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Chern Connection

e m: TM\ {0} — M is the natural projection

@ now we take the pullback of TM by
dm = n*, thatis, 7 TM

@ We have a metric over this vector bundle
given by gji(x,y)dx' ® dx’/, where

S.S. CHERN (1911-2004)

= 1 62 ( F2 ) (‘"’TM)(I-U) .M
20yioyl

gii(x,y)

TM~0 M
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Chern Connection

@ The Chern connection V is the unique linear connection on 7 TM
whose connection 1-forms wj’- satisfy:
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Chern Connection

@ The Chern connection V is the unique linear connection on 7 TM
whose connection 1-forms wj’- satisfy:

dx/ A wj’: =0 torsion free (1)

2
dgij — gkjw,k — guwk = FA,-J-S(SyS almost g-compatibility — (2)

where dy® are the 1-forms on 7* TM given as dy® := dy° + Nfdxf,
and

. . 1 .
Ni(x,y) = vjy* — ;A,’-k%ksy’ys

are the coefficients of the so called nonlinear connection on TM \ 0,
and
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Chern Connection

@ The Chern connection V is the unique linear connection on 7 TM
whose connection 1-forms wj’- satisfy:

dx/ A wj’: =0 torsion free (1)

2
dgij — gkjw,k — guwk = FA,-J-S(SyS almost g-compatibility — (2)
where dy® are the 1-forms on 7* TM given as dy® := dy° + Nfdxf,
and

. . 1 .
Nj(xy) =iy = 2ARIRy'Y?
are the coefficients of the so called nonlinear connection on TM \ 0,
and

i 1 i (085 _ Ogi | O8is Fogg F O03(F
ij(xay)zi (gl gi,k‘i‘ gk),A,'jk(x7y): gJ_ ( )

Ixk  Oxs | Ox 2 dyk T 4 8yiayiayk’
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Covariant derivatives

@ The components of the Chern connection are given by:

) . gil
rJ"k(ny) = 7}/( ~F (A/jlef - AJ'kstg + AkIsNJ'S) .

. i i k
that is, w; ' = r jkdx )
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Covariant derivatives

@ The components of the Chern connection are given by:
. . gil
rJ"k(ny) = 7}/( ~F (A/jlef - AJ'kstg + AkIsNJ'S) .

that is, w; ' = F’Jkdx

@ The Chern connection gives two different covariant derivatives:

D+ W = dw! + W/TKTE (7, T) . with ref. vector T,
dt J aX’ ’y(t)
dwi
DrW = +WIiTkK k(fy, W) 8. with ref. vector W.
de ! Ox 1 (e)
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Other connections

o Cartan connection: metric compatible but
has torsion

E. CARTAN (1861-1940)
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Other connectio

o Cartan connection: metric compatible but

has torsion

@ Hashiguchi connection

@ Berwald connection: no torsion. Specially
good to treat with Finsler spaces of constant

flag curvature
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Other connections

o Cartan connection: metric compatible but @‘
has torsion -
@ Hashiguchi connection Masao HasmiGuen
@ Berwald connection: no torsion. Specially LUDWIG BERWALD 1883 (PRAGUE)-1942

good to treat with Finsler spaces of constant
flag curvature

@ Rund connection: coincides with Chern
connection

E. CARTAN (1861-1940)

HANNO RUND 1925-1993, SOUTH AFRICA
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

le = dwj'l—wj'k/\wkl
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

le = dwj'l—wj'k/\wkl

@ It can be expanded as

I i sy 1 oy
Q_l = 5,'-\3 kIka/\dXI+F)J' kIka/\?—’—EQJ k/? ?
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:
i ik i
Q_/ = de CUJ A wk
@ It can be expanded as

I i sy 1. oyk gy
Q_l = 5,'-\3 kIka/\dXI+F)J' kIka/\?‘f—EQJ k/?/\ F

@ From free torsion of the Chern connection QJ- ik, =0
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:
i ik i
Q_/ = de CUJ A wk

@ It can be expanded as

5y
Q' fR adx® A dx! 4 Py dxk A ;’

@ From free torsion of the Chern connection QJ- ik, =0
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

i i k i
@ It can be expanded as

sy'

Q_] *R k/dX A dX + F)J kld N — F

@ From free torsion of the Chern connection QJ- ik, =0

. ori . ori . . :
i Jl Jjk i h i h o i
O Riiy= 5 — st Ty =Tl GG = 5 — N' 5
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

le::dwj'l—wj'k/\wkl

@ It can be expanded as
sy’
QJ fR Tdx® A dx! +P; dxk A == 3
@ From free torsion of the Chern connection QJ- ik, =0
° Rjik/:%_%WLrihkrhﬂ—rih/rhjk (&%:W_N’ 7)
o Piy=—F

M. A. Javaloyes (*) Flag Curvature 6 /23



Bianchi ldentities

First Bianchi Identity for R

Luiat Biancr (1856-1928)

M. A. Javaloyes (*) Flag Curvature 7/23



Bianchi ldentities

First Bianchi Identity for R

Luiat Biancr (1856-1928)

M. A. Javaloyes (*) Flag Curvature 7/23
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First Bianchi Identity for R

Other identities:

i pi
o Ply=P 'y
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Bianchi ldentities

First Bianchi Identity for R
Other identities:

i pi
o Ply=P 'y

J
° RUk/ + Rj,'k/ = 2Bljkl, where .
e AL PU u _Ypou
Biju := —AjuR";y, RY)y = FR; '}y and

Luiat Bianchr (1856-1928)

o RH
Rijxi = 8juR;
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Bianchi ldentities

First Bianchi Identity for R
Other identities:

i pi
o Ply=P 'y

J
° RUk/ + Rj,'k/ = 2Bljkl, where .
e AL PU u _Ypou
Biju := —AjuR";y, RY)y = FR; '}y and

Luiat Biancr (1856-1928)

Rijt = gjuR; 'y
® Ryji — Rjiw =
(Bwji — Bijixi) + (Buijj + Byjki) + (Bigji + Bjxir)
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Bianchi ldentities

First Bianchi Identity for R
Other identities:

i pi
o Ply=P 'y

J
° RUk/ + Rj,'k/ = 2Bljkl, where .
e AL PU u _Ypou
Biju := —AjuR";y, RY)y = FR; '}y and

Luiat Biancr (1856-1928)

R = gjuR; '
® Ryji — Rjiw =
(Bwji — Bijixi) + (Buijj + Byjki) + (Bigji + Bjxir)
Second Bianchi identities: very complicated, mix

. i i
terms in RJ i and PJ Kl
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Flag Curvature

We must fix a flagpole y and then a
transverse edge V
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Flag Curvature

We must fix a flagpole y and then a
transverse edge V

VI(y/ Rinry ) V¥
gly,y)g(V,V) —g(y, V)?

K(y,V) =

@ We can change V by

T:M

W =aV + /3.)/1 that iS, B tr%&rﬁ;ﬁ;
K(y, W) =K(y, V). S Ny

base point z \
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Flag Curvature

We must fix a flagpole y and then a
transverse edge V

Vi(y/ Ry )V ¥

K V) = s eV V) — (. V)2

@ We can change V by
W = aV + By, that is,
Ky, W) = K(y, V).

@ We obtain the same quantity
with the other connections
(Cartan, Berwald, Hasiguchi...
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Computing Flag curvature
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Computing Flag curvature

o G':= fyijkyjyk (spray coefficients)

® 2F?RT =2(G) o — 5(G"),i(G) k= ¥ (G) yhri + GI(G) iy
_ _ _ V(R V* _

"] K(y, V) = K(I, V) = W_kg(hv)z, where /—y/F

If we consider F(x,y) = \/(y,y) + df[y], with (-,-) the Euclidean metric,
then
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Computing Flag curvature

o G':= fyijkyjyk (spray coefficients)
® 2F?RT =2(G) o — 5(G"),i(G) k= ¥ (G) yhri + GI(G) iy
_ _ _ VRTYV* _
"] K(y, V) = K(I, V) = W_kg(hv)z, where /—y/F
If we consider F(x,y) = \/(y,y) + df[y], with (-,-) the Euclidean metric,
then

° G'= xeky y , very simple!!!
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Computing Flag curvature

o G':= fyijkyjyk (spray coefficients)
® 2F?RT =2(G) o — 5(G"),i(G) k= ¥ (G) yhri + GI(G) iy
_ _ V(R VH _

"] K(y, V) = K(I, V) = W_kg(hv)z, where /—y/F
If we consider F(x,y) = \/(y,y) + df[y], with (-,-) the Euclidean metric,
then

o G' = X,Xky 'yk . very simple!ll

° Ky, ) K(x,y) = g3 (Fiiy'¥)? = aps(Bisixey ¥/ y¥)
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Computing Flag curvature

o G':= fyijkyjyk (spray coefficients)
® 2F?RT =2(G) o — 5(G"),i(G) k= ¥ (G) yhri + GI(G) iy

(R k
o K(y,V) = K(I,V) = gin22i 5, where | = y/F.

If we consider F(x,y) = \/(y,y) + df[y], with (-,-) the Euclidean metric,

then
o G' = X,Xky 'yk . very simplel!l
° K(y, V) K(x,y) = g2 (Fiy'y)? — 5p3 (Fininky 'y y5)
@ the flag curvature does not depend on the transverse edge!! it is

scalar
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Finsler metric with constant flag curvature
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Finsler metric with constant flag curvature

@ The complete classification is an open
problem, no Hopf's theorem!!!
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@ The complete classification is an open
problem, no Hopf's theorem!!!

@ In the class of Randers metrics there does
exist a classification after a long story

@ In 1977 Yasuda and Shimada publishes a
paper with a characterization of Randers
metrics of scalar flag curvature

. . HIROSHI YASUDA (1925-1995)
@ As a particular case they obtain the Randers ’

metrics of constant flag curvature
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Finsler metric with constant flag curvature

@ The complete classification is an open
problem, no Hopf's theorem!!!

@ In the class of Randers metrics there does
exist a classification after a long story

@ In 1977 Yasuda and Shimada publishes a
paper with a characterization of Randers
metrics of scalar flag curvature

. . HIROSHI YASUDA (1925-1995)
@ As a particular case they obtain the Randers - ’

metrics of constant flag curvature i‘?

@ Shibata-Kitayama in 1984 and Matsumoto
in 1989 obtain alternate derivations of the
Yasuda-Shimada theorem

]
MAKOTO MATSUMOTO
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Finsler metric with constant flag curvature

@ The complete classification is an open
problem, no Hopf's theorem!!!

@ In the class of Randers metrics there does
exist a classification after a long story

@ In 1977 Yasuda and Shimada publishes a
paper with a characterization of Randers
metrics of scalar flag curvature

. . HIROSHI YASUDA (1925-1995)
@ As a particular case they obtain the Randers - ’

metrics of constant flag curvature i‘?

@ Shibata-Kitayama in 1984 and Matsumoto
in 1989 obtain alternate derivations of the
Yasuda-Shimada theorem

]
MAKOTO MATSUMOTO

@ In summer 2000, P. Antonelli asks if
Yasuda-Shimada theorem is indeed correct
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Constant flag curvature and Zermelo metrics
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Constant flag curvature and Zermelo metrics

@ In the academic year of 2000-2001 Colleen Robles (a
graduate student) and David Bao begins to work in a
geometrical proof of Yasuda-Shimada theorem
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working with Zermelo metrics
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Constant flag curvature and Zermelo metrics

@ In the academic year of 2000-2001 Colleen Robles (a
graduate student) and David Bao begins to work in a
geometrical proof of Yasuda-Shimada theorem

@ In 17th may 2001 Z. Shen phones D. Bao describing a
counterexample to Yasuda-Shimada he found when
working with Zermelo metrics

@ In the same year D. Bao-C. Robles and Matsumoto find
independently the correct version of Yasuda-Shimada
theorem.
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Constant flag curvature and Zermelo metrics

@ In the academic year of 2000-2001 Colleen Robles (a
graduate student) and David Bao begins to work in a
geometrical proof of Yasuda-Shimada theorem

@ In 17th may 2001 Z. Shen phones D. Bao describing a
counterexample to Yasuda-Shimada he found when
working with Zermelo metrics

@ In the same year D. Bao-C. Robles and Matsumoto find
independently the correct version of Yasuda-Shimada
theorem.

@ Still no classification (solutions v/h -+ h(W, v) must have

a h-Riemannian curvature related with the module of a
h-Killing field W)
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Constant flag curvature and Zermelo metrics

@ In the academic year of 2000-2001 Colleen Robles (a
graduate student) and David Bao begins to work in a
geometrical proof of Yasuda-Shimada theorem

@ In 17th may 2001 Z. Shen phones D. Bao describing a
counterexample to Yasuda-Shimada he found when
working with Zermelo metrics

@ In the same year D. Bao-C. Robles and Matsumoto find
independently the correct version of Yasuda-Shimada
theorem.

@ Still no classification (solutions v/h -+ h(W, v) must have
a h-Riemannian curvature related with the module of a
h-Killing field W)

o Finally they perceive that when considering Zermelo
expression of Randers metrics the geometry comes out
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Flag constant curvature and stationary spacetimes
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Flag constant curvature and stationary spacetimes

@ Zermelo metric:

where a =1 — g(W, W).
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where a =1 — g(W, W).
@ Randers space forms are those Zermelo metrics having h
of constant curvature and W a conformal Killing field
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Flag constant curvature and stationary spacetimes

@ Zermelo metric:

where a =1 — g(W, W).

@ Randers space forms are those Zermelo metrics having h
of constant curvature and W a conformal Killing field

@ Katok metrics are Randers space forms

@ When the Fermat metric associated to a stationary
spacetime is of constant flag curvature, then the
spacetime is locally conformally flat
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Flag constant curvature and stationary spacetimes

Zermelo metric:

where a =1 — g(W, W).

@ Randers space forms are those Zermelo metrics having h
of constant curvature and W a conformal Killing field

@ Katok metrics are Randers space forms

@ When the Fermat metric associated to a stationary
spacetime is of constant flag curvature, then the
spacetime is locally conformally flat

@ Reciprocal is not true (v'h + df)
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Flag constant curvature and stationary spacetimes

Zermelo metric:

where a =1 — g(W, W).

@ Randers space forms are those Zermelo metrics having h
of constant curvature and W a conformal Killing field

@ Katok metrics are Randers space forms

@ When the Fermat metric associated to a stationary
spacetime is of constant flag curvature, then the
spacetime is locally conformally flat

@ Reciprocal is not true (v'h + df)

@ what about scalar flag curvature?
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AT

Let M be a Riemannian manifold with dimension
> 3. If for every point x € M the sectional
curvature does not depend on the on the plain,
then M has constant sectional curvature.

IssAI SCHUR (1875-1941)
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Let M be a Riemannian manifold with dimension
> 3. If for every point x € M the sectional
curvature does not depend on the on the plain,
then M has constant sectional curvature.

IssAT SCHUR (1875-1941)

@ It was established by Issai Schur (1875-1941)

@ Generalized to Finsler manifolds by Lilia del
Riego in her Phd. Thesis in 1973.
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary OM. Then
Sy K dA+ faM kg ds = 2mx(M),
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary OM. Then
Sy K dA+ faM kg ds = 2mx(M),

@ Gauss knew a version but never published it

CARL F. Gauss (1777-1855)
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary OM. Then
Sy K dA+ faM kg ds = 2mx(M),

@ Gauss knew a version but never published it

@ Bonnet published a version in 1848

PIERRE O. BONNET (1819-1892)
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian ‘ |
manifold with boundary OM. Then S.S. CHERN (1911-2004)
Sy K dA+ [ kg ds = 2mx (M),

@ Gauss knew a version but never published it s

@ Bonnet published a version in 1848

@ Allendoerfer-Weil-Chern generalized C. ALLenposrreR (1911-1074)
Gauss-Bonnet to even dimensions using the g 3

S
i

Pfaffian in the mid-40’s

ANDRE WEIL (1906-1998)
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary OM. Then
Sy K dA+ faM kg ds = 2mx(M),

@ Gauss knew a version but never published it
@ Bonnet published a version in 1848
@ Allendoerfer-Weil-Chern generalized

Gauss-Bonnet to even dimensions using the
Pfafﬁan in the mid-40,5 ANDRE LICHNEROWITZ (1915-1998)

o Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases
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Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary OM. Then
Sy K dA+ faM kg ds = 2mx(M),

@ Gauss knew a version but never published it
@ Bonnet published a version in 1848
@ Allendoerfer-Weil-Chern generalized
Gauss-Bonnet to even dimensions using the i
Pfaffian in the mid-40's DAVID BAO AND S. S. CHERN
o Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases
@ Bao-Chern (Ann. Math. 1996) extend it to

a wider class of Finsler manifolds
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n — 1)k > 0,
then its diameter is at most 7/v/k and the
manifold is compact.
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n — 1)k > 0,
then its diameter is at most 7/v/k and the
manifold is compact.

@ Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

PIERRE O. BONNET (1819-1892)
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n — 1)k > 0,
then its diameter is at most 7/v/k and the
manifold is compact.

@ Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

@ Myers obtained the generalized version with
Ric curvatures in 1941
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n — 1)k > 0,
then its diameter is at most 7/v/k and the
manifold is compact.

@ Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

@ Myers obtained the generalized version with
Ric curvatures in 1941

@ Louis Auslander extended the result to the
Finsler setting in 1955 (Trans AMS)
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
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Bonnet-Myers Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n — 1)k > 0,
then its diameter is at most 7/\/k and the
manifold is compact.

@ Bao-Chern-Chen assume just forward
completeness in their book “Introduction to
Riemann-Finsler geometry”

o Causality reveals that completeness can be
substituted by the condition

BT (x,r)NB~(x, r) compact for all x € M and r > 0

(see Caponio-M.A.J.-Sénchez, preprint 09)
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Synge's Theorem

If M is an even-dimensional, oriented, complete
and connected manifold, with all the sectional

curvatures bounded by some positive constant,
then M is simply connected.
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Synge's Theorem

If M is an even-dimensional, oriented, complete
and connected manifold, with all the sectional

curvatures bounded by some positive constant,

then M is simply connected.

@ John Lighton Synge (1897-1995) published
this result in 1936 (Quaterly Journal of
Mathematics).

@ Louis Auslander(1928-1997) extends the
result for Finsler manifolds in 1955

JOHN SYNGE (1897-1995)

@ Again the completeness condition can be
weakened.
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Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connected
Riemannian manifold of non positive sectional
curvature. Then
@ Geodesics do not have conjugate points
@ exp, : TpM — M is globally defined and a
local diffeorphism

e If M simply connected, then exp,, is a
diffeomorphism
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Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connected
Riemannian manifold of non positive sectional
curvature. Then

@ Geodesics do not have conjugate points

@ exp, : TpM — M is globally defined and a
local diffeorphism

If M simply connected, then exp,, is a
diffeomorphism

Obtained for surfaces in 1898 by Hadamard
Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.
Auslander

ELIE CARTAN (1869-1951)
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Rauch’s Comparison Theorem

For large curvature, geodesics tend to converge,
while for small (or negative) curvature, geodesics
tend to spread.

M. A. Javaloyes (*) Flag Curvature 19 / 23



Rauch’s Comparison Theorem

For large curvature, geodesics tend to converge,
while for small (or negative) curvature, geodesics
tend to spread.

@ Proved in the 40's by A. D. Aleksandrov for ; \

" <
surfaces A. D. ALEKSANDROV (1912-1999)

M. A. Javaloyes (*) Flag Curvature 19 / 23



Rauch’s Comparison Theorem

For large curvature, geodesics tend to converge,
while for small (or negative) curvature, geodesics
tend to spread.

@ Proved in the 40's by A. D. Aleksandrov for ; \

" <
surfaces A. D. ALEKSANDROV (1912-1999)

@ Generalized to Riemannian manifolds in
1951 by H. E. Rauch

M. A. Javaloyes (*) Flag Curvature 19 / 23



Rauch’s Comparison Theorem

For large curvature, geodesics tend to converge,
while for small (or negative) curvature, geodesics
tend to spread.

@ Proved in the 40's by A. D. Aleksandrov for ; \

surfaces A.D. AL:KSANDROV (

-1999)

@ Generalized to Riemannian manifolds in
1951 by H. E. Rauch

@ Probably P. Dazord was the first one in
giving the generalized Rauch theorem in
1968

M. A. Javaloyes (*) Flag Curvature 19 / 23



Sphere Theorem

A simply connected connected manifold with
% < K <1 is homeomorphic to the sphere.
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Sphere Theorem

A simply connected connected manifold with
% < K <1 is homeomorphic to the sphere.

@ Conjecture by Rauch. First proof by M.
Berger in 1960

@ Alternative proof by Klingenberg in 1961
(obtaining homotopy equivalence rather than
homeomorphism)

@ Dazord observes that Klingeberg proof works
for reversible Finsler metrics in 1968

M. A. Javaloyes (*) Flag Curvature 20 / 23



Sphere theorem

A simply connected connected manifold with
% < K <1 is homeomorphic to the sphere.

M. A. Javaloyes (*) Flag Curvature 21 /23



Sphere theorem

A simply connected connected manifold with
% < K <1 is homeomorphic to the sphere.

e In 2004 H. B. Rademacher (Math. Ann.)
extends Klingenberg proof to non-reversible

Finsler metrics using the hypothesis
2

(1 — H%) < K <1), where

A=max{F(=X): F(X) =1}
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Sphere theorem

A simply connected connected manifold with
% < K <1 is homeomorphic to the sphere.

e In 2004 H. B. Rademacher (Math. Ann.)
extends Klingenberg proof to non-reversible
Finsler metrics using the hypothesis

2
(1 - H%) < K <1), where
A =max{F(—=X): F(X) =1}
@ In 2007 S. Brendle and R. Schoen (J. Amer.

Math. Soc 2009) prove by using Ricci-flow
that there exists a diffeomorphism

@ To obtain Rademacher's result it is enough
symmetrized compact balls and bounded

reversivility index
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@ Toponogov theorem? Problems with angles
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Inextendible theorems

@ Toponogov theorem? Problems with angles
@ Submanifold theory (very difficult)

) La pIaC|an theory VicTor A. ToroNoGov (1930-2004)
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