Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

Miguel Sánchez, Univ. Granada & IMAG

Based on A. Elshafei, AC. Ferreira, M. Sánchez, A. Zeghib: Tran. AMS (2024)

Symmetry and Shape. U. Santiago, 27/09/24

Miguel Sánchez (U. Granada) [Completeness on Lie groups](#page-136-0)

My talk is entitled

Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

 2990

∍

Eduardo is a distinguished developer of S-R. G. in the world

- **1** Osserman manifolds in semi-Riemannian geometry (2004) E García-Río, DN Kupeli, R Vázquez-Lorenzo
- 2 Semi-Riemannian maps and their applications (2013) E García-Río, DN Kupeli
- 3 The geometry of Walker manifolds (2022) Peter Gilkey, Miguel Brozos-Vázquez, Eduardo García-Río, Stana Nikcević, Ramón Vázquez-Lorenzo

Further topics as:

- **Lorentzian Ricci solitons,**
- **Null and infinitesimal isotropy in semi- Riemannian geometry,**
- \blacksquare Lorentzian manifolds with special curvature operators,
- **E.** Curvature of indefinite almost contact manifolds...

In particular, a distinguished promoter of Lorentzian G. in Spain

First Int. Meet. Lorentzian Geometry, Benalmádena (2021) A sort of Big-Bang for Spanish Lorentzian Geometry

In particular, a distinguished promoter of Lorentzian G. in Spain

First Int. Meet. Lorentzian Geometry, Benalmádena (2021)

A sort of Big-Bang for Spanish Lorentzian Geometry ...and for a community of very good researchers an[d](#page-3-0) [ve](#page-5-0)[ry](#page-2-0) [g](#page-4-0)[o](#page-5-0)[o](#page-0-0)[d](#page-136-0) [fri](#page-0-0)[en](#page-136-0)[ds](#page-0-0)

 QQ

Eduardo is also a distinguished promoter of the group of very good researchers and very good friends hosting us in Santiago

 QQ

Coming back, my talk is entitled

Marsden theorem and completeness of left-invariant semi-Riemannian metrics on Lie groups

and it is based on joint work with

A. Elshafei, A.C. Ferreira and A. Zeghib

(Trans AMS'24)

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group. If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group. If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

In particular, this includes all the known cases:

- compact (Marsden, Indiana'73)
- 2-step nilpotent (Guediri, Torino'94)
- **s** semidirect $K \times_{\rho} \mathbb{R}^n$
	- \blacksquare K direct product of compact and abelian groups
	- $\rho(K)$ pre-compact in $GL(n, R)$

(in particular, E(2) in Bromberg & Medina, SIGMA'08)

 \triangleright \rightarrow \exists \triangleright \rightarrow

Theorem (Elshafei, Ferreira, S., Zeghib '24)

Let G be a (finite-dimensional) Lie group. If its adjoint representation has an at most linear growth, then all its left-invariant semi-Riemannian metrics are complete

In particular, this includes all the known cases:

- compact (Marsden, Indiana'73)
- 2-step nilpotent (Guediri, Torino'94)
- **s** semidirect $K \times_{\rho} \mathbb{R}^n$
	- \blacksquare K direct product of compact and abelian groups
	- $\rho(K)$ pre-compact in $GL(n, R)$

(in particular, E(2) in Bromberg & Medina, SIGMA'08)

Heuristic approach, starting at Marsden's:

compact homogeneous semi-Riemannian manifolds are complete

 200

Planning:

- **1** Background and examples
- 2 Marsden theorem:
	- Original proof for compact homogeneous spaces
- 3 Clairaut metrics on Lie groups
	- A variant of Marsden's proof
- 4 Linear growth and geodesic completeness
- **5** Growth of the adjoint representation and proof of Thm.
- ⁶ Discussion: Aff(R)
- **7** Groups of linear growth

 200

Left invariant metrics g on a Lie group G :

Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

 2990

 \triangleright and \equiv \triangleright and \equiv \triangleright

1. Background and examples

Left invariant metrics g on a Lie group G :

• Def:
$$
L_p g^* = g
$$
, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

Noble birth: Euler solution of solid rigid motion \rightarrow geodesics of a left-invariant g on $SO(3)$ (as in Euler-Arnold eqns, Arnold, Grenoble'66)

1. Background and examples

Left invariant metrics g on a Lie group G :

Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

Noble birth: Euler solution of solid rigid motion \rightarrow geodesics of a left-invariant g on $SO(3)$ (as in Euler-Arnold eqns, Arnold, Grenoble'66)

■ Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's

Left invariant metrics g on a Lie group G :

Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

Noble birth: Euler solution of solid rigid motion \rightarrow geodesics of a left-invariant g on $SO(3)$ (as in Euler-Arnold eqns, Arnold, Grenoble'66)

- Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's
- Recent application to semi-Riemannian Geometry: ∃ compact Lorentzian manifold with no closed geodesic (Allout, Belkacem, Zeghib, GAFA'24)
	- \blacksquare Enough simple to control all of the geodesics
	- Highly subtle behaviour

伺 ▶ イヨ ▶ イヨ ▶

 200

Left invariant metrics g on a Lie group G :

Def: $L_p g^* = g$, $\forall p \in G$, where $L_p(q) = pq$, $\forall q \in G$

Noble birth: Euler solution of solid rigid motion \rightarrow geodesics of a left-invariant g on $SO(3)$ (as in Euler-Arnold eqns, Arnold, Grenoble'66)

■ Very common in Lie group theory and applications: metrics on the fibers of a principle fiber bundle, Physics: Kaluza Klein theory, GUT's

Recent application to semi-Riemannian Geometry: ∃ compact Lorentzian manifold with no closed geodesic (Allout, Belkacem, Zeghib, GAFA'24)

- \blacksquare Enough simple to control all of the geodesics
- Highly subtle behaviour

But the metric is incomplete (the party goes on!)

Geodesic completeness

- \blacksquare Hopf Rinow th.: basic property for Riemannian manifolds
- Subtle in the semi-Riemannian case (no Hopf-Rinow):

つへへ

Geodesic completeness

- \blacksquare Hopf Rinow th.: basic property for Riemannian manifolds
- Subtle in the semi-Riemannian case (no Hopf-Rinow):

Note. Completeness important for General Relativity:

■ Singularity thms (as Penrose's) prove incompleteness but no curvature blow up

Example 1: incomplete homogeneous Lorentzian mfd

(Recall: homogeneous Riemannian mfds are complete)

 QQ

(Recall: homogeneous Riemannian mfds are complete)

- 1 Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- $\overline{\textbf{2}}$ Lightlike coordinates $(u=(x+y)/2)$ √ $2, v = (-x + y)$ √ 2)

$$
g_0=-2dudv\ (:= -du\otimes dv-dv\otimes du),\qquad \forall (u,v)\in \mathbb{R}^2
$$

3 Restrict to $u > 0$, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

(Recall: homogeneous Riemannian mfds are complete)

- 1 Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- $\overline{\textbf{2}}$ Lightlike coordinates $(u=(x+y)/2)$ √ $2, v = (-x + y)$ √ 2)

$$
g_0=-2dudv\ (:= -du\otimes dv-dv\otimes du),\qquad \forall (u,v)\in \mathbb{R}^2
$$

3 Restrict to $u > 0$, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

Admits the isometries:

- 1 For each $\lambda > 0$: $\phi_{\lambda}(u, v) = (\lambda u, v/\lambda)$
- 2 For each $b \in \mathbb{R}$, translations $(u, v) \mapsto (u, v + b)$

(Recall: homogeneous Riemannian mfds are complete)

- 1 Consider $\mathbb{L}^2 = (\mathbb{R}^2, g_0 = dx^2 dy^2)$
- $\overline{\textbf{2}}$ Lightlike coordinates $(u=(x+y)/2)$ √ $2, v = (-x + y)$ √ 2)

$$
g_0=-2dudv\ (:= -du\otimes dv-dv\otimes du),\qquad \forall (u,v)\in \mathbb{R}^2
$$

3 Restrict to $u > 0$, i.e. $(u, v) \in \mathbb{R}^+ \times \mathbb{R}$.

Admits the isometries:

- 1 For each $\lambda > 0$: $\phi_{\lambda}(u, v) = (\lambda u, v/\lambda)$
- 2 For each $b \in \mathbb{R}$, translations $(u, v) \mapsto (u, v + b)$

 $\rightsquigarrow M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ becomes a homogeneous manifold, trivially incomplete

Choose
$$
\lambda = 2
$$
, $\phi_2(u, v) = (2u, v/2)$

$$
G = \{\phi_2^k : k \in \mathbb{Z}\}
$$

Let G act on (open subsets of) \mathbb{L}^2 :

 QQ

Choose
$$
\lambda = 2
$$
, $\phi_2(u, v) = (2u, v/2)$

$$
G=\{\phi_2^k:k\in\mathbb{Z}\}
$$

Let G act on (open subsets of) \mathbb{L}^2 :

1 G is a non-precompact isometry subgroup

つへへ

Choose
$$
\lambda = 2
$$
, $\phi_2(u, v) = (2u, v/2)$

$$
G=\{\phi_2^k:k\in\mathbb{Z}\}
$$

Let G act on (open subsets of) \mathbb{L}^2 :

- **1** G is a non-precompact isometry subgroup
- **2** On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $\rightsquigarrow (\mathbb{L}^{2}\setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold

Choose
$$
\lambda = 2
$$
, $\phi_2(u, v) = (2u, v/2)$

$$
G=\{\phi_2^k:k\in\mathbb{Z}\}
$$

Let G act on (open subsets of) \mathbb{L}^2 :

- **1** G is a non-precompact isometry subgroup
- **2** On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $\rightsquigarrow (\mathbb{L}^{2}\setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold 3 On $M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ action properly discontinuous \rightsquigarrow *M/G* is the Misner cylinder

Choose
$$
\lambda = 2
$$
, $\phi_2(u, v) = (2u, v/2)$

$$
G=\{\phi_2^k:k\in\mathbb{Z}\}
$$

Let G act on (open subsets of) \mathbb{L}^2 :

- **1** G is a non-precompact isometry subgroup
- **2** On \mathbb{L}^2 : not free (fix point $\Phi_2^k(0,0) = (0,0)$) On $\mathbb{L}^2 \setminus \{0\}$: G acts by isometries freely and discontinuously but not properly discontinuously $\rightsquigarrow (\mathbb{L}^{2}\setminus \{0\})/G$ is a non-Hausdorff Lorentzian manifold 3 On $M = \{(u, v) \in \mathbb{L}^2 : u > 0\}$ action properly discontinuous \rightsquigarrow *M/G* is the Misner cylinder

obviously incomplete

... and with a closed incomplete geodesic

Example 3: incomplete closed geodesics in Misner's

Misner cylinder M/G

$$
M = \{(u, v) \in \mathbb{L}^2 : u > 0\}
$$

Misner cylinder has an incomplete closed (lightlike) geodesic!

 QQ

Example 4: Incomplete Lorentzian tori (intuitive)

- Misner cylinder shows $\mathcal{C}^{\mathcal{A}}$ that an incomplete geodesic may remain in a compact region.
- Intuitively, it's easy to go **T** from the cylinder to a torus!

4 17 18

つへへ

Example 4: Incomplete Lorentzian tori (explicit)

 (\mathbb{R}^2, g) in usual coordinates

 $g = 2dx dy - 2\tau(x)dy^2$,

where $\tau : \mathbb{R} \to \mathbb{R}$ satisfies:

(1) 1-periodic

 \rightarrow The metric g is inducible in the quotient torus $\mathbb{R}^2/\mathbb{Z}^2$

(2) $\tau(0) = 0$.

 \rightarrow The coordinate axis y is the image of a lightlike geodesic

(3) $\tau'(0) \neq 0$.

 \rightarrow Such a lightlike geodesic is incomplete:

- Christoffel symbol: $\Gamma_{yy}^y(x, y) = \frac{1}{2} g^{yx} (2 \partial_y g_{xy} - 2 \partial_x g_{yy}) = \tau'(x),$
- Equation for the component $y(t)$: $y''(t) + \tau'(0)y'(t)^2 = 0$.

つくい

Incomplete y-solution: $y(t) = \ln(t)/\tau'(0)$

Notes:

1 Clifton-Pohl's torus : $\mathbb{R}^2/\mathbb{Z}^2$

$$
g = \pi^2 \cos 2\pi x (2 dx dy) - \pi^2 \sin 2\pi x (dx^2 - dy^2)
$$

1st example compact+incomplete

- 2 Lorentzian tori with a Killing field K ($K = \partial_v$ above) incomplete $\Leftrightarrow g(K,K)$ non-constant sign ⇔ space, time & lightlike incomplete geod.
	- S., Trans AMS '97 (systematic study)
	- Many subtler properties: Mehidi, Math Z'22, Geom. Ded.'23

Theorem (Marsden'73)

A compact homogeneous semi-Riemannian manifold is complete.

つくへ

Theorem (Marsden'73)

A compact homogeneous semi-Riemannian manifold is complete.

Proof. Let $\gamma : [0, b) \to M$, $b < \infty$ be a geodesic:

- $\bf{1}$ General: γ' in compact $\mathcal{C}_\gamma\subset\mathcal{T} M\Rightarrow \gamma$ extends smoothly to b
- 2^+ Under our hyp.: such a \mathcal{C}_{γ} exists (and will contain $\gamma'([0,\infty))$

 $\textbf{1} \hspace{0.2cm} \gamma'$ in a compact subset $\textit{C}_{\gamma} \subset \textit{TM} \Rightarrow \gamma$ extensible to b

Lemma (Step 1)

For any affine conn. ∇ on M:

 $\{\gamma'(t_m)\}_m$ converges in TM for some $\{t_m\}\nearrow b$ $\implies \gamma$ is extendible to b as a geodesic

化重新润滑

 $\textbf{1} \hspace{0.2cm} \gamma'$ in a compact subset $\textit{C}_{\gamma} \subset \textit{TM} \Rightarrow \gamma$ extensible to b

Lemma (Step 1)

For any affine conn. ∇ on M:

 $\{\gamma'(t_m)\}_m$ converges in TM for some $\{t_m\}\nearrow b$ $\implies \gamma$ is extendible to b as a geodesic

Proof. Consequence of $\rho := \gamma'$ is an integral curve of the geodesic vector field $\mathcal G$ on TM. (existence and uniqueness of its local flow through the limit) \square

2. $\exists \textit{C}_{\gamma}$ compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be $(m \geq dim M)$ a base of Killing algebra and

$$
c_i := g(\gamma'(0), K_i), \qquad i = 1, \ldots m
$$

\n
$$
C_{\gamma} := \{v \in TM : c_i = g(v, K_i), \quad i = 1, \ldots m\}
$$

\n- (a)
$$
C_{\gamma}
$$
 contains $\gamma'(t), \forall t \in [0, b)$
\n- (b) C_{γ} is compact
\n

Proof. (a) For any geodesic γ and Killing K:

 $g(\gamma',{\color{black} K})$ is constant

 2990

御 ▶ イヨ ▶ イヨ ▶ │
2.
$$
\exists \mathcal{C}_{\gamma}
$$
 compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be ($m \geq$ dim M) a base of Killing v.f. and put

$$
c_i := g(\gamma'(0), K_i), \qquad i = 1, \ldots m C_{\gamma} := \{ v \in TM : c_i = g(v, K_i), \quad i = 1, \ldots m \}
$$

\n- (a)
$$
C_{\gamma}
$$
 contains $\gamma'(t), \forall t \in [0, b)$
\n- (b) C_{γ} is compact
\n

Proof. (b) Steps:

- \Box C_{γ} is closed (trivial)
- $\overline{\textbf{2}}$ $\bm{\mathsf{\Pi}}$: $\mathcal{TM} \rightarrow M$ restricted to \mathcal{C}_{γ} injective $(c_i$'s overdetermine $v)$

押 ▶ イヨ ▶ イヨ ▶ │

2.
$$
\exists \mathcal{C}_{\gamma}
$$
 compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be (m > dim M) a base of Killing v.f. and put

$$
c_i := g(\gamma'(0), K_i), \qquad i = 1, \ldots m C_{\gamma} := \{ v \in TM : c_i = g(v, K_i), \quad i = 1, \ldots m \}
$$

\n- (a)
$$
C_{\gamma}
$$
 contains $\gamma'(t), \forall t \in [0, b)$
\n- (b) C_{γ} is compact
\n

Proof. (b) Steps:

- \Box C_{γ} is closed (trivial)
- $\overline{\textbf{2}}$ $\bm{\mathsf{\Pi}}$: $\mathcal{TM} \rightarrow M$ restricted to \mathcal{C}_{γ} injective $(c_i$'s overdetermine $v)$
- 3 $\Pi(C_{\gamma})$ is closed, thus compact (as so is M): At each $p \in \partial(\Pi(C_{\gamma}))$, choose *n* Killing independent at *p*, a normal neigh. and use overdetermination of geod. through p

2.
$$
\exists \mathcal{C}_{\gamma}
$$
 compact containing γ'

Lemma (Step 2)

Let $K_1, \ldots K_m$ be (m > dim M) a base of Killing v.f. and put

$$
c_i := g(\gamma'(0), K_i), \qquad i = 1, \ldots m C_{\gamma} := \{v \in TM : c_i = g(v, K_i), \quad i = 1, \ldots m\}
$$

\n- (a)
$$
C_{\gamma}
$$
 contains $\gamma'(t), \forall t \in [0, b)$
\n- (b) C_{γ} is compact
\n

Proof. (b) Steps:

- \Box C_{γ} is closed (trivial)
- $\overline{\textbf{2}}$ $\bm{\mathsf{\Pi}}$: $\mathcal{TM} \rightarrow M$ restricted to \mathcal{C}_{γ} injective $(c_i$'s overdetermine $v)$
- **3** $\Pi(C_{\gamma})$ is closed, thus compact (as so is M): At each $p \in \partial(\Pi(C_{\gamma}))$, choose *n* Killing independent at *p*, a normal neigh. and use overdetermination of geod. through p $\frac{4}{2} \prod_{c_{\gamma}}$ $\frac{4}{2} \prod_{c_{\gamma}}$ $\frac{4}{2} \prod_{c_{\gamma}}$ $\frac{4}{2} \prod_{c_{\gamma}}$ $\frac{4}{2} \prod_{c_{\gamma}}$ is continuously invertible (as v var[ies](#page-37-0) [c](#page-39-0)o[n](#page-36-0)[t.](#page-38-0) [wi](#page-0-0)[th](#page-136-0) $c_i's$ $c_i's$ $c_i's$ $c_i's$ [\)](#page-136-0) \Box

Notes. Going further

■ Weaken: homogeneous → conformally-homogeneus

- $\gamma'([0,b)))$ is proven to lie in a compact subset of ${\it TM}$
- ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, $\mathsf{possibly}$ not

化重新化重

Notes. Going further

■ Weaken: homogeneous \longrightarrow conformally-homogeneus

- $\gamma'([0,b)))$ is proven to lie in a compact subset of ${\it TM}$
- ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, $\mathsf{possibly}$ not

Semi-Riemannian g of index s :

s pointwise indep. timelike $(g(K,K) < 0)$ conf. Killing v.f.

⇒ completeness

Extensible to non-compact M case under some assumptions

(Romero, S., Proc AMS'95/ Geom. Dedic.'94)

医阿里氏阿里氏

Notes. Going further

■ Weaken: homogeneous \longrightarrow conformally-homogeneus

- $\gamma'([0,b)))$ is proven to lie in a compact subset of ${\it TM}$
- ...but, as a difference with Marsden's, $\gamma'([0,\infty))$, $\mathsf{possibly}$ not

Semi-Riemannian g of index s :

- **s** pointwise indep. timelike $(g(K,K) < 0)$ conf. Killing v.f. ⇒ completeness
- Extensible to **non-compact M** case under some assumptions

(Romero, S., Proc AMS'95/ Geom. Dedic.'94)

Corollary [precedent of ours] for non-compact Lorentz M :

- \exists timelike Killing K with $|g(K,K)| \geq \epsilon > 0$
- It is complete the ("Wick-rotated") Riemann $g_R\!:=g-2({K^{\flat}\otimes K^{\flat}})/g(K,K)$

 \Rightarrow complete g

何 ▶ イヨ ▶ イヨ ▶ │

Notes. Going even beyond

Gompact Lorentz with K lightlike

- K Killing \neq complete, Hanounah, Mehidi, arxiv: 2403.15722
- K Parallel \Rightarrow complete, Mehidi, Zeghib, arxiv: 2205.07243
	- Applicable even weakening compactnes
	- **Improve Leistner, Schliebner Math Ann '16** (pp-waves, Abelian holonomy)

Notes. Going even beyond

Gompact Lorentz with K lightlike

- K Killing \neq complete, Hanounah, Mehidi, arxiv: 2403.15722
- K Parallel \Rightarrow complete, Mehidi, Zeghib, arxiv: 2205.07243
	- Applicable even weakening compactnes
	- **Improve Leistner, Schliebner Math Ann '16** (pp-waves, Abelian holonomy)

For (M, ∇) compact affine (possibly non-symmetric) Precompact holonomy \Rightarrow completeness (Aké, S., JMAA '16)

\blacksquare G admits a natural uniformity

Base of entourages: $\{V_U: U$ is a neighbourhood of 1} where $V_U := \{ (p,q) \in G \times G : q^{-1}.p \in U \}.$

 \rightsquigarrow Cauchy filters, completeness

\blacksquare G admits a natural uniformity

Base of entourages: $\{V_U: U$ is a neighbourhood of 1} where $V_U := \{ (p,q) \in G \times G : q^{-1}.p \in U \}.$

 \rightsquigarrow Cauchy filters, completeness

All the left invariant **Riemanian** metrics g_R , g_R' are:

- Complete (homogeneous positive def. spaces)
- Bilipschitz bounded: $c g_R \leq g_R' \leq g_R/c$. $(c \in \mathbb{R})$
- \rightsquigarrow induce the natural uniformity on G

G Lie group, g left invariant semi-Riemannian metric, $p \in G$ (e_i) basis Lie algebra $g = T_1 G$,

G Lie group, g left invariant semi-Riemannian metric, $p \in G$ (e_i) basis Lie algebra $\mathfrak{g} = T_1 G$, Extend e_i to v.f. X_i, Y_i $(X_i(1) = Y_i(1) = e_i)$: **Left invariant:** $X_i(p) = p.e_i$ \rightsquigarrow frame on $\overline{T}G$

G Lie group, g left invariant semi-Riemannian metric, $p \in G$ (e_i) basis Lie algebra $\mathfrak{g} = T_1 G$, Extend e_i to v.f. X_i, Y_i $(X_i(1) = Y_i(1) = e_i)$: **Left invariant:** $X_i(p) = p.e_i$ \rightsquigarrow frame on TG Right invariant: $Y_i(p) = e_i.p$ Y_i Killing for g

G Lie group, g left invariant semi-Riemannian metric, $p \in G$ (e_i) basis Lie algebra $\mathfrak{g} = T_1 G$, Extend e_i to v.f. X_i, Y_i $(X_i(1) = Y_i(1) = e_i)$:

- **Left invariant:** $X_i(p) = p.e_i$ \rightsquigarrow frame on TG
- Right invariant: $Y_i(p) = e_i.p$

 Y_i Killing for g

Clairaut forms and coframe: $\omega^i := g(Y_i, \cdot)$

For any geodesic $\gamma: \omega^i(\gamma') \equiv c \in \mathbb{R}$ ■ Transformation law ($\dagger \equiv g$ -adjoint operator):

$$
\omega_p'(\rho.u) = g_p(Y_i(\rho), \rho.u) = g_p(e_i.\rho, \rho.u) = g_1(\mathrm{Ad}_{\rho^{-1}}(e_i), u) = g_1(e_i, ((\mathrm{Ad}_{\rho})^{-1})^{\dagger})(u)) = \omega_1'((\mathrm{Ad}_{\rho}^{\dagger})^{-1}(u)).
$$

 200

no left (nor right) invariant

Definition

Clairaut metric (associated to a Clairaut coframe: g_i , (e_i)):

$$
h:=\sum \omega^i\otimes\omega^i
$$

 h Riemannian metric on G

Transformation rule:

 $h_p(p.u, p.v) = \sum_i g_1((\text{Ad}_{p^{-1}})(e_i), u) g_1((\text{Ad}_{p^{-1}})(e_i), v).$

Definition

Clairaut metric (associated to a Clairaut coframe: g_i , (e_i)):

$$
h:=\sum\omega^i\otimes\omega^i
$$

 \blacksquare h Riemannian metric on G

Transformation rule:

 $h_p(p.u, p.v) = \sum_i g_1((\text{Ad}_{p^{-1}})(e_i), u) g_1((\text{Ad}_{p^{-1}})(e_i), v).$

n Change of bases (e_i) , (\hat{e}_i) with Clairaut h, \hat{h} :

■ bi-Lipschitz bounded $(\Rightarrow$ uniformly equivalent distances) Moreover: Transition matrix M orthonormal $\implies h = \hat{h}$

Definition

Clairaut metric (associated to a Clairaut coframe: g_i , (e_i)):

$$
h:=\sum \omega^i\otimes\omega^i
$$

 h Riemannian metric on G

Transformation rule:

 $h_p(p.u, p.v) = \sum_i g_1((\text{Ad}_{p^{-1}})(e_i), u) g_1((\text{Ad}_{p^{-1}})(e_i), v).$

n Change of bases (e_i) , (\hat{e}_i) with Clairaut h, \hat{h} :

■ bi-Lipschitz bounded $(\Rightarrow$ uniformly equivalent distances) Moreover: Transition matrix M orthonormal $\implies h = \hat{h}$

 \rightsquigarrow Clairaut uniformity of g

Theorem

If the Clairaut uniformity [or metric h] is complete then g is complete.

4日)

E

K 御 ▶ K 君 ▶ K 君 ▶

Theorem

If the Clairaut uniformity [or metric h] is complete then g is complete.

Proof. Let $\gamma : [0, b) \to M, b < \infty$ a geodesic: $h(\gamma', \gamma') \equiv C$, thus, γ has finite *h*-length

押 ▶ イヨ ▶ イヨ ▶ │

э

Theorem

If the Clairaut uniformity for metric h_l is complete then g is complete.

Proof. Let $\gamma : [0, b) \to M, b < \infty$ a geodesic:

 $h(\gamma', \gamma') \equiv C$, thus, γ has finite *h*-length

 \blacksquare h is complete (and Riemannian): γ' lies in a compact subset of ${\overline{T}M}$ $\rightsquigarrow \gamma$ extensible as a geodesic \square

Corollary (Special case of Marsden's)

Any left invariant metric g on a compact Lie group G is complete

Proof. Its Clairaut h is complete because M is compact \square

つくへ

A compact homogeneous semi-Riemannian manifold is complete.

Proof. Homogeneity: any $v \in T_pM$ extend to a Killing on M

A compact homogeneous semi-Riemannian manifold is complete.

Proof. Homogeneity: any $v \in T_pM$ extend to a Killing on M

- Any base (e_j) of $\mathcal{T}_\rho M$ extends to Killing ($Y^{(\rho)}_j$ j)
- **Pointwise independent on a neighborhood** $U_p \ni p$

A compact homogeneous semi-Riemannian manifold is complete.

Proof. **Homogeneity**: any $v \in T_pM$ extend to a Killing on M

- Any base (e_j) of $\mathcal{T}_\rho M$ extends to Killing ($Y^{(\rho)}_j$ j)
- **Pointwise independent on a neighborhood** $U_p \ni p$

Clairaut
$$
h_p = \sum \omega_{Y_j^{(p)}}^2
$$
 is now

Positive definite on U_p

Positive semidefinite on M

A compact homogeneous semi-Riemannian manifold is complete.

Proof. **Homogeneity**: any $v \in T_pM$ extend to a Killing on M

Any base (e_j) of $\mathcal{T}_\rho M$ extends to Killing ($Y^{(\rho)}_j$ j)

Pointwise independent on a neighborhood $U_p \ni p$

Clairaut
$$
h_p = \sum \omega_{Y_j^{(p)}}^2
$$
 is now

Positive definite on U_p

Positive semidefinite on M

Compactness of M: finite covering $U_{p_k}, k = 1, \ldots, s$ $\longrightarrow h = \sum h_{p_k}$ is positive def. (and complete) \rightsquigarrow the uniformity of h is complete \rightsquigarrow g is complete \square

伊 ▶ イヨ ▶ イヨ ▶

In the remainder:

1 Given left invariant g , construct Clairaut h \rightsquigarrow choice of basis (e_i) of $g = T_1G$

2 Our aim will be to prove completeness of h (and thus of g)

Auxiliary left invariant (complete) Riemannian metric \tilde{g}

 299

∍

э

- Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
	- (e_i) in $g = T_1G$ orthonormal (Sylvester) for g_1 and \tilde{g}_1

Then, h is independent of the common orthonormal (e_i)

- Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
	- (e_i) in $g = T_1G$ orthonormal (Sylvester) for g_1 and \tilde{g}_1

Then, h is independent of the common orthonormal (e_i) Expression for h:

 $h_p(p.u, p.v) = \tilde{g}_1(\text{Ad}_{p^{-1}}^*(\psi(u)), \text{Ad}_{p^{-1}}^*(\psi(v)))$

- \bullet * denotes adjoint respect to \tilde{g}_1
- $\psi: \mathfrak{g} \rightarrow \mathfrak{g}$ linear with $\psi(e_i)=\epsilon_i e_i$, $\epsilon_i:=g_1(e_i,e_i)$ (ψ isometry and self-adjoint for g_1 and \tilde{g}_1)

何 ▶ (ヨ ト (ヨ ト

- Auxiliary left invariant (complete) Riemannian metric \tilde{g}
- With no loss of generality \tilde{g} will be chosen *Wick rotated*:
	- (e_i) in $g = T_1G$ orthonormal (Sylvester) for g_1 and \tilde{g}_1

Then, h is independent of the common orthonormal (e_i) Expression for h:

$h_p(p.u, p.v) = \tilde{g}_1(\text{Ad}_{p^{-1}}^*(\psi(u)), \text{Ad}_{p^{-1}}^*(\psi(v)))$

- \bullet * denotes adjoint respect to \tilde{g}_1
- $\psi: \mathfrak{g} \rightarrow \mathfrak{g}$ linear with $\psi(e_i)=\epsilon_i e_i$, $\epsilon_i:=g_1(e_i,e_i)$ (ψ isometry and self-adjoint for g_1 and \tilde{g}_1)

Summing up, h constructed from:

- **Euclidean** \tilde{g}_1 , its isometry ψ and adjoint operator *
- the adjoint representation of G : $\mathsf{Ad}_q(v) = q \cdot v \cdot q^{-1}$.

4. Linear growth and geodesic completeness

Abstract setting:

 M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \text{dist}(x, x_0)$ for some $x_0 \in M$

4. Linear growth and geodesic completeness

Abstract setting:

- M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \text{dist}(x, x_0)$ for some $x_0 \in M$
- \blacksquare h Riemannian m. find a criterion for completeness

$$
\blacksquare \parallel \cdot \parallel_h \geq \parallel \cdot \parallel_R \implies h \text{ complete (trivial)}
$$

4. Linear growth and geodesic completeness

Abstract setting:

- \blacksquare M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \text{dist}(x, x_0)$ for some $x_0 \in M$
- \blacksquare h Riemannian m. find a criterion for completeness

\n- $$
\|\cdot\|_h \geq \|\cdot\|_R \Longrightarrow h
$$
 complete (trivial)
\n- Let $\varphi : [0, \infty[\rightarrow] 0, \infty[$ be smooth s.t.:
\n

$$
\parallel v_x \parallel_h \geq \frac{\parallel v_x \parallel_R}{\varphi(d_R(x))}, \qquad \forall x \in M
$$

Optimal growth of φ to ensure completeness for h?

Abstract setting:

- \blacksquare M (non-compact, connected) mfld, g_R Riemann., complete g_R -norm $\|\cdot\|_R$, $d_R(x) := \text{dist}(x, x_0)$ for some $x_0 \in M$
- \blacksquare h Riemannian m. find a criterion for completeness

\n- $$
\|\cdot\|_h \geq \|\cdot\|_R \Longrightarrow h
$$
 complete (trivial)
\n- Let $\varphi : [0, \infty[\rightarrow]0, \infty[$ be smooth s.t.:
\n

$$
\parallel v_x \parallel_h \geq \frac{\parallel v_x \parallel_R}{\varphi(d_R(x))}, \qquad \forall x \in M
$$

Optimal growth of φ to ensure completeness for h? Estimate for $(M, g_R) = (\mathbb{R}, dx^2)$: divergent curve $\gamma(x) = x$, $x_0 = 0$

$$
\operatorname{length}_h(\gamma) \geq \int_0^\infty \frac{dx}{\varphi(|x|)} = \infty
$$

Proposition

If $\varphi : [0, \infty[\rightarrow] 0, \infty[$ be satisfies

$$
\int_0^\infty \frac{1}{\varphi(r)} dr = \infty
$$

and

$$
\parallel v_x \parallel_h \geq \frac{\parallel v_x \parallel_R}{\varphi(d_R(x))}, \qquad \forall x \in M
$$

then h is complete In particular, when φ grows at most linearly,

$$
\varphi(r) \leq a + br \qquad \text{for some } a, b > 0
$$

4日)

E

Proposition

If $\varphi : [0, \infty) \rightarrow]0, \infty[$ be satisfies

$$
\int_0^\infty \frac{1}{\varphi(r)} dr = \infty
$$

and

$$
\parallel v_x \parallel_h \geq \frac{\parallel v_x \parallel_R}{\varphi(d_R(x))}, \qquad \forall x \in M
$$

then h is complete In particular, when φ grows at most linearly,

 $\varphi(r) \leq a + br$ for some $a, b > 0$

Proof of the general case : reduce to dim 1, use Lipschitz regularity of d_R at the cut locus.
\leftarrow

Ξ

э

э Пb.

1 The affine bound is not optimal, f. ex., it suffices

$$
\varphi(r) \leq a + b \ r \log^k(1+r) \qquad \qquad \text{for some } a, b, k \geq 0
$$

but seems natural for Lie groups

1 The affine bound is not optimal, f. ex., it suffices

$$
\varphi(r) \leq a + b \; r \log^k(1+r) \qquad \text{for some } a, b, k \geq 0
$$

but seems natural for Lie groups

2 Choosing φ increasing: natural to estimate growth ...even if it loses generality

1 The affine bound is not optimal, f. ex., it suffices

$$
\varphi(r) \leq a + b \; r \log^k(1+r) \qquad \qquad \text{for some } a, b, k \geq 0
$$

but seems natural for Lie groups

- 2 Choosing φ increasing: natural to estimate growth ...even if it loses generality
- 3 The uniformities of h and g_R are not equal under such bounds

Note. Some related results on completeness and growth:

 \sim \sim

E

Э×

Note. Some related results on completeness and growth:

Completeness of spacelike submanifolds of \mathbb{L}^n : at most linear (subaffine) growth of the Euclidean length of unit normals Beem, Ehrlich Geom. Ded. '85

Note. Some related results on completeness and growth:

- Completeness of spacelike submanifolds of \mathbb{L}^n : at most linear (subaffine) growth of the Euclidean length of unit normals Beem, Ehrlich Geom. Ded. '85
- \blacksquare Completeness of trajectories accelerated by a potential V At most quadratic growth of V Abraham, Marsden book'87, Candela, Romero, S. ARMA'13 Ehlers-Kundt conjecture (Flores, S. JDE'20)

1 Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h

 QQ

- **1** Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g) \rightsquigarrow we have a criterion for completeness respect to aux. g_R (involving a linear bound)

- **1** Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g) \rightsquigarrow we have a criterion for completeness respect to aux. g_R (involving a linear bound)
- **3** Our "Wick rotated" choice yielded $h_p(p.u, p.v) = \tilde{g}_1(\text{Ad}_{p^{-1}}^*(\psi(u)), \text{Ad}_{p^{-1}}^*(\psi(v)))$ where everything Euclideanly controlled at g but Ad

- 1 Left invariant g, orthonormal basis (e_i) at T_1G , Clairaut h
- 2 Overall aim: prove completeness of h (and thus g) \rightsquigarrow we have a criterion for completeness respect to aux. g_R (involving a linear bound)
- **3** Our "Wick rotated" choice yielded $h_p(p.u, p.v) = \tilde{g}_1(\text{Ad}_{p^{-1}}^*(\psi(u)), \text{Ad}_{p^{-1}}^*(\psi(v)))$ where everything Euclideanly controlled at g but Ad
- 4 Next : sufficient hypoth. on Ad to apply the criterion

Concept of (at most) linear growth for G

For left-invariant Riem. g_R on G with norm $\|\cdot\|$, let: $r : G \longrightarrow \mathbb{R}, \qquad r(p) := \text{dist}_{R}(1, p)$

$$
\begin{array}{ll}\n\|\mathrm{Ad}_{p}\| &= \mathrm{Max}_{\|u\|=1} \{ \|\mathrm{Ad}_{p}(u)\| \} \\
&= \lambda_{+}(p) &:= \mathrm{Max} \{ \sqrt{\Lambda_{i}} : \Lambda_{i} \text{ is a eigenvalue of } \mathrm{Ad}_{p}^{*} \circ \mathrm{Ad}_{p} \}\n\end{array}
$$

 2990

э

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Concept of (at most) linear growth for G

For left-invariant Riem. g_R on G with norm $\|\cdot\|$, let: $r : G \longrightarrow \mathbb{R}, \qquad r(p) := \text{dist}_R(1, p)$

$$
\|\mathrm{Ad}_{p}\| = \mathrm{Max}_{\|u\|=1} \{ \|\mathrm{Ad}_{p}(u)\| \}
$$

= $\lambda_{+}(p)$:= Max $\{\sqrt{\Lambda_{i}} : \Lambda_{i}$ is a eigenvalue of $\mathrm{Ad}_{p}^{*} \circ \mathrm{Ad}_{p} \}$

Definition

G has (at most) linear growth if there exist constants $a, b > 0$ such that for $p \in G$, $u \in \mathfrak{a}$, alternatively:

■ $||Ad_p(u)|| \leq (a + b r(p)) ||u||$ ∥u∥ $\frac{\|u\|}{a + b r(p)} \leq \|{\rm Ad}_p(u)\|$ ∥u∥ $\frac{\|u\|}{a + b r(p)} \leq \|{\rm Ad}_p(u)\| \leq (a + b r(p)) \|u\|.$

FUEL SERVICE AT 1999

Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. $(\sigma$ from 1 to $\rho \Longrightarrow \rho^{-1}\sigma$ from ρ^{-1} to 1 and equal length)

 \equiv \rightarrow ∍

Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. $(\sigma$ from 1 to $\rho \Longrightarrow \rho^{-1}\sigma$ from ρ^{-1} to 1 and equal length)

Independent of chosen g_R

- Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. $(\sigma$ from 1 to $\rho \Longrightarrow \rho^{-1}\sigma$ from ρ^{-1} to 1 and equal length)
- **Independent of chosen** g_R
- **■** For the minimum eigenvalue $\lambda_-(p)$:

$$
\lambda_-(\pmb{\rho}) = \frac{1}{\|\text{Ad}_{\pmb{\rho}^{-1}}\|} = \frac{1}{\lambda_+(\pmb{\rho}^{-1})}, \qquad \qquad \|\text{Ad}_{\pmb{\rho}}\|\|\text{Ad}_{\pmb{\rho}^{-1}}\| \geq 1
$$

- Equivalences: use $r(p) = r(p^{-1})$, $\forall p \in G$. $(\sigma$ from 1 to $\rho \Longrightarrow \rho^{-1}\sigma$ from ρ^{-1} to 1 and equal length)
- **Independent of chosen** g_R
- **■** For the minimum eigenvalue $\lambda_-(p)$:

$$
\lambda_-(\pmb{\rho}) = \frac{1}{\|\text{Ad}_{\pmb{\rho}^{-1}}\|} = \frac{1}{\lambda_+(\pmb{\rho}^{-1})}, \qquad \qquad \|\text{Ad}_{\pmb{\rho}}\|\|\text{Ad}_{\pmb{\rho}^{-1}}\| \geq 1
$$

Proof of the main theorem

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of h:

$$
h_p(p.u, p.u) = \tilde{g}_1(\mathrm{Ad}_{p^{-1}}^*(\psi(u)), \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

=
$$
\tilde{g}_1(\psi(u), \mathrm{Ad}_{p^{-1}} \circ \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

$$
\geq \lambda_{-}(p^{-1})^2 \tilde{g}_1(\psi(u), \psi(u))
$$

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of h:

$$
h_p(p.u, p.u) = \tilde{g}_1(\mathrm{Ad}_{p^{-1}}^*(\psi(u)), \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

=
$$
\tilde{g}_1(\psi(u), \mathrm{Ad}_{p^{-1}} \circ \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

$$
\geq \lambda_{-}(p^{-1})^2 \tilde{g}_1(\psi(u), \psi(u))
$$

Using that ψ is an isometry for \tilde{g}_1

$$
h_p(p.u, p.u) \geq \frac{\widetilde{g}_1(u, u)}{\|\mathrm{Ad}_p\|^2} = \frac{\widetilde{g}_p(p.u, p.u)}{\|\mathrm{Ad}_p\|^2}.
$$

Lemma

Let G be of linear growth. Then, the Clairaut metric h associated to any pair of Wick rotated semi-Riemannian metrics (g, \tilde{g}) satisfies the criterion of completeness for $g_R = \tilde{g}$.

Proof. Starting at the expression of h:

$$
h_p(p.u, p.u) = \tilde{g}_1(\mathrm{Ad}_{p^{-1}}^*(\psi(u)), \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

=
$$
\tilde{g}_1(\psi(u), \mathrm{Ad}_{p^{-1}} \circ \mathrm{Ad}_{p^{-1}}^*(\psi(u)))
$$

$$
\geq \lambda_{-}(p^{-1})^2 \tilde{g}_1(\psi(u), \psi(u))
$$

Using that ψ is an isometry for \tilde{g}_1

$$
h_p(p.u, p.u) \geq \frac{\tilde{g}_1(u, u)}{\|\mathrm{Ad}_p\|^2} = \frac{\tilde{g}_p(p.u, p.u)}{\|\mathrm{Ad}_p\|^2}.
$$

Tak[i](#page-93-0)ng roots, criterion fulfilled with $\varphi(p) = ||Ad_p||$ [\(l](#page-92-0)i[ne](#page-0-0)[ar\)](#page-136-0) \Box Ω

Theorem

All the left-invariant semi-Riemannian metrics of a Lie group with linear growth are geodesically complete.

Proof. Linear growth of $G \implies h$ complete $\implies g$ complete \Box

 2990

化重 网络

First questions: linear, polynomyal, exponential growth: Q1: Interest for other issues on Lie groups?

つへへ

First questions: linear, polynomyal, exponential growth:

- Q1: Interest for other issues on Lie groups?
- Q2: Makes sense to consider a finer growth as $r \log^k(1+r)$ for Lie groups?

Things are subtle... Growths for Ad : ■ $\|{\rm Ad}_p\|$ attained at $\lambda_+(\rho)$

 \leftarrow

 \rightarrow \equiv \rightarrow

э **In** э

Things are subtle... Growths for Ad :

- $\|Ad_{p}\|$ attained at $\lambda_{+}(p)$
- Intrinsic to G .
	- In particular, growth independent of semi-Riemannian g

化重新化

Things are subtle... Growths for Ad :

- $\|Ad_{p}\|$ attained at $\lambda_{+}(p)$
- Intrinsic to G .

In particular, growth independent of semi-Riemannian g

 \Rightarrow Growth of Clairaut h (respect to g_R) independent g-signature

Things are subtle... Growths for Ad :

- $\|Ad_{p}\|$ attained at $\lambda_{+}(p)$
- **Intrinsic to G:**

In particular, growth independent of semi-Riemannian g

 \Rightarrow Growth of Clairaut h (respect to g_R) independent g-signature

h for g Riemannian (complete) equal growth than h for g indefinite (possibly incomplete)!

医尿管的 化重化

Aff(\mathbb{R}): exponential growth and incomplete g!

 299

∍

医单位 医单位

Aff(\mathbb{R}): exponential growth and incomplete g!

Admits left invariant $g^{(+1)},\,g^{(-1)}$ with Clairaut $h^{(+1)},\,h^{(-1)}$

The growth of $h^{(+1)}$, $h^{(-1)}$ respect to g_R are equal!

Growth of Ad (and h) \rightsquigarrow eigenvalues $\lambda^2_+(\rho) (=\|\mathrm{Ad}\|^2)$ independent of signature

n Completeness of h (and g) \rightsquigarrow eigendirections do depend on signature (adjoint operator * , Euclidean isometry $\psi)$ and conspire to ensure or destroy completeness

医阿里氏阿里氏

Explicit computations: background

Aff(R) affine transformations of the line $f(x) = ax + b$, $a \ne 0$.

$$
Aff^{+}(\mathbb{R}) = \left\{ \begin{pmatrix} x & y \ 0 & 1 \end{pmatrix} : x > 0, y \in \mathbb{R} \right\}
$$

$$
aff(\mathbb{R}) (= T_{1}(Aff^{+}(\mathbb{R}))) = \left\{ \begin{pmatrix} u & v \ 0 & 0 \end{pmatrix} : u, v \in \mathbb{R} \right\}
$$

Basis at $\mathfrak{aff}(\mathbb R)$

$$
e_1=\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \qquad e_2=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \qquad [e_1,e_2]=e_2
$$

Left invariant vector basis: $X_1 = x\partial_x, X_2 = x\partial_y$ Left invariant $g\colon\thinspace g(X_i,X_j)\equiv$ constant, matrix

$$
\begin{pmatrix}c_1&c_2\\c_2&c_3\end{pmatrix}.\qquad c_1c_3-c_2^2\neq 0
$$

Explicit computations: left invariant $g^{(\pm 1)}$

General left invariant g

$$
g = \frac{1}{x^2}(c_1 dx^2 + c_2 (dx dy + dy dx) + c_3 dy^2), \qquad c_1c_3 - c_2^2 \neq 0
$$

Choices

$$
c_1 = 1, c_2 = 0, c_3 = \epsilon = \pm 1
$$

$$
g^{(\epsilon)} = \frac{1}{x^2} (dx^2 + \epsilon dy^2).
$$

 $g^{(+1)}$: left-invariant Riemannian metric \Longrightarrow complete (hyperbolic space)

$$
\bullet
$$
 $g^{(-1)}$: left-invariant, Lorentz

■ incomplete geodesic
$$
\gamma(t) = \left(\frac{1}{1-t}, \frac{1}{1-t}\right)
$$

 $\left\{ \left\vert \left\langle \left\langle \mathbf{q} \right\rangle \right\rangle \right\vert \times \left\langle \mathbf{q} \right\rangle \right\} \right\}$, $\left\{ \left\vert \mathbf{q} \right\rangle \right\}$, $\left\langle \mathbf{q} \right\rangle$, $\left\langle \mathbf{q} \right\rangle$

Explicit computations: Clairaut $h^{(\pm 1)}$

Right-invariant (Killing) v.f. induced by e_1 and e_2 :

$$
Y_1 = x\partial_x + y\partial_y, \quad Y_2 = \partial_y
$$

Clairaut forms

$$
\omega^1 = \frac{1}{x^2}(xdx + \epsilon dy) \text{ and } \omega^2 = \frac{\epsilon}{x^2}dy
$$

Clairaut metrics $(h^{(\epsilon)} = (\omega^1)^2 + (\omega^2)^2)$

$$
h^{(\epsilon)} = \frac{1}{x^4} \left(x^2 dx^2 + (1+y^2) dy^2 + \epsilon xy (dx dy + dy dx) \right).
$$

Matrix:
$$
\frac{1}{x^4} \begin{pmatrix} x^2 & \epsilon xy \\ \epsilon xy & 1 + y^2 \end{pmatrix}
$$
 (recall $x > 0$)

 QQ

化重新润滑脂

Explicit computations: Clairaut $h^{(\pm 1)}$

Right-invariant (Killing) v.f. induced by e_1 and e_2 :

$$
Y_1 = x\partial_x + y\partial_y, \quad Y_2 = \partial_y
$$

Clairaut forms

$$
\omega^1 = \frac{1}{x^2} (x dx + \epsilon dy) \quad \text{and} \quad \omega^2 = \frac{\epsilon}{x^2} dy
$$

Clairaut metrics $(h^{(\epsilon)} = (\omega^1)^2 + (\omega^2)^2)$

$$
h^{(\epsilon)} = \frac{1}{x^4} \left(x^2 dx^2 + (1+y^2) dy^2 + \epsilon xy (dx dy + dy dx) \right).
$$

Matrix:
$$
\frac{1}{x^4} \begin{pmatrix} x^2 & \epsilon xy \\ \epsilon xy & 1 + y^2 \end{pmatrix}
$$
 (recall $x > 0$)

(Aim: equal growth, but [com](#page-105-0)[pl](#page-107-0)[e](#page-106-0)[t](#page-105-0)e $\epsilon = 1$ $\epsilon = 1$ $\epsilon = 1$, incomplete $\epsilon = -1!$ $\epsilon = -1!$ [\)](#page-136-0)

 \equiv

Eigenvalues evl $_{\pm}$ independent of ϵ (determinant $=\epsilon^2/x^6)$

$$
\frac{1}{2x^4}\left(x^2+\epsilon^2(1+y^2)\pm\sqrt{(x^2+\epsilon^2(1+y^2))^2-4\epsilon^2x^2}\right)
$$

 QQ
Eigenvalues evl $_{\pm}$ independent of ϵ (determinant $=\epsilon^2/x^6)$

$$
\frac{1}{2x^4}\left(x^2 + \epsilon^2(1+y^2) \pm \sqrt{(x^2 + \epsilon^2(1+y^2))^2 - 4\epsilon^2x^2}\right)
$$

- \blacksquare They measure the growth of Ad in coordinates respect to Euclidean $dx^2 + dy^2$ (non left-invariant)
- \blacksquare The growth is exponential respect to $g^{(+1)} = (dx^2 + dy^2)/x^2$ (hyperbolic)

As expected, growth independent of $\epsilon = \pm 1$

Incompleteness of $h^{(-1)}$ (\Leftarrow $g^{(-1)}$ was incomplete): the curve

 $\gamma(t) = (x(t), y(t)) = (\cosh t, \sinh t) \qquad \forall t \ge 0$

(there is a heuristic way to arrive at it!)

- Clearly diverging
- Easy to show it has finite length for $h^{(-1)}$

Explicit computations: completeness of Clairaut $h^{(\pm 1)}$

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

 QQ

Explicit computations: completeness of Clairaut $h^{(\pm 1)}$

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

1 For
$$
\gamma(t) = (x(t) > 0, y(t)), t \in [0, b), b \le \infty
$$
 diverging
\n \rightsquigarrow check infinite length

 QQ

化重新润滑

Explicit computations: completeness of Clairaut $h^{(\pm 1)}$

Completeness of $h^{(+1)}$ (is there a reason to ensure this?):

- 1 For $\gamma(t) = (x(t) > 0, y(t)), t \in [0, b), b < \infty$ diverging \rightsquigarrow check infinite length
- 2 Bound for the minimum eigenvalue of $h^{(+1)}$

$$
\begin{array}{rcl} \text{evl}_- &=& \frac{1}{2x^4} \left((1+x^2+y^2) - \sqrt{(1+x^2+y^2)^2 - 4x^2} \right) \\ &\geq & \frac{1}{x^2(1+x^2+y^2)} \end{array} \tag{1}
$$

3 So, for bounded "Euclidean" radius $r^2(t) := x^2(t) + y^2(t) < 2C^2$,

$$
h^{(1)} \ge \frac{dx^2 + dy^2}{x^2(1 + x^2 + y^2)} \ge \frac{dx^2 + dy^2}{x^2} \frac{1}{(1 + 2C^2)}
$$

 Ω

which is a (complete) hyperbolic metric[.](#page-111-0)

4 Finer bound using $r^2 = x^2 + y^2$, $(r^2)' = 2x\dot{x} + 2y\dot{y}$:

$$
h^{(\epsilon=1)}(\dot{\gamma}(t),\dot{\gamma}(t)) = \frac{1}{\chi^4}(x^2\dot{x}^2 + (1+y^2)\dot{y}^2 + 2x\dot{x}y\dot{y})
$$

\n
$$
= \frac{1}{\chi^4}((x\dot{x} + y\dot{y})^2 + \dot{y}^2)
$$

\n
$$
\geq \frac{1}{\chi^4}(x\dot{x} + y\dot{y})^2 = \frac{1}{\chi^4}(\frac{1}{2}(r^2)')^2
$$

\n
$$
\geq \frac{1}{r^4}(\frac{1}{2}(r^2)')^2 = (\frac{1}{2r^2}(r^2)')^2
$$

\n
$$
= (\frac{1}{2}(\ln(r^2))')^2.
$$

(sharp when $y \equiv 0$)

5 Taking $t_n \nearrow b$ such that $\{\gamma(t_n)\}_n$ (thus $r(n)$) is unbounded:

length(
$$
\gamma
$$
) $\geq \lim_{t_n \to b} \frac{1}{2} \int_0^{t_n} (\ln(r^2))'(t) dt$
\n $= \frac{1}{2} (\lim_{t_n \to b} \ln(r^2(t_n)) - \ln(r^2(0)))$
\n $= \lim_{t_n \to b} \ln(r(t_n)) - \ln(r(0)) = \infty,$

i.e., it goes to infinity (albeit it seems slowly!)

 Ω

 \Box Q3: If left. inv. g is Riemannian must its Clairaut h be complete?

 QQ

 \Box Q3: If left. inv. g is Riemannian must its Clairaut h be complete?

(If positive answer)

 \Box Q4: if left-inv. g is **complete** must its Clairaut h be complete? (we know the converse) If negative, is a geometric interpretation of the Cauchy boundary of h possible?

Technical available

Natural action $Aut(g)$ on $Sym^*(g)$

- Aut(g): Lie algebra automorphisms of g
- Sym[∗] (g): scalar products (of any signature) on g

$$
\varphi\in \operatorname{Aut}(\mathfrak{g})\to g^\varphi\quad (g^\varphi)_1=\varphi. g_1. \quad \text{(pushforward)}
$$

 \rightsquigarrow orbit of g_1 in g and, thus of g (in the open set of left invar. metr.)

Technical available

Natural action $Aut(g)$ on $Sym^*(g)$

- Aut(g): Lie algebra automorphisms of g
- Sym[∗] (g): scalar products (of any signature) on g

$$
\varphi\in \operatorname{Aut}(\mathfrak{g})\to g^\varphi\quad (g^\varphi)_1=\varphi.g_1.\quad \text{(pushforward)}
$$

 \rightsquigarrow orbit of g_1 in g and, thus of g (in the open set of left invar. metr.)

Proposition

- \blacksquare all the g's in the same orbit are either complete or incomplete. i.e. g^{φ} complete \Longleftrightarrow g complete.
- 2 all Clairaut h's associated to left-invariant g's on the same orbit are bi-Lipschitz bounded, thus, either complete or incomplete

す 何 ト す ヨ ト す ヨ ト

Three classes of left invariant metrics in $Aff(R)$ (up to scaling) $\mathbf{1}$ $g^{(+1)}$, Riemannian (complete). $2 \,$ ${\rm g}^{(-1)}$, Lorentzian, incomplete. $3\,$ $g^{(0)}$, Lorentzian, incomplete.

$$
g^{(0)}:=\frac{2dxdy}{x^2}
$$

(choice $c_1 = 0, c_2 = 1, c_3 = 0$ before)

 Ω

Trivial cases

Proposition

G is of linear growth in the following cases:

- Abelian ($Ad_p = Id$ for all p, $||Ad_p|| \equiv 1$)
- or compact $(G \ni p \mapsto ||Ad_p||$ has a maximum)

→ 手下

 Ω

If G is of linear growth then so is any subgroup $H < G$

化重 网络

If G is of linear growth then so is any subgroup $H < G$

Proof. R_G , d_G Riem, distance; R_H , d_H restrictions to H; $p \in H$.

 $d_G(1, p) \leq d_H(1, p).$ $\|\mathrm{Ad}_p^H\| \leq \|\mathrm{Ad}_p^G\|$

 $\|\mathrm{Ad}_p^H\| \le \|\mathrm{Ad}_p^G\| \le a + b d_G(1,p) \le a + b d_H(1,p) \quad \Box$

 $G = G_1 \times G_2$ with G_1, G_2 Lie groups with linear growth \implies G has linear growth.

Idea of the proof. Linear bounds $a_i + b_i r$ of G_i 's \longrightarrow single one $(a_1 + a_2) + (b_1 + b_2)r$ for G. □

Direct and semi-direct products

Proposition

Let G be the semidirect product $K \ltimes_{\rho} V$, with

- \blacksquare K: pseudo-compact, i.e. product of compact and linear groups $(\Leftrightarrow$ admits a bi-invariant Riem. metric)
- \blacksquare V: linear group,
- $\rho: K \longrightarrow GL(V)$ representation with $\rho(K)$ precompact.

Then G has linear growth.

Direct and semi-direct products

Proposition

Let G be the semidirect product $K \ltimes_{\rho} V$, with

 \blacksquare K: pseudo-compact, i.e. product of compact and linear groups (⇔ admits a bi-invariant Riem. metric)

 \blacksquare V: linear group,

 $\rho: K \longrightarrow GL(V)$ representation with $\rho(K)$ precompact.

Then G has linear growth.

Steps of the proof.

1 $\exists g_R$ common left-invariant Riem. for $K \times V$ and $K \ltimes_{\rho} V$ (Precompactness $\rightarrow G$ admits Ad(K)-invariant Riem. met. \rightsquigarrow take a direct product by one on V)

 \Rightarrow Left-invariant Riem. met. on $K \times V$ and $K \ltimes_{\rho} V$ bi-Lipschitz (with g_R and, then, among them)

2 \rightsquigarrow Follow as in products using a bound [fo](#page-123-0)r $\|\rho(K)\|$ $\|\rho(K)\|$ $\|\rho(K)\|$ $\|\rho(K)\|$

If G is 2-step nilpotent, then it has linear growth.

Suggested as 2-step nilpotent \implies $\text{Ad}_{\text{exp}(\textbf{ta})} = \text{exp}^{\text{ad}_{\textbf{ta}}} = \text{I} + \textbf{t} \text{ ad}_{\textbf{a}}$

 299

∍

何 ▶ (三) (三)

2-step nilpotent groups

Proposition

If G is 2-step nilpotent, then it has linear growth.

Steps of the (non-trivial) proof

- 1 Z center $\rightsquigarrow \pi : G \longrightarrow G/Z$ fibration ker $d\pi_1 = \mathfrak{z} (G/Z)$ Lie) 2-step nilpot. \Rightarrow G/Z Abelian and \mathbb{R}^d (as $\Pi_1(G) \subset$ center $\tilde{G})$
- 2 Choose left-inv. Rieman. g_R met.:
	- $\mathfrak{p}:=\mathfrak{z}^{\perp}\equiv\mathcal{T}_{1}(\mathit{G}/Z)$ (horizontal v.)
	- $\pi : G \longrightarrow G/Z$ is a Riem. submersion \Rightarrow contracting map: $d_G \geq d_{G/Z}$
- 3 Any (unit) geodesic γ initially horizontal:
	- remains horizontal
	- project onto a geod (globally minimizing) of $G/Z \equiv \mathbb{R}^d$
	- $\rightsquigarrow \gamma$ minimizing and

 $d_G(\gamma(t), \gamma(s)) = |t - s| = d_{G/Z}(\pi(\gamma(t)), \pi(\gamma(s)))$, while $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ $z \in Z \leadsto \gamma(t) z \in \pi^{-1}(\pi(\gamma(t)) \Rightarrow d_G(\gamma(t) z, \gamma(s)) \geq |t-s|$ 4. Horizontal geodesics through 1 are one-parameter subgroups Use 2-step nilpotency in Euler-Arnold eqn. for geodesics

$$
\dot{x}(t) = \mathrm{ad}^*_{x(t)}x(t)
$$

(first orden eqn in $\mathfrak{g};\, x(t):=\gamma^{-1}(t)\dot{\gamma}(t)\in \mathfrak{g};\, \ast\, g_R\text{-adjoint})$ 5. For $p\in\mathsf{G}\setminus\mathsf{Z}$, \exists minim., hor. geod. γ from 1 to $\pi^{-1}(\pi(p))$ $p = e^{i\omega}$ $w, w \in \mathfrak{g}$ (for 2-step 1-connected, exp diffeo) $w = u + v$, $u \in \mathfrak{p}(\equiv \mathfrak{z}^{\perp}), v \in \mathfrak{z}$, let $z = \exp(-v)$ **pz** = exp(u) (Baker-Campbell-Hausdorff with $[w, v] = 0$) exp(u) lies in horiz. geod. $\gamma(t) = \exp(ta)$, $a := u/||u|| \in \mathfrak{p}$. Thus, using γ unit: $r_G(p) = d_G(1, p) > d_G(1, pz) > t$

4. Horizontal geodesics through 1 are one-parameter subgroups Use 2-step nilpotency in Euler-Arnold eqn. for geodesics

$$
\dot{x}(t) = \mathrm{ad}^*_{x(t)}x(t)
$$

(first orden eqn in $\mathfrak{g};\, x(t):=\gamma^{-1}(t)\dot{\gamma}(t)\in \mathfrak{g};\, \ast\, g_R\text{-adjoint})$ 5. For $p\in\mathsf{G}\setminus\mathsf{Z}$, \exists minim., hor. geod. γ from 1 to $\pi^{-1}(\pi(p))$ $p = e^{i\omega}$ $w, w \in \mathfrak{g}$ (for 2-step 1-connected, exp diffeo) $w = u + v$, $u \in \mathfrak{p}(\equiv \mathfrak{z}^{\perp}), v \in \mathfrak{z}$, let $z = \exp(-v)$ **pz** = exp(**u**) (Baker-Campbell-Hausdorff with $[w, v] = 0$) exp(u) lies in horiz. geod. $\gamma(t) = \exp(ta)$, $a := u/||u|| \in \mathfrak{p}$. Thus, using γ unit: $r_G(p) = d_G(1, p) \ge d_G(1, pz) \ge t$ 6. Check this proves affine growth of G For $p = z \in Z$, $\text{Ad}_z = 1$, $\| \text{Ad}_z \| = 1$. For $p \in G \setminus Z$: Ad_{pz} = Ad_p (Z center) $\text{Ad}_{\text{exp}(t_a)} = \exp^{ad_{ta}} = I + t \text{ ad}_{a}$, (G 2-step nilpotent) Putting $\alpha = 1, \beta = ||ad_{\alpha}||$, for $u \in G$

 \Box Q5: Can the growth of (1-connected) G be deduced from g ?

 299

∍ \sim

э

- Q5: Can the growth of (1-connected) G be deduced from g?
- Q6: Give a complete classification of groups of linear growth (and extend to quadratic, cubic... exponential).

 \blacksquare No k-step nilpotent with $k > 2$ is of linear growth *Idea proof*: expand $\mathrm{Ad}_{\exp(t a)}(u)$ in terms of powers of t (coefficients $\mathrm{ad}^{k'}_{t}(\mu)/k'!=t^{k'}ad^{k'}_a(u)/k'!$, with $k'\leq k-1)$ \rightsquigarrow For t large: $\frac{\| \text{Ad}_{p(t)}(u) \|}{t^{k-1}}$ $\frac{f_{p(t)}(u)}{t^{k-1}} \geq C$ $(p(t) = \exp(ta)$ diverges and use $t \geq d(1, p(t)))$

Euler-Arnold eqn for geod. $\dot{x} = \mathrm{ad}^*_{x}x$

Idempotent: $y_0 \neq 0$ such that $\mathrm{ad}_{y_0}^* y_0 = y_0$

■ Easily: Idempotent \Rightarrow **incomplete geodesic** (this happened in $Aff(R)$)

化重新润滑

Euler-Arnold eqn for geod. $\dot{x} = \mathrm{ad}^*_{x}x$

Idempotent: $y_0 \neq 0$ such that $\mathrm{ad}_{y_0}^* y_0 = y_0$

■ Easily: Idempotent \Rightarrow **incomplete geodesic**

(this happened in $Aff(R)$)

Proposition

If G can be equipped with a semi-Riemannian metric g admitting an idempotent \Rightarrow G exponential growth. (in its direction)

Idea of proof. Power series in the direction of the idempotent y_0 :

$$
\mathrm{Ad}_{p(t)=\text{expta}}(y_0)=e^t y_0
$$

Exponential growth: $\|\mathrm{Ad}_{p(t)}(y_0)\| \ge t^m \|y_0\| \ge d_R(1,p(t))^m \|y_0\|$

Summary of open questions

In blue, questions on growth independent of completeness

- \Box Q1: Interest of growth for other issues on a Lie group G?
- Q2: Makes sense finer growths (as $r \log^k(1+r)$) for G?
- \Box Q3: If left inv. g is Riem., must its Clairaut h be complete?
- \Box Q4: If left inv. g is complete, must Clairaut h be complete? If negative, is a geometric interpretation of the Cauchy boundary of h possible?
- \Box Q5: Can the growth of (1-connected) G be deduced from \mathfrak{g} ?
- Q6: Give a complete classification of groups of linear growth (and extend to quadratic, cubic... exponential).

Thank you for your attention!

 299

∍ Пb.

∍

Happy Anniversary Eduardo!

K ロト K 御 ト K 君 ト K 君 ト

 290

∍