Foliation 000000 Hodge theory for basic forms

References

Cohomology of Quaternionic Foliations and Orbifolds

Rouzbeh Mohseni

(Polish Academy of Sciences)

based on joint works with R.A. Wolak

Santiago de Compostela, Symmetry and Shape

September 25, 2024

< □ > < @ > < 클 > < 클 > 트 ∽ < ♡ < ♡ 1/31

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Outline

1 Kähler case

2 Quaternionic case

3 Foliation

4 Hodge theory for basic forms

Section 1

Kähler case

<ロト < 団ト < 臣ト < 臣ト ミ の < で 3/31

Kähler case 0●0	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Let (M, ω, J) be a Kähler manifold. The so-called Lefschetz operator is defined as follows:

$$L: H^k(M) \longrightarrow H^{k+2}(M), \ L([\alpha]) = [\omega \wedge \alpha].$$

Let (M, ω, J) be a Kähler manifold. The so-called Lefschetz operator is defined as follows:

$$L: H^k(M) \longrightarrow H^{k+2}(M), \ L([\alpha]) = [\omega \land \alpha].$$

Theorem (Hard Lefschetz theorem)

Let (M^n, ω, J) be a compact Kähler manifold. The homomorphism

$$L^r \colon H^{n-r}(M) \longrightarrow H^{n+r}(M), \ L([\alpha]) = [\omega \wedge \alpha].$$

is an isomorphism for all $r \ge 0$.

Kähler case 00●	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Let $\Lambda: H^k(M) \longrightarrow H^{k-2}(M)$ be the formal adjoint of *L*. A *k*-form α is called **effective (or primitive)**, if $\Lambda \alpha = 0$. Let P^k be the space of all effective *k*-forms.

Kähler case 00●	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Let $\Lambda: H^k(M) \longrightarrow H^{k-2}(M)$ be the formal adjoint of *L*. A *k*-form α is called **effective (or primitive)**, if $\Lambda \alpha = 0$. Let P^k be the space of all effective *k*-forms.

The hard Lefschetz theorem then implies the following isomorphism, which is **the Lefschetz decomposition**:

$$H^k(M) = \bigoplus_{r>0} L^r(P^{k-2r}).$$

Foliation 000000 Hodge theory for basic forms

Section 2

Quaternionic case

<ロト < 団ト < 臣ト < 臣ト ミ の Q (C) 6/31 Quaternionic case

ation

Hodge theory for basic forms

イロン 不同 とくほど 不良 とうほ

7/31

Let I, J, K be three almost complex structures on a 4n-dimensional manifold M, such that they satisfy $I \circ J = K$ and its cyclic permutations, then the ordered triple H = (I, J, K) on M is called an **almost hypercomplex structure**.

Quate

Quaternionic case

Foliation H 000000 C

Hodge theory for basic forms

Let I, J, K be three almost complex structures on a 4n-dimensional manifold M, such that they satisfy $I \circ J = K$ and its cyclic permutations, then the ordered triple H = (I, J, K) on M is called an **almost hypercomplex structure**. An **almost quaternionic structure** on the manifold M is a rank 3 vector subbundle Q of the endomorphism bundle End(TM) which locally is spanned by an almost hypercomplex structure H = (I, J, K) which are transformed by SO(3) on the their respective domains of existence. r case

Quaternionic case

Foliation 000000 Hodge theory for basic forms

Let I, J, K be three almost complex structures on a 4*n*-dimensional manifold M, such that they satisfy $I \circ J = K$ and its cyclic permutations, then the ordered triple H = (I, J, K) on M is called an almost hypercomplex structure. An almost quaternionic **structure** on the manifold M is a rank 3 vector subbundle Q of the endomorphism bundle End(TM) which locally is spanned by an almost hypercomplex structure H = (I, J, K) which are transformed by SO(3) on the their respective domains of existence. A quaternionic structure on the manifold M is an almost quaternionic structure Q such that there exists a torsionless connection ∇ whose extension to End(TM) preserves the subbundle Q, i.e. $\nabla Q \subset Q$.

er case

Quaternionic case

Hodg

Foliation

Hodge theory for basic forms

Let I, J, K be three almost complex structures on a 4*n*-dimensional manifold M, such that they satisfy $I \circ J = K$ and its cyclic permutations, then the ordered triple H = (I, J, K) on M is called an almost hypercomplex structure. An almost quaternionic **structure** on the manifold M is a rank 3 vector subbundle Q of the endomorphism bundle End(TM) which locally is spanned by an almost hypercomplex structure H = (I, J, K) which are transformed by SO(3) on the their respective domains of existence. A quaternionic structure on the manifold M is an almost quaternionic structure Q such that there exists a torsionless connection ∇ whose extension to End(TM) preserves the subbundle Q, i.e. $\nabla Q \subset Q$. On an almost quaternionic manifold (M, Q) the metric g is **quaternion Hermitian** if it is Hermitian with respect to the local basis (I, J, K) of Q.

ler case

Quaternionic case

Foliation 000000 Hodge theory for basic forms

Let I, J, K be three almost complex structures on a 4n-dimensional manifold *M*, such that they satisfy $I \circ J = K$ and its cyclic permutations, then the ordered triple H = (I, J, K) on M is called an almost hypercomplex structure. An almost quaternionic **structure** on the manifold M is a rank 3 vector subbundle Q of the endomorphism bundle End(TM) which locally is spanned by an almost hypercomplex structure H = (I, J, K) which are transformed by SO(3) on the their respective domains of existence. A quaternionic structure on the manifold M is an almost quaternionic structure Q such that there exists a torsionless connection ∇ whose extension to End(TM) preserves the subbundle Q, i.e. $\nabla Q \subset Q$. On an almost quaternionic manifold (M, Q) the metric g is quaternion Hermitian if it is Hermitian with respect to the local basis (I, J, K) of Q. It is **quaternion Kähler** if it is quaternion Hermitian and Q is ∇ -parallel for the Levi-Civita connection of g.

Kähler case	Quaternionic case	Foliation	Hodge theory for basic forms	References
000	○○●	000000		000

Quaternion Kähler manifolds are Riemannian manifolds (M, g) of real dimension 4n whose holonomy group can be reduced to Sp(n).Sp(1).

000	000000	000000000000000000000000000000000000000	000

Quaternion Kähler manifolds are Riemannian manifolds (M, g) of real dimension 4n whose holonomy group can be reduced to Sp(n).Sp(1). In dimension 4(n = 1) this condition means only that the manifold is Riemannian as Sp(1).Sp(1) = SO(4). Therefore this condition is meaningful for $n \ge 2$.

Section 3

Foliation

<ロト < 団ト < 臣ト < 臣ト 王 のQで 9/31

Kähler case 000	Quaternionic case	Foliation 0●0000	Hodge theory for basic forms	References 000

Foliated manifolds

Let (M, \mathcal{F}) be a Riemannian foliation. Then it is defined by a cocycle $\mathcal{U} = \{U_i, f_i, k_{ij}\}_{i,j \in I}$ that is modeled on a Riemannian manifold (N, \overline{g}) such that

- **1** $f_i: U_i \to N$ is a submersion with connected fibers;
- 2 $k_{ij}: f_j(U_i \cap U_j) \rightarrow f_i(U_i \cap U_j)$ are local isometries of (N, \overline{g}) ; 3 $f_i = k_{ij}f_j$ on $U_i \cap U_j$.

Definition

A foliation \mathcal{F} is transversely quaternion Kähler if it is defined by a cocycle $\mathcal{U} = \{U_i, f_i, g_{ij}\}_{i,j \in I}$ modeled on a quaternion Kähler manifold (N_0, g_0, Q_0) and the local diffeomorphisms g_{ij} are local automorphisms of the quaternion Kähler structure of (N_0, g_0, Q_0) , i.e., the g_{ij} are local isometries and the induced mappings \tilde{g}_{ij} of $End(TN_0)$ preserve the subbundle Q_0 of rank 3.

Kähler case 000	Quaternionic case	Foliation 000●00	Hodge theory for basic forms	References 000

In the language of foliated structures this condition can be formulated as follows.

Kähler case 000	Quaternionic case	Foliation 000●00	Hodge theory for basic forms	References 000

In the language of foliated structures this condition can be formulated as follows.Let $N(M, \mathcal{F}) = TM/T\mathcal{F}$ be the normal bundle of the foliation \mathcal{F} .

Kähler case 000	Quaternionic case	Foliation 000●00	Hodge theory for basic forms	References 000

In the language of foliated structures this condition can be formulated as follows.Let $N(M, \mathcal{F}) = TM/T\mathcal{F}$ be the normal bundle of the foliation \mathcal{F} . The vector bundle $End(N(M, \mathcal{F}))$ admits the natural foliation \mathcal{F}_{End} of dimension p which is defined by a cocycle $\mathcal{F}_{End} = \{V_i, \tilde{f}_i, \tilde{g}_{ij}\}_{i,j \in I}$ modeled on $End(TN_0)$ where $\tilde{f}(A) = df \circ A \circ (df \mid_{N(M,\mathcal{F})})^{-1}$. With this in mind we can define a foliated quaternion Kähler structure.

Definition

A foliated quaternion Kähler structure on a foliated Riemannian manifold (M, \mathcal{F}) is given by the following data:

- **1** g is a foliated Riemannian metric in $N(M, \mathcal{F})$;
- **2** a 3-dimensional foliated subbundle Q of $End(N(M, \mathcal{F}))$ which is locally spanned by 3 almost complex foliated structures;
- 3 the metric g is Hermitian with respect to these local almost complex structures;
- the subbundle Q is parallel with respect to the foliated Levi-Civita connection of g.

Therefore a foliated quaternion Kähler structure on a foliated Riemannian manifold (M, \mathcal{F}) will be denoted by (M, \mathcal{F}, g, Q) .

Therefore a foliated quaternion Kähler structure on a foliated Riemannian manifold (M, \mathcal{F}) will be denoted by (M, \mathcal{F}, g, Q) . At each point $x \in U_i$, there exist 3 foliated almost complex structures I_x , J_x , and K_x on an open neighbourhood U_x . Ner case Quaternionic case Foliation Hodge theory for basic forms References

Therefore a foliated quaternion Kähler structure on a foliated Riemannian manifold (M, \mathcal{F}) will be denoted by (M, \mathcal{F}, g, Q) . At each point $x \in U_i$, there exist 3 foliated almost complex structures I_x , J_x , and K_x on an open neighbourhood U_x . Then on U_x we define the 2-forms

$$\Omega_I(u, v) = g(Iu, v), \ \Omega_J(u, v) = g(Ju, v), \text{ and } \Omega_K(u, v) = g(Ku, v),$$

where $u, v \in N(M, \mathcal{F})$.

er case Quaternionic case Foliation Hodge theory for basic forms References

Therefore a foliated quaternion Kähler structure on a foliated Riemannian manifold (M, \mathcal{F}) will be denoted by (M, \mathcal{F}, g, Q) . At each point $x \in U_i$, there exist 3 foliated almost complex structures I_x , J_x , and K_x on an open neighbourhood U_x . Then on U_x we define the 2-forms

$$\Omega_{I}(u, v) = g(Iu, v), \ \Omega_{J}(u, v) = g(Ju, v), \text{ and } \Omega_{K}(u, v) = g(Ku, v),$$

where $u, v \in N(M, \mathcal{F})$.

The 4-form Ω

$$\Omega = \Omega_I \wedge \Omega_I + \Omega_J \wedge \Omega_J + \Omega_K \wedge \Omega_K$$

is well-defined, i.e., it is independent of the choice of the structures I, J, and K.

Section 4

Hodge theory for basic forms

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q @ 15/31

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

On a foliated Riemannian manifold (M, g, \mathcal{F}) the set of all basic k-forms is

 $A^{k}(M,\mathcal{F}) = \{ \alpha \in A^{k}(M) : i_{X}\alpha = 0, i_{X}d\alpha = 0, \text{ for all vectors } X \in T\mathcal{F} \},\$

which is a subcomplex of $A^k(M)$ and we denote its cohomology by $H^k(M, \mathcal{F})$.

On a foliated Riemannian manifold (M, g, \mathcal{F}) the set of all basic k-forms is

 $A^{k}(M,\mathcal{F}) = \{ \alpha \in A^{k}(M) : i_{X}\alpha = 0, i_{X}d\alpha = 0, \text{ for all vectors } X \in T\mathcal{F} \},\$

which is a subcomplex of $A^k(M)$ and we denote its cohomology by $H^k(M, \mathcal{F})$.

The restriction of the bundle-like metric to the normal bundle of the foliation of the Riemannian foliated manifold (M, g, \mathcal{F}) defines $\bar{*}$ operator,

$$\bar{*} \colon A^k(M,\mathcal{F}) \to A^{4n-k}(M,\mathcal{F}).$$

< □ > < @ > < 볼 > < 볼 > 볼 ♡ < ♡ 16/31

Kähler case	Quaternionic case	Foliation	Hodge theory for basic forms	References
000		000000	00●00000000000	000

On the Riemannian manifold (M, g) we have the *-operator acting on the complex of smooth forms:

$$*: A^k(M) \to A^{m-k}(M).$$

Kähler case	Quaternionic case	Foliation	Hodge theory for basic forms	References
000		000000	00●00000000000	000

On the Riemannian manifold (M, g) we have the *-operator acting on the complex of smooth forms:

*:
$$A^k(M) \to A^{m-k}(M)$$
.

On the subcomplex $A^k(M, \mathcal{F})$ of basic forms these two operators are related by the formula

$$\bar{*}\alpha = (-1)^{p(q-k)} * (\alpha \wedge \chi_{\mathcal{F}}),$$

for any $\alpha \in A^k(M, \mathcal{F})$, where $\chi_{\mathcal{F}}$ is the volume form of leaves.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

In $A^k(M, \mathcal{F})$ we have the standard scalar product

$$\langle \alpha,\beta\rangle_{\textit{b}} = \int_{\textit{M}} \alpha \wedge \bar{*}\beta \wedge \chi_{\mathcal{F}},$$

which is the restriction of the standard scalar product on $A^k(M)$.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

In $A^k(M, \mathcal{F})$ we have the standard scalar product

$$\langle \alpha, \beta \rangle_{b} = \int_{M} \alpha \wedge \bar{*} \beta \wedge \chi_{\mathcal{F}},$$

which is the restriction of the standard scalar product on $A^k(M)$. A Riemannian foliation on a compact manifold is said to be **taut** if there exists a Riemannian metric that makes all its leaves minimal submanifolds.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

In $A^k(M, \mathcal{F})$ we have the standard scalar product

$$\langle \alpha, \beta \rangle_{\mathbf{b}} = \int_{\mathbf{M}} \alpha \wedge \bar{*}\beta \wedge \chi_{\mathcal{F}},$$

which is the restriction of the standard scalar product on $A^k(M)$. A Riemannian foliation on a compact manifold is said to be **taut** if there exists a Riemannian metric that makes all its leaves minimal submanifolds.Tautness is characterized by the nonvanishing of the top dimensional basic cohomology, i.e., $H^q(M, \mathcal{F}) \neq 0$. In this case we say that the foliation is **cohomologically taut**. In fact, this Riemannian metric can be chosen to be bundle-like. e Quaternionic case Foliation

The formal adjoint δ_b of d in the complex $A^k(M, \mathcal{F})$ with the scalar product $\langle ., . \rangle_b$ is the operator

$$\delta_b = (d - \kappa \wedge)^{\overline{*}} \colon A^k(M, \mathcal{F}) \to A^{k-1}(M, \mathcal{F}),$$

where κ is the mean curvature form of the leaves,

Quaternionic case Foliation

The formal adjoint δ_b of d in the complex $A^k(M, \mathcal{F})$ with the scalar product $\langle ., . \rangle_b$ is the operator

$$\delta_b = (d - \kappa \wedge)^{\overline{*}} \colon A^k(M, \mathcal{F}) \to A^{k-1}(M, \mathcal{F}),$$

where κ is the mean curvature form of the leaves, and

$$(d-\kappa\wedge)^{\overline{*}}(\beta)=(-1)^{q(k+1)+1}\overline{*}(d-\kappa)\overline{*}\beta,$$

for any $\beta \in A^k(M, \mathcal{F})$.

e Quaternionic case Foliation He

The formal adjoint δ_b of d in the complex $A^k(M, \mathcal{F})$ with the scalar product $\langle ., . \rangle_b$ is the operator

$$\delta_b = (d - \kappa \wedge)^{\overline{*}} \colon A^k(M, \mathcal{F}) \to A^{k-1}(M, \mathcal{F}),$$

where κ is the mean curvature form of the leaves, and

$$(d-\kappa\wedge)^{\overline{*}}(\beta)=(-1)^{q(k+1)+1}\overline{*}(d-\kappa)\overline{*}\beta,$$

for any $\beta \in A^k(M, \mathcal{F})$. If the leaves of \mathcal{F} are minimal submanifolds for the bundle-like metric g, then $\kappa = 0$ and $\delta_b = d^{\bar{*}}$.

Quaternionic case Foliation

The formal adjoint δ_b of d in the complex $A^k(M, \mathcal{F})$ with the scalar product $\langle ., . \rangle_b$ is the operator

$$\delta_b = (d - \kappa \wedge)^{\overline{*}} \colon A^k(M, \mathcal{F}) \to A^{k-1}(M, \mathcal{F}),$$

where κ is the mean curvature form of the leaves, and

$$(d-\kappa\wedge)^{\bar{*}}(\beta)=(-1)^{q(k+1)+1}\bar{*}(d-\kappa)\bar{*}\beta,$$

for any $\beta \in A^k(M, \mathcal{F})$. If the leaves of \mathcal{F} are minimal submanifolds for the bundle-like metric g, then $\kappa = 0$ and $\delta_b = d^{\bar{*}}$. We define the basic Laplacian as

$$\Delta_b = \delta_b d + d\delta_b$$

Quaternionic case Foliation

The formal adjoint δ_b of d in the complex $A^k(M, \mathcal{F})$ with the scalar product $\langle ., . \rangle_b$ is the operator

$$\delta_b = (d - \kappa \wedge)^{\overline{*}} \colon A^k(M, \mathcal{F}) \to A^{k-1}(M, \mathcal{F}),$$

where κ is the mean curvature form of the leaves, and

$$(d-\kappa\wedge)^{\bar{*}}(\beta)=(-1)^{q(k+1)+1}\bar{*}(d-\kappa)\bar{*}\beta,$$

for any $\beta \in A^k(M, \mathcal{F})$. If the leaves of \mathcal{F} are minimal submanifolds for the bundle-like metric g, then $\kappa = 0$ and $\delta_b = d^{\bar{*}}$. We define the basic Laplacian as

$$\Delta_b = \delta_b d + d\delta_b$$

A basic form α is called **harmonic** iff $\Delta_b \alpha = 0$. The basic Hodge theorem for compact Riemannian foliated manifolds asserts that α is harmonic iff $d\alpha = 0 = \delta_b \alpha$.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Using the 4-form Ω , we define L and A operators on the complex $A^*(M, \mathcal{F})$:

$$L: A^{k}(M, \mathcal{F}) \to A^{k+4}(M, \mathcal{F}); \ L(\alpha) = \Omega \land \alpha$$
$$\Lambda: A^{k}(M, \mathcal{F}) \to A^{k-4}(M, \mathcal{F}); \ \Lambda(\alpha) = \bar{*}(\Omega \land \bar{*}\alpha)$$

Basic forms that are annihilated by Λ are called **effective**.

Kähler case	Quaternionic case	Foliation	Hodge theory for basic forms	References
000		000000	000000●0000000	000

On a compact manifold with a taut foliation one can define scalar products $\langle .,. \rangle$ and $\langle .,. \rangle_b$ on $A^k(M)$ and $A^k(M, \mathcal{F})$, respectively, as

1
$$\langle \omega, \omega' \rangle = \int_M *(\omega \wedge *\omega') = \int_M \omega \wedge *\omega',$$

2 $\langle \omega, \omega' \rangle_B = \int_M \bar{*}(\omega \wedge \bar{*}\omega') = \int_M \omega \wedge \bar{*}\omega' \wedge \chi_F.$

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

On a compact manifold with a taut foliation one can define scalar products $\langle .,. \rangle$ and $\langle .,. \rangle_b$ on $A^k(M)$ and $A^k(M, \mathcal{F})$, respectively, as

1
$$\langle \omega, \omega' \rangle = \int_M *(\omega \wedge *\omega') = \int_M \omega \wedge *\omega',$$

2 $\langle \omega, \omega' \rangle_b = \int_M \bar{*}(\omega \wedge \bar{*}\omega') = \int_M \omega \wedge \bar{*}\omega' \wedge \chi_F.$

Using this scalar product we have for any $\omega \in A^k(M, \mathcal{F})$ and $\omega' \in A^{k+4}(M, \mathcal{F})$

$$\langle L\omega,\omega'\rangle_b = \langle \omega,\Lambda\omega'\rangle_b.$$

(ロ) (同) (E) (E) (E) (O)(C)

21/31

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Theorem (M., R. Wolak)

Let (M, g, \mathcal{F}) be a (4n + p)-dimensional Riemannian foliated manifold whose p-dimensional foliation \mathcal{F} is transversely quaternion Kähler. Let ω be a basic differential form on (M, \mathcal{F}) of degree $p \leq n + 1$. Then

$$\omega = \sum_{i=0}^{\left[p/4\right]} L^i \omega_e^{p-4i}$$

イロン イボン イヨン イヨン 三日

22 / 31

where ω_e^k is an effective basic k-form.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Let (M, \mathcal{F}) be a compact Riemannian foliated manifold. Assume that

) its foliated normal bundle $(N(M, \mathcal{F}), \mathcal{F}_N)$ admits a reduction to a connected subgroup G of O(q),

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

Let (M, \mathcal{F}) be a compact Riemannian foliated manifold. Assume that

-) its foliated normal bundle $(N(M, \mathcal{F}), \mathcal{F}_N)$ admits a reduction to a connected subgroup G of O(q),
- 2) the corresponding foliated *G*-reduction $B((M, \mathcal{F}), G, \mathcal{F}_G)$ of the foliated frame bundle $L((M, \mathcal{F}), \mathcal{F}_L)$ admits a foliated connection without torsion.

Quaternionic case

Foliation

Hodge theory for basic forms

The fiber bundle $\bigwedge^k N_x(M, \mathcal{F})^*$ can be understood as the associated bundle of $L((M, \mathcal{F}), \mathcal{F}_L)$ with the standard fiber $\bigwedge^{k}(R^{q*})$. The space of sections of this bundle we denote by $A^{k}(N)$. Since the normal frame bundle $L(M, \mathcal{F})$ is foliated, the foliation \mathcal{F}_L induces a foliation \mathcal{F}_{L}^{k} of the fiber bundle $\bigwedge^{k} N_{k}(M, \mathcal{F})^{*}$. The space of k-basic forms $A^k(M, \mathcal{F})$ is a subspace of $A^k(N)$. If the normal frame bundle $L(M, \mathcal{F})$ admits a foliated G-reduction $B((M,\mathcal{F}), G, \mathcal{F}_G)$, the bundle $\bigwedge^k N_x(M,\mathcal{F})^*$ can be understood as the associated fiber bundle of $B((M, \mathcal{F}), G, \mathcal{F}_G)$ with the standard fiber $\bigwedge^{k}(R^{q*})$. The natural induced foliations coincide. Let $W \subset \bigwedge^k(R^{q*})$ be an invariant subspace of $\bigwedge^k(R^{q*})$ under the standard action of G. There is the standard scalar product on $\bigwedge^k(R^{q*})$ for which the induced action of G is isometric.

Kähler case 000	Quaternionic case	Foliation 000000	Hodge theory for basic forms	References 000

The associated fiber bundle \mathcal{W} of $B((M, \mathcal{F}), G, \mathcal{F}_G)$ with the standard fiber W can be understood as a foliated vector subbundle of the foliated vector bundle $(\bigwedge^k N_x(M, \mathcal{F})^*, \mathcal{F}_L^k)$. Therefore a k-differential form α which corresponds to a section of \mathcal{W} is said to be of type W. The space of these \mathcal{W} -valued sections we denote also by \mathcal{W} . The projection $P_W: A^k(N) \to \mathcal{W}$ sends basic forms into basic forms as the operation is done point by point. Next we show that the result of S.S. Chern can be reformulated for the basic Laplacian Δ_b .

Proposition (M., R. Wolak)

Let $W \subset \bigwedge^k(R^{q*})$ be an invariant subspace of $\bigwedge^k(R^{q*})$ under the standard action of G, P_W be the projection $P_W \colon A^k(M, \mathcal{F}) \to \mathcal{W}$ and Δ_b be the basic Laplacian, then

$$P_W\Delta_b=\Delta_b P_W.$$

Moreover, let W_1, \ldots, W_s be irreducible invariant subspaces of $\bigwedge^k(R^{q*})$ for the action of the group G. Then if α is a harmonic basic k-form, the k-forms $P_{W_1}\alpha, \ldots, P_{W_s}\alpha$ are basic and harmonic. Moreover, if α is a basic k-form of type W so is the form $\Delta_b \alpha$.

Theorem (M., R. Wolak)

Let (M, \mathcal{F}) be a compact Riemannian foliated manifold of codimension 4q. If the foliation \mathcal{F} is cohomologically taut and transversely quaternionic Kähler then the basic Betti numbers $B^i_{\mathcal{F}}$ of (M, \mathcal{F}) satisfy the inequalities:

$$B_{\mathcal{F}}^{i} \leq B_{\mathcal{F}}^{i+4} \leq \ldots \leq B_{\mathcal{F}}^{i+4r}$$

for $i + 4r \le q + 1$, i = 0, 1, 2 or 3.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

28 / 31

Theorem (M., R. Wolak)

Let (M, g, Q, \mathcal{F}) be a cohomologically taut quaternion Kähler foliated manifold of codimension 4q. Then

-) for any k < q the linear map $L: H^k(M, \mathcal{F}) \to H^{k+4}(M, \mathcal{F})$ is injective,
- 2) and there is the direct sum decomposition $H^{k}(M, \mathcal{F}) = \sum_{0 \le s \le \lfloor k/4 \rfloor} L^{s} H_{e}^{k-4s}(M, \mathcal{F}), \ k \le q+3.$

Section 5

References

<ロト < 部ト < 言ト < 言ト 言 の Q (C 29 / 31 Foliation 000000

References

S. S. Chern, On a generalization of Kähler geometry, Algebraic Geometry and Topology, ed. R.H. Fox et al., Princeton Univ. Press, 1957.

V. Y. Kraines, Topology of quaternionic manifolds. Trans. Amer. Math. Soc. **122** (1966), 357-367, DOI 10.1090/S0002-9947-1966-0192513-X.

Mohseni, R., Wolak, R.A.: Cohomology of quaternionic foliations and orbifolds, preprint, arXiv:2202.02733

Wolak, R. A., Foliated and associated geometric structures on foliated manifolds, Ann. Fac. Sci. Toulouse Math. (5) 10(3) (1989) 337-360.

 Foliation 000000

Thank you.

<ロト < 回 > < 臣 > < 臣 > 三 の Q (C 31 / 31