Lorentzian homogeneous structures with indecomposable holonomy

Thomas Leistner

[Joint work with Steven Greenwood, arXiv:2404.17470]

Symmetry and shape

CELEBRATING THE 60TH BIRTHDAY OF EDUARDO GARCÍA RÍO

23 - 27 September 2024, Santiago de Compostela

- A semi-Riemannian manifold (M, g) is *homogeneous* if there is a group of isometries G that acts transitively on M.
- ▶ $M = G/H$ with $H = \{\phi \in G \mid \phi(o) = o\} \subseteq G$ the *isotropy* group at $o \in M$.
- ▶ H depends on o by conjugation in G and also on $G \subseteq$ Isom (M, g) .
- \blacktriangleright H \ni ϕ \longmapsto d ϕ |_o \in **SO**(T_0M) is the isotropy representation.
- A homogeneous space G/H is *reductive* if g admits an $Ad(H)$ -invariant decomposition $q = h \oplus m$.

Irreducible isotropy

Some Riemannian homogeneous spaces with irreducible isotropy [Besse]:

H Tables

 203

7.106 Table S. (Compact) non-symmetric strongly isotrony irreducible spaces (a) Infinite families

Note: These spaces are constructed in 7.50 (or in 7.49 for those with a (+)).

7.107 Table 6. (Compact) non-symmetric strongly isotropy irreducible spaces (b) Exceptions

Notes

(1) Defined in 7.51.

(2) Defined in 7.13

(3) Defined in 7.49.

(4) Here I is a maximal subalgebra of g (and this is sufficient, in those cases, to characterize the embedding, see [Dyn 2]).

(5) pl means $I \oplus I \oplus \cdots \oplus I$ (p times)

Lorentzian homogeneous spaces:

Theorem (Zeghib 2004)

If a Lorentzian homogeneous space (M, g) of dimension $m \geq 3$ admits an irreducible isotropy group, then it has constant sectional curvature.

Irreducible vs indecomposable

Algebraic fact [Berger '55, Di Scala & Olmos '01, de la Harpe '04] If $H \subseteq \mathbf{O}(1,n)$ is irreducible, then $\mathbf{SO}^0(1,n) \subseteq H$.

In contrast: every compact Lie group K admits a representation K ⊂ **O**(n). A better assumption in the indefinite context is indecomposability:

- **►** $H \subseteq \mathbf{O}(1, n)$ is decomposable if \exists H-invariant subspace $V: \mathbb{R}^{1,n} = V \oplus V^{\perp}$, and *indecomposable* otherwise, i.e. ∄ non degenerate invariant subspace.
- ▶ irreducible =⇒ indecomposable
- ▶ b \subset so(1, n + 1) indecomposable, then $V \cap V^{\perp} = \mathbb{R}e$ is invariant, so that

$$
\mathfrak{h} \subseteq \mathfrak{stab}_{\mathfrak{so}(1,n+1)}(\mathbb{R}\mathbf{e}_{-}) = \begin{cases} \begin{pmatrix} a & u^{t} & 0 \\ 0 & B & -u \end{pmatrix} & a \in \mathbb{R}, \\ 0 & 0 & -a \end{cases} \quad u \in \mathbb{R}^{n}, \quad \mathfrak{h} \in \mathfrak{so}(n) \end{cases} \bigg\} = \underbrace{(\mathbb{R} \oplus \mathfrak{so}(n))}_{= \mathfrak{so}(n)} \ltimes \mathbb{R}^{n},
$$

with $pr_{\mathbb{R}^n}(\mathfrak{h}) = \mathbb{R}^n$.

Are there any homogeneous Lorentzian manifolds with indecomposable, non irreducible isotropy?

Plane waves

A Lorentzian mfd (M, g) is a *plane wave* if it has a null¹ vector field ξ :

$$
\nabla \xi = 0, \qquad \underbrace{R(X, Y) = 0}_{\Longleftrightarrow R \in \Lambda^2 \otimes \mathbb{R}^n}, \quad \nabla_X R = 0 \quad \forall X, Y \in \xi^{\perp}.
$$

There are coordinates $(t, x^1, \ldots, x^n, v) = (t, \mathbf{x}, v)$:

$$
g_{Q} = 2 \, \mathrm{d}v \, \mathrm{d}t + \mathrm{d} \mathbf{x}^{\top} \mathrm{d} \mathbf{x} + \mathbf{x}^{\top} Q(t) \, \mathbf{x} \, \mathrm{d}t^{2}
$$

If $M = \mathbb{R}^{n+2}$ and g_Q on M, then (M, g_Q)

► **Hei**_{2n+1} acts transitively on each leaf of ξ^{\perp} ▶ (M, g_0) is homogeneous $\iff \exists$ KVF $\Uparrow \xi^{\perp} \stackrel{[Blau \& O' Loughlin' 03]}{\iff} \exists F \in \mathfrak{so}(n)$: $Q(t) = e^{tF} Q_0 e^{-tF}$, or $Q(t) = \frac{1}{t^2} e^{\log tF} Q_0 e^{-\log tF}$ on $\{t > 0\}$.

▶ with isotropy $\mathfrak{h} = \mathfrak{z}_{\mathfrak{so}(n)}(Q_0, F) \ltimes \mathbb{R}^n$, i.e. $\mathfrak h$ indecomposable.

 1 null := light-like (isotropic) and $\neq 0$

Dichotomy for Lorentzian symmetric spaces

 $G = \langle \phi_p \phi_q \mid p, q \in M \rangle$ transvection group; the isotropy group H in G is equal to the holonomy group of (M, q) .

Theorem (Cahen & Wallach, '70)

An indecomposable Lorentzian symmetric space either has constant sectional curvature or is universally covered by a Cahen–Wallach space (a plane wave with $M = \mathbb{R}^{n+2}$ and Q constant and det $(Q) \neq 0$).

Other rigidity results:

- ▶ If (M, q) is a locally homogeneous pp-wave ($\nabla \xi = 0$ and $R(X, Y) = 0 \ \forall X, Y \in \xi^{\perp}$, of dim ≥ 4 , then it is a plane wave [Globke & L '16]
- If (M, q) has a transitive group of essential conformal transformations, then g is conformally equivalent to a homogeneous plane wave [Alekssevsky & Galaev '24]

All known (to us) examples of dimension ≥ 4 are plane waves.

Conjecture

A reductive Lorentzian homogeneous space G/H of dimension $m \geq 4$ with indecomposable isotropy $H \not\supseteq SO^0(1, m-1)$ is a plane wave.

An Ambrose–Singer connection on (M, g) is connection $\overline{\nabla}$ with

$$
\widetilde{\nabla}g = 0
$$
, $\widetilde{\nabla}\widetilde{R} = 0$, $\widetilde{\nabla}T = 0$, $\widetilde{R} = \text{curvature}, T = \text{torsion of } \widetilde{\nabla}$.

There is a close relation between local homogeneity and the existence of an AS connection, and between the isotropy and the holonomy of ∇ ...

Theorem (Greenwood & L '24)

If (M^{m≥4}, g) is a Lorentzian manifold that admits an AS-connection with
indecendence by any implicitly heleneau, that the universel acuse of indecomposable, non-irreducible holonomy, then the universal cover of (M, q) is a locally homogeneous plane-wave.

AS-connections, homogeneous structures and homogeneous spaces

A homogeneous structure is a section S of $T^*M \otimes \mathfrak{so}(TM, g)$ such that

 $\nabla_X S = S(X) \cdot S$, $\nabla_X R = S(X) \cdot R$, $\nabla =$ Levi-Civita connection.

homog structures \longleftrightarrow AS connections, $S \longleftrightarrow \overline{\nabla}_X Y = \nabla_X Y - S(X, Y)$.

- ▶ G/H reductive homogeneous \implies AS connection: the canonical connection is an AS connection (defined by $(\overline{\nabla}_X Y)_{\alpha} = 0$ for all $X, Y \in \mathfrak{m}$, torsion $-[X, Y]_{m}$, curvature $=-[X, Y]_{h}$.
- **►** Isotropy & holonomy: If $g = \mathfrak{h} \oplus \mathfrak{m}$, then $\widetilde{g} := \text{pr}_{\mathfrak{h}}([m, m]) \oplus \mathfrak{m}$ is an ideal in g
and $G/U = \widetilde{G}(\widetilde{U} \oplus \mathfrak{h})$, $g = \mathfrak{g}(\overline{U} \oplus \mathfrak{h})$, $h \oplus \mathfrak{h}(\widetilde{U})$ that is aggrebta that and $G/H = G/H$ with $\mathfrak{h} := \text{pr}_{\mathfrak{h}}([\mathfrak{m}, \mathfrak{m}]) = \text{hol}(\nabla)$ that is equal to the holonomy algebra of the canonical connection.
- ▶ Converse [Ambrose & Singer '58, Tricerri & Vanhecke '83, Gadea & Oubiña '92]:

If (M, g) is complete, simply-connected and with AS connection, then (M, g) is reductive homogeneous.

▶ (M, g) is locally reductive homogeneous \iff ∃ AS connection [e.g. Castrillón-López & Calvaruso '19]

Infinitesimal model for for homogeneous spaces

▶ Let $\widetilde{\nabla}$ be an AS connection with \widetilde{R} and T.

▶ At $o \in M$, set $m = T_oM$, $\widetilde{b} := \text{hol}_o(\widetilde{\nabla}) = \text{span}\{\widetilde{R}|_o(X, Y) \mid X, Y \in \mathfrak{m}\},\$

► Lie bracket on $\widetilde{\mathfrak{g}} := \widetilde{\mathfrak{h}} \oplus \mathfrak{m}$ by extending the Lie bracket of $\widetilde{\mathfrak{h}} \subseteq \mathfrak{so}(\mathfrak{m})$ by

$$
[H, X] := H(X), \qquad [X, Y] := -\widetilde{H}|_{o}(X, Y) - T|_{o}(X, Y),
$$

▶ \exists unique simply connected Lie group \widetilde{G} with Lie algebra \widetilde{q} and unique connected subgroup \widetilde{H} with Lie algebra \widetilde{b} . If \widetilde{H} is closed in \widetilde{G} , the homogeneous space $\widetilde{G}/\widetilde{H}$ is locally isometric to (M, g) . $(m, \overline{R}|_o, T|_o)$ is an *infinitesimal model* of the locally homogeneous space $M = \widetilde{G}/\widetilde{H}$.

Version of the Theorem

A Lorentzian reductive locally homogeneous space of dimension $m \geq 4$ is a plane wave if it admits an infinitesimal model that has indecomposable isotropy $h \neq$ so(1, m – 1).

Previous results

Torsion T is a section of $\Lambda^2 \otimes \Lambda^1,$ where $\Lambda^k := \Lambda^k \, T^*M,$ whose fibres split into three irreducible $\mathfrak{so}(1, m - 1)$ -modules,

Since $\widetilde{\nabla}T = 0$, the algebraic type of T does not change.

- \triangleright T vectorial: if tr(T) null, then singular homogeneous plane wave [Montesinos Amilibia '01], otherwise constant sectional curvature [Gadea & Oubiña '97].
- ▶ T is twistor-free with null vectorial part \implies singular homogeneous plane wave [Meessen '06].
- ▶ T skew and $\mathfrak{hol}(\overline{\nabla})$ is indecomposable \implies regular homogeneous plane wave [Ernst & Galaev '22].

So far, no results for twistorial torsion.

The following results [Greenwood & L '24] do not make any assumption on algebraic type.

Let (M^{n+2}, g) be Lorentzian manifold with Levi-Civita connection ∇ , and
 $\widetilde{\nabla}$, $X = X \cdot S(X, X)$ an Ambress, Singar connection, with S.a section $\widetilde{\nabla}_X Y = \nabla_X Y - S(X, Y)$ an Ambrose–Singer connection, with S a section of $T^*M \otimes \mathfrak{so}(TM)$. We have

> $\widetilde{\nabla}g = 0, \qquad \widetilde{\nabla}S = 0 \quad (\Longleftrightarrow \widetilde{\nabla}T = 0), \qquad \widetilde{\nabla}\widetilde{R} = 0$ Lorentzian parallel torsion loc symmetric

- ► Let $\mathfrak{h} \subset \mathfrak{g} := \mathfrak{so}(1, n + 1)$ be the holonomy algebra of \overline{V} .
- $\rightarrow \widetilde{\nabla}S = 0$ and $\widetilde{\nabla}\widetilde{R} = 0 \implies \mathfrak{h} \cdot S = 0$ and $\mathfrak{h} \cdot R = 0$,

i.e. S and R lie in the maximal trivial $\mathfrak h$ -submodule in $\Lambda^1 \otimes \mathfrak g$ and $\Lambda^2 \otimes \mathfrak g$.

If $\mathfrak{h} \neq \mathfrak{g}$ is indecomposable, we will show that the above implies that $\mathfrak{h} = \mathbb{R}^n$, and moreover that the holonomy of the Levi-Civita connection is also in \mathbb{R}^n .

Locally symmetric Lorentzian connections, $\widetilde{\nabla}q=0$ and $\widetilde{\nabla}\widetilde{R}=0$

Let (M^{n+2}, g) Lorentzian mfd, ∇ Lorentzian connection, i.e. $\nabla g = 0$, with indecomposable holonomy $\mathfrak{h} \subsetneq$ so(1, $n + 1$), i.e. $\mathfrak{h} \subseteq$ stab_a(Re_−).

- \triangleright $\widetilde{\nabla}$ admits a parallel null line bundle $\mathcal{L} \subset \mathcal{L}^{\perp} \subset \mathcal{T}M$.
- **▶** If (M, g) is time-oriented, \exists recurrent $\xi \in \Gamma(\mathcal{L})$: $\nabla \xi = \theta \otimes \xi$, for $\theta \in \Gamma(\Lambda^1)$.

 $\widetilde{R}(X, Y)\xi = d\theta(X, Y)\xi, \qquad (\widetilde{\nabla}_X \widetilde{R})(Y, Z)\xi = (\nabla_X d\theta)(Y, Z)\xi.$

- ▶ If M is simply connected, then ξ can be rescaled to a parallel null vector field $\iff d\theta = 0.$
- **►** If $\tilde{\nabla}$ is locally symmetric, i.e. $\tilde{\nabla}\tilde{R}=0$, then $\tilde{\nabla}d\theta=0$. In particular, $[t_1, d\theta] = 0$, i.e. $d\theta \in \mathfrak{z}_0(t)$ a bit of algebra on the next slide =⇒

Proposition

Let $\bar{\nabla}$ be a locally symmetric Lorentzian connection on $(M^{m≥3}, g)$ with indecomposable, non-irreducible holonomy algebra. Then, on the universal cover of M, \overline{v} admits a parallel null vector field.

Algebra 1: indecomposable subalgebras in $g := \mathfrak{so}(1, n + 1)$

▶ In $V := \mathbb{R}^{1,n+1}$ consider two null vectors e_{\pm} with $\langle e_-, e_+\rangle = 1$, so that

$$
V = V_{-} \stackrel{\perp}{\oplus} V_{0} \stackrel{\perp}{\oplus} V_{+}, \quad \text{where } V_{\pm} := \mathbb{R} \cdot e_{\pm} \text{ and } V_{0} = \mathbb{R}^{n}.
$$

► Let $g_0 \simeq \cos(n) \simeq \mathbb{R} \oplus \sin(n)$ be the subalgebra of g that preserves so that

$$
g = \left\{ \begin{pmatrix} a & v^{\top} & 0 \\ u & A & -v \\ 0 & -u^{\top} & -a \end{pmatrix} \middle| \begin{array}{c} a \in \mathbb{R}, A \in \mathfrak{so}(n) \\ v \in \mathbb{R}^{n}, \\ u \in \mathbb{R}^{n} \end{array} \right\} = \underbrace{g_{-} \oplus \mathfrak{co}(n)}_{= \mathfrak{p}:= \mathfrak{stab}_{0}(V_{-})} \oplus g_{+}
$$

with $[g_i, g_j] = g_{i+j}$ and $g_i(V_j) = V_{i+j} \mod 2$, with

$$
\pi_{\pm}: \mathfrak{g} \to \mathfrak{g}_{\pm}, \qquad \pi_0 = \pi_{\mathbb{R}} + \pi_{\mathfrak{so}(n)} : \mathfrak{g} \to \mathfrak{g}_0 = \mathfrak{co}(n) = \mathbb{R} \oplus \mathfrak{so}(n).
$$

► $\mathfrak{h} \subsetneq \mathfrak{g}$ indecomposable $\stackrel{\text{mod conjug}}{\iff} \mathfrak{h} \subset \mathfrak{p}$ and $\pi_-(\mathfrak{h}) = \mathfrak{g}_-$. Set $\mathfrak{h}_0 := \pi_0(\mathfrak{h})$.

Lemma

$$
\mathfrak{z}_{\mathfrak{g}}(\mathfrak{h})=\left\{\begin{array}{ll} \{\overline{z}\in\mathfrak{g}_{-}\mid\mathfrak{h}_{0}z=0\}, & \text{if }\pi_{\mathbb{R}}(\mathfrak{h})=0, \text{ i.e. if } \mathfrak{h}\subset\mathfrak{so}(n)\ltimes\mathbb{R}^{n} \\ 0, & \text{otherwise.} \end{array}\right.
$$

This implies: either $d\theta = 0$ or $\mathfrak{h} \in \mathfrak{so}(n) \ltimes \mathbb{R}^n$, so in both cases the recurrent vector field rescales to a parallel one.

Algebra 2: the form of S — trivial h-modules in $V^* \otimes g$

- ▶ We denote $V^0 := V_0^*$ and $V^{\pm} := V_{\pm}^* = \mathbb{R}e^{\pm}$ with $e^{\pm} := \langle e_{\mp}, . \rangle$,
- ▶ for $X \in \mathfrak{g}$ denote $X_a := \pi_a(X)$ for $a = -.0, +,$ and the same for subsets.

Theorem

Let $\mathfrak{h} \subseteq \mathfrak{so}(n) \ltimes \mathfrak{g}_-$ indecomposable with $n \geq 2$. If $W \subseteq V^* \otimes \mathfrak{g}$ is a trivial \mathfrak{h} -module, then

$$
W \subseteq (V^0 \otimes \mathfrak{g}_-) \oplus (V^+ \otimes \mathfrak{p})
$$

and every $S \in W$ is determined by $S(e_+)$ as

 $S(x)e_{+} = -(S(e_{+}))_{0} \cdot x$, for all $x \in V_{0}$, and $[f_{0}$, $(S(e_{+}))_{0}] = \{0\}$.

In particular, $S(e_>) = 0$ and $S(X, e_-) \in V_-.$

Algebra 3: trivial h-modules in the torsion module $\Lambda^2 V^* \otimes V$

Isomorphism
$$
V^* \otimes g \ni S_{ab}{}^c \longmapsto T_{ab}{}^c := S_{[ab]}{}^c \in \Lambda^2 \otimes V
$$

Corollary

If W is a trivial \mathfrak{h} -module in $\Lambda^2 V^* \otimes V$, then

$$
W \subseteq ((V \wedge V^+) \oplus (V^0 \wedge V^0)) \otimes V_- \oplus (V^0 \wedge V^+) \otimes V_0.
$$

Moreover, if for $T \in W$, we define $b \in \mathbb{R}$ and $\omega \in \Lambda^2 V_0$ by

$$
\mathcal{T}(e_+,e_-)=b\,e_-, \qquad \omega(x,y):=\langle \mathcal{T}(x,y),e_+\rangle,
$$

then $\langle T(e_+,x), y \rangle = b x^{\top} y + \omega(x, y).$

- ▶ T is totally skew \iff $S(e_+) \in \mathfrak{so}(n) \iff T(e_+) \in \mathfrak{so}(n)$
- ▶ T is twistorial \iff $S(e_+) \in g_-, \iff T(e_+) \in V^0 \otimes V_-,$ and
- ▶ T is vectorial $\iff S(e_+) \in \mathbb{R} \iff T(e_+) \in V^- \otimes V_-.$

Lorentzian connections with parallel torsion

Assume that $\overline{\nabla}_XY = \nabla_XY - S(X, Y)$ admits a parallel null vector field ξ and has parallel torsion.

► Theorem A2 $\implies S(., \xi) = \alpha \xi^{\flat} \otimes \xi$, for constant α .

$$
\blacktriangleright \xi \text{ is recurrent for } \nabla \text{ with } \theta = \alpha \, \xi^{\flat}, \text{ so}
$$

$$
d\theta(X, Y) = \alpha d\xi^{b}(X, Y) = -2g(\xi, \underbrace{T(X, Y)}_{\in \xi^{\perp}}
$$
 by A2) = 0.

Proposition

Let $(M^{m\geq 4}, g)$ be a Lorentzian, $\nabla =$ Levi-Civita connection, $\overline{\nabla} =$ Lorentzian connection with parallel torsion. If $\widetilde{\nabla}$ admits a parallel null vector field ξ and $\mathfrak{hol}(\widetilde{\nabla})$ indecomposable, then also ∇ admits a parallel null vector field and $\mathrm{pr}_{\mathfrak{so}(n)}(\mathfrak{hol}(\nabla)) = \mathrm{pr}_{\mathfrak{so}(n)}(\mathfrak{hol}(\nabla))$

This was known only for parallel totally skew torsion [Ernst & Galaev '22]

Algebra 4: algebraic curvature tensors with torsion

Let
$$
T \in \Lambda^2 V^* \otimes V
$$
, and $\mathfrak{h} \subset \mathfrak{so}(V)$.
\n
$$
\mathcal{R}(V, \mathfrak{h}, T) := \left\{ R \in \Lambda^2 V^* \otimes \mathfrak{h} \mid \bigcup_{u,v,w} \mathfrak{S} \left(R(u,v)w + T(T(u,v),w) \right) = 0 \,\forall u, v, w \in V \right\},
$$

Theorem

Let $\mathfrak{h} \subseteq \mathfrak{so}(n) \ltimes \mathfrak{g}_-$ indecomposable, with $n \geq 1$, and $T \in \Lambda^2 V^* \otimes V$ such that $\mathfrak{h} \cdot \mathcal{T} = 0$ (i.e. as in Corollary A3). Then $\mathcal{R}(V, \mathfrak{h}, T)$ injects into

$$
\mathcal{R}(V_0, \mathfrak{h}_0) \oplus \mathcal{P}(V_0, \mathfrak{h}_0) \oplus V_0 \otimes V_0,
$$

where
$$
P(V_0, \mathfrak{h}_0) := \Big\{ P \in V^0 \otimes \mathfrak{h}_0 \mid \underset{x,y,z}{\mathfrak{S}} (P(x,y))^{\top} z = 0 \ \forall x,y,z \in V_0 \Big\}.
$$

Corollary

Under the above assumptions, if $R \in \mathcal{R}(V, \mathfrak{h}, T)$ such that $\mathfrak{h} \cdot R = 0$, then $R ∈ Λ²V[*] ⊗ g₋.$

Proposition on Lorentzian symmetric connections and Theorem $AA \implies$

Theorem

Let (M^m≥³ , ^g) be Lorentzian manifold with Ambrose–Singer connection ^e[∇] with indecomposable, non-irreducible holonomy. Then, on the universal cover. $\widetilde{\nabla}$ admits a parallel null vector field ξ , and $R(X, Y) = 0$ for all $X, Y \in \xi^{\perp}$.

In particular, this implies the Cahen–Wallach result: a locally symmetric Lorentzian manifold with indecomposable, non-irreducible holonomy is locally isometric to a Cahen–Wallach space.

Levi-Civita vs. Ambrose–Singer: proof of the main result

Let (M, g) be a Lorentzian manifold of dim ≥ 4 and \overline{V} an Ambrose-Singer connection with indecompsable, non-irreducible holonomy.

- ▶ By the previous theorem, $\widetilde{\nabla}$ admits a parallel null vector field and $\widetilde{\nabla}^{\mathcal{S}}$ and $R(X, Y) = 0$ for all $X, Y \in \xi^{\perp}$.
- ▶ By the proposition for connections with parallel torsion, also ∇ admits a parallel null vector field and $R(X, Y) = 0$ for all $X, Y \in \xi^{\perp}$.
This class during the t (M, x) is a security is a $R = M^{\perp}$. This already implies that (M, g) is a pp-wave, i.e. $R \in V^+ \wedge V^0 \otimes \mathfrak{g}_-$

► $0 = \overline{\nabla}_X R = \nabla_X R - S(X) \cdot R$, and by Theorem A2, $S(X) \in g_{-}$ for all $X \in \xi^{\perp}|_p$. Hence, for all $X, Y \in \xi^{\perp}|_p$ and $V \in T_pM$

$$
(S(X)\cdot R)(Y,V) = \underbrace{[S(X),R(Y,V)]}_{=0,\text{ g. abelian}} - R(\underbrace{S(X,Y)}_{\in \mathbb{R}\cdot \xi},V) - R(Y,\underbrace{S(X,V)}_{\in V_0}) = 0.
$$

This shows that $S(X) \cdot R = 0$ and hence $\nabla_X R$ for all $X \in \xi^{\perp}$. I.e. (M, g) is a plane wave.

The case of dimension 3

Theorem A2 fails in dimension $3 = n + 2$:

Let $V = \text{span}(e_-, e_+, e_+)$ and $\mathfrak{h} = \mathbb{R} \cdot X$, where $X :=$ 0 −1 0 $\overline{}$ 0 0 1 0 0 0 ſ $\begin{array}{c} \hline \end{array}$ \in so $(1, 2)$. $S \in V^* \otimes \mathfrak{so}(1,2)$ such that $\mathfrak{h} \cdot S = 0 \iff$

$$
S(e_{-}) = aX, \quad S(e_{1}) = \begin{pmatrix} a & -b & 0 \ 0 & 0 & b \ 0 & 0 & -a \end{pmatrix}, \quad S(e_{+}) = \begin{pmatrix} -b & -c & 0 \ -a & 0 & c \ 0 & a & b \end{pmatrix},
$$

a, b, c in R, i.e. the maximal trivial \mathfrak{h} -submodule of $V^* \otimes \mathfrak{g}$ is of dim 3 and not in V [∗] ⊗ p (as in Theorem A2).

Proposition

If a simply-connected Lorentzian manifold (M^3, g) admits an Ambrose–Singer
connection with independence its sea inscludible helancementes connection with indecomposable, non-irreducible holonomy, then

- \blacktriangleright (M^3, g) is a plane-wave, or
- ▶ a left-invariant metric on $\widetilde{SL}(2,\mathbb{R})$ with holonomy algebra so(1,2) and negative scalar curvature.

An example

Consider $\mathfrak{m}:=\mathbb{R}^3=\text{span}(\mathbf{e}_-,\mathbf{e}_+,\mathbf{e}_+)$ with Lie bracket defined by

$$
[e_-,e_1]=-2ae_-\qquad [e_-,e_+]=2ae_1,\qquad [e_1,e_+]=-2ae_++\frac{(2ac+1)}{2a}e_-,
$$

- ▶ m = $[m, m]$ and the Killing form is indefinite \implies isomorphic to $\mathfrak{sl}(2, \mathbb{R})$.
- ► Let $\langle ., . \rangle$ be the Minkowski inner product on m with (e_-, e_+, e_+) as before. \leadsto left-invariant metric g on the 1-connected Lie group $M \simeq \widetilde{SL}(2,\mathbb{R})$.
- ▶ $\nabla_{e_+} e_- = 0$, $\nabla_{e_+} e_- = ae_-,$ $\nabla_{e_+} e_- = -ae_1$, so no parallel null vf!
- **►** Left invariant homogeneous structure $S \in \mathfrak{m}^* \otimes \mathfrak{so}(\mathfrak{m})$ from the previous slide, the left invariant null vector field corresponding to $e_-\,$ is parallel for $\widetilde{\nabla}$, since

$$
S(e_-, e_-) = 0
$$
, $S(e_1, e_-) = ae_-,$ $S(e_+, e_-) = -ae_1$.

▶ \overline{V} is not flat, so $\text{hol}(\overline{V}) = \mathbb{R} \cdot X$ indecomposable.

 \rightarrow Dimension restriction $m \geq 4$ in the main theorem is sharp.

 \rightarrow Counterexample to Conjecture in dimension $m = 3$: h := $\mathbb{R} \cdot X$ and

$$
g = \mathbb{R} \cdot X \ltimes \mathfrak{m} \simeq \mathbb{R} \ltimes \mathfrak{sl}(2,\mathbb{R}).
$$

 $M = G/H$ is not a plane wave, and has const sect curvature \iff 1 + 2ac = 0.

Moitas grazas!