Lorentzian homogeneous structures with indecomposable holonomy

Thomas Leistner

[Joint work with Steven Greenwood, arXiv:2404.17470]

Symmetry and shape

Celebrating the 60th birthday of Eduardo García Río

23 - 27 September 2024, Santiago de Compostela

- A semi-Riemannian manifold (M, g) is homogeneous if there is a group of isometries G that acts transitively on M.
- ► M = G/H with $H = \{\phi \in G \mid \phi(o) = o\} \subseteq G$ the *isotropy* group at $o \in M$.
- ► *H* depends on *o* by conjugation in *G* and also on $G \subseteq \text{Isom}(M, g)$.
- ► $H \ni \phi \mapsto d\phi|_o \in \mathbf{SO}(T_o M)$ is the isotropy representation.
- A homogeneous space G/H is reductive if g admits an Ad(H)-invariant decomposition g = b ⊕ m.

Irreducible isotropy

Some Riemannian homogeneous spaces with irreducible isotropy [Besse]:

H. Tables

203

7.106 Table 5. (Compact) non-symmetric strongly isotropy irreducible spaces (a) Infinite families

8	t	Condition	9	t	Condition
$\operatorname{su}\!\left(\!\frac{n(n-1)}{2}\!\right)$	su(n)	5 < n	$\operatorname{so}\left(\frac{(n-1)(n+2)}{2}\right)$	90(n)	5 ≤ n
$\operatorname{su}\left(\frac{n(n+1)}{2}\right)$	su(n)	3 < n	$\mathfrak{so}((n-1)(2n+1))$	sp(n)	3 < n
su(pq)	$\mathfrak{su}(p)\oplus\mathfrak{su}(q)$	$\begin{array}{l} 2\leqslant p\leqslant q\\ p+q\neq 4 \end{array}$	so(n(2n + 1))	sp(n)	$2 \leq \pi(*)$
$\mathfrak{so}(n^2-1)$	su(n)	$3 < \pi (*)$	so(4 <i>n</i>)	$\mathfrak{sp}(1) \oplus \mathfrak{sp}(n)$	$2 \le n$
$\mathfrak{so}\left(\frac{\mathfrak{n}(n-1)}{2}\right)$	50(n)	$7 \leq \pi \left(\star \right)$	sp(n)	$\mathfrak{sp}(1)\oplus\mathfrak{so}(n)$	3 < n

Note: These spaces are constructed in 7.50 (or in 7.49 for those with a (+)).

7.107 Table 6. (Compact) non-symmetric strongly isotropy irreducible spaces (b) Exceptions

8	t	Note	9	t	Note	g	t	Note
91(16)	se(10)	1	so(133)	E ₂	3	E_6	su(3)	4
su(27)	E_6	1	sa(248)	Ea	3	E_6	3su(3)	4, 5
90(7)	G2	2	sp(2)	su(2)	1	E_6	G2	4
so(14)	G2	3	sp(7)	su(6)	1	E_6	$G_2 \oplus \mathfrak{su}(3)$	4
50(16)	so(9)	1	sp(10)	so(12)	1	E,	su(3)	4
so(26)	F4	1	sp(16)	sp(3)	1	Ε,	$\mathfrak{su}(6)\oplus\mathfrak{su}(3)$	4
se(42)	sp(4)	1	sp(28)	E ₇	1	E,	$G_2 \oplus \mathfrak{sp}(3)$	4
so(52)	F4	3	G2	su(3)	4	Ε,	$F_4 \oplus \mathfrak{su}(2)$	4
se(70)	su(8)	1	G1	so(3)	4	Es	su(9)	4
so(78)	E ₆	3	F4	$\mathfrak{su}(3)\oplus\mathfrak{su}(3)$	4	E ₈	$F_4 \oplus G_2$	4
se(128)	se(16)	1	F4	$G_2 \oplus \mathfrak{su}(2)$	4	Es	$E_6 \oplus \mathfrak{su}(3)$	4

Notes

(1) Defined in 7.51.

(2) Defined in 7.13

(3) Defined in 7.49.

(4) Here I is a maximal subalgebra of g (and this is sufficient, in those cases, to characterize the embedding, see [Dyn 2]).

(5) pl means l ⊕ l ⊕ · · · ⊕ l (p times).

Lorentzian homogeneous spaces:

Theorem (Zeghib 2004)

If a Lorentzian homogeneous space (M, g) of dimension $m \ge 3$ admits an irreducible isotropy group, then it has constant sectional curvature.

Irreducible vs indecomposable

Algebraic fact [Berger '55, Di Scala & Olmos '01, de la Harpe '04] If $H \subseteq \mathbf{O}(1, n)$ is irreducible, then $\mathbf{SO}^{0}(1, n) \subseteq H$.

In contrast: every compact Lie group *K* admits a representation $K \subset \mathbf{O}(n)$. A better assumption in the indefinite context is *indecomposability*:

- H ⊆ O(1, n) is decomposable if ∃ H-invariant subspace V: ℝ^{1,n} = V ⊕ V[⊥], and indecomposable otherwise, i.e. ∄ non degenerate invariant subspace.
- \blacktriangleright irreducible \implies indecomposable
- ▶ $\mathfrak{h} \subseteq \mathfrak{so}(1, n + 1)$ indecomposable, then $V \cap V^{\perp} = \mathbb{R}e_{-}$ is invariant, so that

$$\mathfrak{h} \subseteq \mathfrak{stab}_{\mathfrak{so}(1,n+1)}(\mathbb{R}e_{-}) = \left\{ \begin{pmatrix} a & u^t & 0 \\ 0 & B & -u \\ 0 & 0 & -a \end{pmatrix} | \begin{array}{c} a \in \mathbb{R}, \\ u \in \mathbb{R}^n, \\ B \in \mathfrak{so}(n) \end{array} \right\} = \underbrace{(\mathbb{R} \oplus \mathfrak{so}(n))}_{=\mathfrak{co}(n)} \ltimes \mathbb{R}^n,$$

with $\operatorname{pr}_{\mathbb{R}^n}(\mathfrak{h}) = \mathbb{R}^n$.

Are there any homogeneous Lorentzian manifolds with indecomposable, non irreducible isotropy?

Plane waves

A Lorentzian mfd (M, g) is a *plane wave* if it has a null¹ vector field ξ :

$$abla \xi = 0, \qquad \underbrace{R(X, Y) = 0}_{\iff R \in \Lambda^2 \otimes \mathbb{R}^n}, \quad \nabla_X R = 0 \quad \forall X, Y \in \xi^{\perp}.$$

There are coordinates $(t, x^1, \ldots, x^n, v) = (t, \mathbf{x}, v)$:

$$g_Q = 2 \,\mathrm{d} v \,\mathrm{d} t + \mathrm{d} \mathbf{x}^{\mathsf{T}} \mathrm{d} \mathbf{x} + \mathbf{x}^{\mathsf{T}} Q(t) \,\mathbf{x} \,\mathrm{d} t^2$$

If $M = \mathbb{R}^{n+2}$ and g_Q on M, then (M, g_Q)

► Hei_{2n+1} acts transitively on each leaf of
$$\xi^{\perp}$$

► (M, g_{Q}) is homogeneous $\iff \exists \text{KVF} \pitchfork \xi^{\perp} \overset{[Blau\&O'Loughlin'03]}{\iff} \exists F \in \mathfrak{so}(n)$:
 $Q(t) = e^{tF}Q_{0}e^{-tF}, \text{ or } Q(t) = \frac{1}{t^{2}}e^{\log tF}Q_{0}e^{-\log tF} \text{ on } \{t > 0\}.$

• with isotropy $\mathfrak{h} = \mathfrak{z}_{\mathfrak{so}(n)}(Q_0, F) \ltimes \mathbb{R}^n$, i.e. \mathfrak{h} indecomposable.

¹null := light-like (isotropic) and $\neq 0$

Dichotomy for Lorentzian symmetric spaces

 $G = \langle \phi_p \phi_q \mid p, q \in M \rangle$ transvection group; the isotropy group *H* in *G* is equal to the holonomy group of (M, g).

Theorem (Cahen & Wallach, '70)

An indecomposable Lorentzian symmetric space either has constant sectional curvature or is universally covered by a Cahen–Wallach space (a plane wave with $M = \mathbb{R}^{n+2}$ and Q constant and det(Q) \neq 0).

Other rigidity results:

- ▶ If (M, g) is a locally homogeneous pp-wave $(\nabla \xi = 0 \text{ and } R(X, Y) = 0 \forall X, Y \in \xi^{\perp})$, of dim ≥ 4, then it is a plane wave [Globke & L '16]
- If (M, g) has a transitive group of essential conformal transformations, then g is conformally equivalent to a homogeneous plane wave [Alekssevsky & Galaev '24]

Reductive Lorentzian homogeneous spaces with indecomposable isotropy

All known (to us) examples of dimension \geq 4 are plane waves.

Conjecture

A reductive Lorentzian homogeneous space G/H of dimension $m \ge 4$ with indecomposable isotropy $H \not\supset \mathbf{SO}^0(1, m-1)$ is a plane wave.

An Ambrose–Singer connection on (M, g) is connection $\widetilde{\nabla}$ with

 $\widetilde{\nabla}g = 0, \quad \widetilde{\nabla}\widetilde{R} = 0, \quad \widetilde{\nabla}T = 0, \qquad \widetilde{R} = \text{curvature}, \ T = \text{torsion of }\widetilde{\nabla}.$

There is a close relation between local homogeneity and the existence of an AS connection, and between the isotropy and the holonomy of $\widetilde{\nabla}$...

Theorem (Greenwood & L '24)

If $(M^{m\geq4}, g)$ is a Lorentzian manifold that admits an AS-connection with indecomposable, non-irreducible holonomy, then the universal cover of (M, g) is a locally homogeneous plane-wave.

AS-connections, homogeneous structures and homogeneous spaces

A homogeneous structure is a section S of $T^*M \otimes \mathfrak{so}(TM, g)$ such that

 $\nabla_X S = S(X) \cdot S$, $\nabla_X R = S(X) \cdot R$, $\nabla =$ Levi-Civita connection.

homog structures \longleftrightarrow AS connections, $S \longleftrightarrow \overline{\nabla}_X Y = \nabla_X Y - S(X, Y)$.

- G/H reductive homogeneous ⇒ AS connection: the canonical connection is an AS connection (defined by (∇̃_XY)_o = 0 for all X, Y ∈ m, torsion -[X, Y]_m, curvature = -[X, Y]_b).
- Isotropy & holonomy: If g = b ⊕ m, then g̃ := pr_b([m, m]) ⊕ m is an ideal in g and G/H = G̃/H̃ with b̃ := pr_b([m, m]) = bol(∇̃) that is equal to the holonomy algebra of the canonical connection.
- Converse [Ambrose & Singer '58, Tricerri & Vanhecke '83, Gadea & Oubiña '92]:

If (M, g) is complete, simply-connected and with AS connection, then (M, g) is reductive homogeneous.

 (M, g) is locally reductive homogeneous → ∃ AS connection [e.g. Castrillón-López & Calvaruso '19]

Infinitesimal model for for homogeneous spaces

• Let $\overline{\nabla}$ be an AS connection with \widetilde{R} and T.

► At $o \in M$, set $\mathfrak{m} = T_o M$, $\tilde{\mathfrak{h}} := \mathfrak{hol}_o(\widetilde{\nabla}) = \operatorname{span}\{\widetilde{R}|_o(X, Y) \mid X, Y \in \mathfrak{m}\},\$

▶ Lie bracket on $\tilde{\mathfrak{g}} := \tilde{\mathfrak{h}} \oplus \mathfrak{m}$ by extending the Lie bracket of $\tilde{\mathfrak{h}} \subseteq \mathfrak{so}(\mathfrak{m})$ by

$$[H,X] := H(X), \qquad [X,Y] := -\widetilde{R}|_o(X,Y) - T|_o(X,Y),$$

► ∃ unique simply connected Lie group G with Lie algebra g and unique connected subgroup H with Lie algebra b. If H is closed in G, the homogeneous space G(H is locally isometric to (M, g). (m, R|_o, T|_o) is an *infinitesimal model* of the locally homogeneous space M = G(H.

Version of the Theorem

A Lorentzian reductive locally homogeneous space of dimension $m \ge 4$ is a plane wave if it admits an infinitesimal model that has indecomposable isotropy $\mathfrak{h} \neq \mathfrak{so}(1, m-1)$.

Previous results

Torsion *T* is a section of $\Lambda^2 \otimes \Lambda^1$, where $\Lambda^k := \Lambda^k T^* M$, whose fibres split into three irreducible $\mathfrak{so}(1, m-1)$ -modules,

$\Lambda^2\otimes\Lambda^1$	\simeq	$\Lambda^3 \oplus \ker(\operatorname{pr}_{\Lambda^3}) \cap \ker(\operatorname{trace})$		\oplus	Λ^1	
		1		↑		↑
torsion		skew		twistorial		vectorial

Since $\widetilde{\nabla}T = 0$, the algebraic type of *T* does not change.

- T vectorial: if tr(T) null, then singular homogeneous plane wave [Montesinos Amilibia '01], otherwise constant sectional curvature [Gadea & Oubiña '97].
- ➤ T is twistor-free with null vectorial part ⇒ singular homogeneous plane wave [Meessen '06].
- T skew and hol(∇) is indecomposable ⇒ regular homogeneous plane wave [Ernst & Galaev '22].

So far, no results for twistorial torsion.

The following results [Greenwood & L '24] do not make any assumption on algebraic type.

Let (M^{n+2}, g) be Lorentzian manifold with Levi-Civita connection ∇ , and $\widetilde{\nabla}_X Y = \nabla_X Y - S(X, Y)$ an Ambrose–Singer connection, with *S* a section of $T^*M \otimes \mathfrak{so}(TM)$. We have

 $\begin{array}{ll} \widetilde{\nabla}g=0, & \widetilde{\nabla}S=0 & (\iff \widetilde{\nabla}T=0), & \widetilde{\nabla}\widetilde{R}=0 \\ \text{Lorentzian} & \text{parallel torsion} & \text{loc symmetric} \end{array}$

- Let $\mathfrak{h} \subset \mathfrak{g} := \mathfrak{so}(1, n+1)$ be the holonomy algebra of $\widetilde{\nabla}$.
- $\overline{\nabla}S = 0$ and $\overline{\nabla}\widetilde{R} = 0 \implies \mathfrak{h} \cdot S = 0$ and $\mathfrak{h} \cdot R = 0$,

i.e. *S* and *R* lie in the maximal trivial \mathfrak{h} -submodule in $\Lambda^1 \otimes \mathfrak{g}$ and $\Lambda^2 \otimes \mathfrak{g}$.

If b ≠ g is indecomposable, we will show that the above implies that b = Rⁿ, and moreover that the holonomy of the Levi-Civita connection is also in Rⁿ.

Locally symmetric Lorentzian connections, $\widetilde{\nabla}g = 0$ and $\widetilde{\nabla}\widetilde{R} = 0$

Let (M^{n+2}, g) Lorentzian mfd, $\widetilde{\nabla}$ Lorentzian connection, i.e. $\widetilde{\nabla}g = 0$, with indecomposable holonomy $\mathfrak{h} \subseteq \mathfrak{so}(1, n+1)$, i.e. $\mathfrak{h} \subseteq \mathfrak{stab}_g(\mathbb{R}e_-)$.

- $\overline{\nabla}$ admits a parallel null line bundle $\mathcal{L} \subset \mathcal{L}^{\perp} \subset TM$.
- ▶ If (M, g) is time-oriented, \exists recurrent $\xi \in \Gamma(\mathcal{L})$: $\nabla \xi = \theta \otimes \xi$, for $\theta \in \Gamma(\Lambda^1)$.

 $\widetilde{R}(X,Y)\xi = \mathrm{d}\theta(X,Y)\xi, \qquad (\widetilde{\nabla}_X\widetilde{R})(Y,Z)\xi = (\nabla_X\mathrm{d}\theta)(Y,Z)\xi.$

- ► If *M* is simply connected, then ξ can be rescaled to a parallel null vector field $\iff d\theta = 0.$
- ► If $\widetilde{\nabla}$ is locally symmetric, i.e. $\widetilde{\nabla}\widetilde{R} = 0$, then $\widetilde{\nabla}d\theta = 0$. In particular, $[\mathfrak{h}, d\theta] = 0$, i.e. $d\theta \in \mathfrak{z}_{\mathfrak{h}}(\mathfrak{h}) \xrightarrow{a \text{ bit of algebra on the next slide}} \Longrightarrow$

Proposition

Let $\overline{\nabla}$ be a locally symmetric Lorentzian connection on $(M^{m\geq 3}, g)$ with indecomposable, non-irreducible holonomy algebra. Then, on the universal cover of M, $\overline{\nabla}$ admits a parallel null vector field.

Algebra 1: indecomposable subalgebras in $g := \mathfrak{so}(1, n+1)$

▶ In $V := \mathbb{R}^{1,n+1}$ consider two null vectors e_{\pm} with $\langle e_{-}, e_{+} \rangle = 1$, so that

$$V=V_{-}\stackrel{.}{\oplus}V_{0}\stackrel{.}{\oplus}V_{+}, \quad ext{where } V_{\pm}:=\mathbb{R}\cdot e_{\pm} ext{ and } V_{0}=\mathbb{R}^{n}.$$

► Let $g_0 \simeq co(n) \simeq \mathbb{R} \oplus so(n)$ be the subalgebra of g that preserves so that

$$g = \left\{ \begin{pmatrix} a & v^{\top} & 0 \\ u & A & -v \\ 0 & -u^{\top} & -a \end{pmatrix} | \begin{array}{c} a \in \mathbb{R}, A \in \mathfrak{so}(n) \\ v \in \mathbb{R}^{n}, \\ u \in \mathbb{R}^{n} \end{array} \right\} = \underbrace{g_{-} \oplus \mathfrak{co}(n)}_{=p:=\mathfrak{stab}_{0}(V_{-})} \oplus g_{+}$$

with $[g_i, g_j] = g_{i+j}$ and $g_i(V_j) = V_{i+j} \mod 2$, with

$$\pi_{\pm}: \mathfrak{g} \to \mathfrak{g}_{\pm}, \qquad \pi_0 = \pi_{\mathbb{R}} + \pi_{\mathfrak{so}(n)}: \mathfrak{g} \to \mathfrak{g}_0 = \mathfrak{co}(n) = \mathbb{R} \oplus \mathfrak{so}(n).$$

▶ $\mathfrak{h} \subseteq \mathfrak{g}$ indecomposable $\stackrel{\text{mod conjug}}{\longleftrightarrow} \mathfrak{h} \subset \mathfrak{p}$ and $\pi_{-}(\mathfrak{h}) = \mathfrak{g}_{-}$. Set $\mathfrak{h}_{0} := \pi_{0}(\mathfrak{h})$.

Lemma

$$\mathfrak{z}_{\mathfrak{g}}(\mathfrak{h}) = \begin{cases} \{\overline{z} \in \mathfrak{g}_{-} \mid \mathfrak{h}_{0}z = 0\}, & \text{if } \pi_{\mathbb{R}}(\mathfrak{h}) = 0, \text{ i.e. if } \mathfrak{h} \subset \mathfrak{so}(n) \ltimes \mathbb{R}^{n} \\ 0, & \text{otherwise.} \end{cases}$$

This implies: either $d\theta = 0$ or $\mathfrak{h} \in \mathfrak{so}(n) \ltimes \mathbb{R}^n$, so in both cases the recurrent vector field rescales to a parallel one.

Algebra 2: the form of S — trivial \mathfrak{h} -modules in $V^* \otimes \mathfrak{g}$

- We denote $V^0 := V_0^*$ and $V^{\pm} := V_{\pm}^* = \mathbb{R}e^{\pm}$ with $e^{\pm} := \langle e_{\pm}, . \rangle$,
- ▶ for $X \in g$ denote $X_a := \pi_a(X)$ for a = -, 0, +, and the same for subsets.

Theorem

Let $\mathfrak{h} \subseteq \mathfrak{so}(n) \ltimes \mathfrak{g}_{-}$ indecomposable with $n \ge 2$. If $W \subseteq V^* \otimes \mathfrak{g}$ is a trivial \mathfrak{h} -module, then

$$W\subseteq (V^0\otimes \mathfrak{g}_-)\oplus (V^+\otimes \mathfrak{p})$$

and every $S \in W$ is determined by $S(e_+)$ as

 $S(x)e_{+} = -(S(e_{+}))_{0} \cdot x$, for all $x \in V_{0}$, and $[\mathfrak{h}_{0}, (S(e_{+}))_{0}] = \{0\}.$

In particular, $S(e_{-}) = 0$ and $S(X, e_{-}) \in V_{-}$.

Algebra 3: trivial \mathfrak{h} -modules in the torsion module $\Lambda^2 V^* \otimes V$

Isomorphism
$$V^* \otimes \mathfrak{g} \ni S_{ab}{}^c \longmapsto T_{ab}{}^c := S_{[ab]}{}^c \in \Lambda^2 \otimes V$$

Corollary

If W is a trivial \mathfrak{h} -module in $\Lambda^2 V^* \otimes V$, then

$$W \subseteq \left((V \wedge V^+) \oplus (V^0 \wedge V^0)
ight) \otimes V_- \oplus (V^0 \wedge V^+) \otimes V_0.$$

Moreover, if for $T \in W$, we define $b \in \mathbb{R}$ and $\omega \in \Lambda^2 V_0$ by

$$T(e_+, e_-) = b e_-, \qquad \omega(x, y) := \langle T(x, y), e_+ \rangle,$$

then $\langle T(e_+, x), y \rangle = b x^{\mathsf{T}} y + \omega(x, y).$

- ► T is totally skew \iff $S(e_+) \in \mathfrak{so}(n) \iff T(e_+) \in \mathfrak{so}(n)$
- ► *T* is twistorial $\iff S(e_+) \in \mathfrak{g}_-, \iff T(e_+) \in V^0 \otimes V_-$, and
- ► *T* is vectorial $\iff S(e_+) \in \mathbb{R} \iff T(e_+) \in V^- \otimes V_-.$

Lorentzian connections with parallel torsion

Assume that $\widetilde{\nabla}_X Y = \nabla_X Y - S(X, Y)$ admits a parallel null vector field ξ and has parallel torsion.

- Theorem A2 \implies $S(.,\xi) = \alpha \xi^{\flat} \otimes \xi$, for constant α .
- ξ is recurrent for ∇ with $\theta = \alpha \xi^{\flat}$, so

$$\mathrm{d}\theta(X,Y) = \alpha \,\mathrm{d}\xi^{\flat}(X,Y) = -2g(\xi,\underbrace{\mathsf{T}(X,Y)}_{\in\xi^{\perp} \text{ by A2}}) = 0.$$

Proposition

Let $(M^{m\geq 4}, g)$ be a Lorentzian, ∇ = Levi-Civita connection, $\widetilde{\nabla}$ = Lorentzian connection with parallel torsion. If $\widetilde{\nabla}$ admits a parallel null vector field ξ and $\mathfrak{hol}(\widetilde{\nabla})$ indecomposable, then also ∇ admits a parallel null vector field and $\operatorname{pr}_{\mathfrak{so}(n)}(\mathfrak{hol}(\nabla)) = \operatorname{pr}_{\mathfrak{so}(n)}(\mathfrak{hol}(\widetilde{\nabla}))$

This was known only for parallel totally skew torsion [Ernst & Galaev '22]

Algebra 4: algebraic curvature tensors with torsion

Let
$$T \in \Lambda^2 V^* \otimes V$$
, and $\mathfrak{h} \subset \mathfrak{so}(V)$.
 $\mathcal{R}(V,\mathfrak{h},T) := \left\{ R \in \Lambda^2 V^* \otimes \mathfrak{h} \mid \underset{u,v,w}{\mathfrak{S}} (R(u,v)w + T(T(u,v),w)) = 0 \ \forall u,v,w \in V \right\},$

Theorem

Let $\mathfrak{h} \subseteq \mathfrak{so}(n) \ltimes \mathfrak{g}_{-}$ indecomposable, with $n \ge 1$, and $T \in \Lambda^2 V^* \otimes V$ such that $\mathfrak{h} \cdot T = 0$ (i.e. as in Corollary A3). Then $\mathcal{R}(V, \mathfrak{h}, T)$ injects into

$$\mathcal{R}(V_0, \mathfrak{h}_0) \oplus \mathcal{P}(V_0, \mathfrak{h}_0) \oplus V_0 \otimes V_0,$$

where $\mathcal{P}(V_0, \mathfrak{h}_0) := \left\{ P \in V^0 \otimes \mathfrak{h}_0 \mid \underset{x,y,z}{\mathfrak{S}} (P(x, y))^\top z = 0 \ \forall x, y, z \in V_0
ight\}.$

Corollary

Under the above assumptions, if $R \in \mathcal{R}(V, \mathfrak{h}, T)$ such that $\mathfrak{h} \cdot R = 0$, then $R \in \Lambda^2 V^* \otimes \mathfrak{g}_-$.

Proposition on Lorentzian symmetric connections and Theorem A4 \implies

Theorem

Let $(M^{m\geq 3}, g)$ be Lorentzian manifold with Ambrose–Singer connection $\widetilde{\nabla}$ with indecomposable, non-irreducible holonomy. Then, on the universal cover, $\widetilde{\nabla}$ admits a parallel null vector field ξ , and $\widetilde{R}(X, Y) = 0$ for all $X, Y \in \xi^{\perp}$.

In particular, this implies the Cahen–Wallach result: *a locally symmetric* Lorentzian manifold with indecomposable, non-irreducible holonomy is locally isometric to a Cahen–Wallach space.

Levi-Civita vs. Ambrose-Singer: proof of the main result

Let (M, g) be a Lorentzian manifold of dim \geq 4 and $\widetilde{\nabla}$ an Ambrose-Singer connection with indecompsable, non-irreducible holonomy.

- ▶ By the previous theorem, $\overline{\nabla}$ admits a parallel null vector field and $\overline{\nabla}^{S}$ and $\widetilde{R}(X, Y) = 0$ for all $X, Y \in \xi^{\perp}$.
- By the proposition for connections with parallel torsion, also ∇ admits a parallel null vector field and R(X, Y) = 0 for all X, Y ∈ ξ[⊥]. This already implies that (M, g) is a pp-wave, i.e. R ∈ V⁺ ∧ V⁰ ⊗ g_−

0 = ∇̃_XR = ∇_XR − S(X) · R, and by Theorem A2, S(X) ∈ g_− for all X ∈ ξ[⊥]|_p. Hence, for all X, Y ∈ ξ[⊥]|_p and V ∈ T_pM

$$(S(X) \cdot R)(Y, V) = \underbrace{[S(X), R(Y, V)]}_{=0, g_{-} \text{ abelian}} - R(\underbrace{S(X, Y)}_{\in \mathbb{R} \cdot \xi}, V) - R(Y, \underbrace{S(X, V)}_{\in V_{0}}) = 0.$$

This shows that $S(X) \cdot R = 0$ and hence $\nabla_X R$ for all $X \in \xi^{\perp}$. I.e. (M, g) is a plane wave.

The case of dimension 3

Theorem A2 fails in dimension 3 = n + 2:

Let $V = \text{span}(e_{-}, e_{1}, e_{+})$ and $\mathfrak{h} = \mathbb{R} \cdot X$, where $X := \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{so}(1, 2).$

 $S \in V^* \otimes \mathfrak{so}(1,2)$ such that $\mathfrak{h} \cdot S = 0 \iff$

$$S(e_{-}) = aX, \quad S(e_{1}) = \begin{pmatrix} a & -b & 0 \\ 0 & 0 & b \\ 0 & 0 & -a \end{pmatrix}, \quad S(e_{+}) = \begin{pmatrix} -b & -c & 0 \\ -a & 0 & c \\ 0 & a & b \end{pmatrix},$$

a, *b*, *c* in \mathbb{R} , i.e. the maximal trivial \mathfrak{h} -submodule of $V^* \otimes \mathfrak{g}$ is of dim 3 and not in $V^* \otimes \mathfrak{p}$ (as in Theorem A2).

Proposition

If a simply-connected Lorentzian manifold (M^3, g) admits an Ambrose–Singer connection with indecomposable, non-irreducible holonomy, then

- (M³, g) is a plane-wave, or
- ▶ a left-invariant metric on S̃L(2, ℝ) with holonomy algebra so(1, 2) and negative scalar curvature.

An example

Consider $\mathfrak{m} := \mathbb{R}^3 = \operatorname{span}(e_{-}, e_1, e_+)$ with Lie bracket defined by

$$[e_{-}, e_{1}] = -2ae_{-}$$
 $[e_{-}, e_{+}] = 2ae_{1},$ $[e_{1}, e_{+}] = -2ae_{+} + \frac{(2ac+1)}{2a}e_{-},$

- ▶ $\mathfrak{m} = [\mathfrak{m}, \mathfrak{m}]$ and the Killing form is indefinite \implies isomorphic to $\mathfrak{sl}(2, \mathbb{R})$.
- ► Let $\langle ., . \rangle$ be the Minkowski inner product on \mathfrak{m} with (e_{-}, e_{1}, e_{+}) as before. \rightsquigarrow left-invariant metric g on the 1-connected Lie group $M \simeq \widetilde{SL}(2, \mathbb{R})$.
- ► $\nabla_{e_-}e_- = 0$, $\nabla_{e_1}e_- = ae_-$, $\nabla_{e_+}e_- = -ae_1$, so no parallel null vf!
- Left invariant homogeneous structure S ∈ m^{*} ⊗ so(m) from the previous slide, the left invariant null vector field corresponding to e₋ is parallel for V, since

$$S(e_{-},e_{-})=0,$$
 $S(e_{1},e_{-})=ae_{-},$ $S(e_{+},e_{-})=-ae_{1}.$

• $\widetilde{\nabla}$ is not flat, so $\mathfrak{hol}(\widetilde{\nabla}) = \mathbb{R} \cdot X$ indecomposable.

 \rightarrow Dimension restriction $m \ge 4$ in the main theorem is sharp.

 \rightsquigarrow Counterexample to Conjecture in dimension m = 3: $\mathfrak{h} := \mathbb{R} \cdot X$ and

$$\mathfrak{g} = \mathbb{R} \cdot X \ltimes \mathfrak{m} \simeq \mathbb{R} \ltimes \mathfrak{sl}(2, \mathbb{R}).$$

M = G/H is not a plane wave, and has const sect curvature $\iff 1 + 2ac = 0$.

Moitas grazas!