cdot,\cdot)=g_{_S}(\phi\cdot,\cdot)$

 $X:$ a unit vector field on M : smooth map $X: M \rightarrow UM$ tension field [Dragomir and Perrone: page 59]; [Han and Yim]:

$$
\tau_{\scriptscriptstyle \rm I}(X) = - \left\{ \left({\rm tr}_g H(\nabla. X, X) \cdot \right)^{\mathsf h} + (\overline{\Delta}_g X)^{\mathsf t} \right\} \circ X
$$

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Magnetic unit vector fields

 m agnetic map equation: $\tau_{_1}(X) = q\phi(X_{*}X)$ $\phi(X_*X)_X = X_X^{\dagger} - (\nabla_X X)_X^{\dagger}$

Theorem (Inoguchi, M. - 2023)

A unit vector field *X* on (*M*, *g*) is a magnetic map into *UM* if and only if

 $\text{tr}_g H(\nabla X, X) = q \nabla_X X, \ \overline{\Delta}_g X = |\nabla X|^2 X.$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 30 / ∞

K ロ > K 何 > K 君 > K 君 > 「君」 のなで

LH functional: variation through unit vector fields

 X a unit vector field; $\{X^{(s)}\}$ a variation through unit vector fields

About Dirichlet energy the following result is known:

Theorem (Han and Yim; C.M. Wood; Wiegmink)

A unit vector field *X* on an oriented Riemannian manifold (*M*, *g*) is a critical point of the Dirichlet energy with respect to compactly supported variations in $\mathfrak{X}_1(M)$ if and only if

$$
\overline{\Delta}_g X = |\nabla X|^2 X.
$$

(**harmonic unit vector field**)

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 31/ ∞

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

LH functional: variation through unit vector fields

Landau-Hall functional under compact support variations in $\mathfrak{X}_1(M)$:

$$
\mathrm{LH}(\boldsymbol{s}):=\mathrm{LH}(\boldsymbol{\mathit{X}}^{(\boldsymbol{s})};\boldsymbol{\mathsf{D}})=\boldsymbol{\mathsf{E}}(\boldsymbol{\mathit{X}}^{(\boldsymbol{s})};\boldsymbol{\mathsf{D}})+\boldsymbol{\mathit{q}}\int_{\boldsymbol{\mathsf{D}}}\eta_{\chi(\boldsymbol{s})}(\boldsymbol{\mathit{X}}^{(\boldsymbol{s})}_{*}\boldsymbol{\mathit{X}}^{(\boldsymbol{0})})d\boldsymbol{\mathit{v}}_{g}
$$

Theorem (Inoguchi, M. - 2023)

A unit vector field *X* on an oriented Riemannian manifold (*M*, *g*) is a critical point of the Landau-Hall functional under compact support variations in $\mathfrak{X}_1(M)$ if and only if it is a critical point of the Dirichlet energy under compact support variations in $\mathfrak{X}_1(M)$.

The first variation:

$$
\mathrm{LH}'(0)=\int_D g(V,\bar{\Delta}_g X+qX)d\nu_g
$$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 32/ ∞

 \equiv

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Magnetic unit vector fields

Conclusion:

A unit vector field X is a magnetic map into UM with charge q if and only if it is a critical point of the Landau-Hall functional under compact support variations in X1(*M*) *and, in addition, it satisfies*

 $\text{tr}_{q}R(\nabla \cdot X, X) = q \nabla_{X}X.$

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 33/ ∞

 \equiv

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Magnetic unit vector fields

Conclusion:

A unit vector field X is a magnetic map into UM with charge q if and only if it is a critical point of the Landau-Hall functional under compact support variations in X1(*M*) *and, in addition, it satisfies*

 $\text{tr}_{q}R(\nabla \cdot X, X) = q \nabla_{X}X.$

Examples: unimodular Lie groups

в

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

T

Braker

 \sim

E

(ロ) (伊)

 290

≣

T h

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

舌

重きす

 \sim

(ロ) (伊)

 290

君

T h a

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

Braker

 \sim

舌

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

 290

君

T h a n

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 \sim E

 290

君

重す

 \sim

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

T h a n k

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

舌

 290

Braker

 \sim

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

T h a n k y

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 290

4 ロ ト ィ *同* ト

 \sim 医下环菌

T h a n k y o

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 290

4 ロ ト ィ *同* ト

 \sim 医下半面

T h a n k y o u

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

4 ロ ト ィ *同* ト

 \sim 医下环菌 290
T h a n k y o u f

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

4 ロ ト ィ *同* ト

 \sim ラメス 国 290

T h a n k y o u f o

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

つへへ

医单位 医单

4 ロ ト ィ *同* ト

T h a n k y o u f o r

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

医单位 医单

4 ロ ト ィ *同* ト

つへへ

T h a n k y o u f o r a

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

つへへ

K ロ ▶ K 御 ▶ K 君 ▶ K 君

T h a n k y o u f o r a t

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

K ロ ▶ K 御 ▶ K 君 ▶ K 君

 Ω

T h a n k y o u f o r a t t

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君

T h a n k y o u f o r a t t e

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 Ω

T h a n k y o u f o r a t t e n

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 Ω

T h a n k y o u f o r a t t e n t

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 Ω

T h a n k y o u f o r a t t e n t i

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

イロト イ押ト イヨト イヨ

 Ω

T h a n k y o u f o r a t t e n t i o

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024/ ∞

 Ω

T h a n k y o u f o r a t t e n t i o n

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

 Ω

K ロ ト K 伺 ト K ヨ ト K

T h a n k y o u f o r a t t e n t i o n !

Marian Ioan MUNTEANU (UAIC) [Magnetic vector fields](#page-0-0) USC: 2024/09/24 2024 / ∞

 Ω

K ロ ト K 伺 ト K ヨ ト K