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Alexander-Spanier cohomology of a Lie foliation

Xosé M. Masa

Abstract. For a smooth foliated manifold (M,F), the basic and the foliated
cohomologies are defined by using the de Rham complex of M . These cohomolo-
gies are related with the cohomology of the manifold by a spectral sequence, the
de Rham spectral sequence of F ([17]).

A foliated manifold is an example of space with two topologies, one
coarser than other. For these spaces one can define a continuous cohomology
([3]) that, for a foliated manifold, correspond to a continuous foliated cohomology
([13]). In this note we present a construction, for spaces with two topologies, to
define continuous basic cohomology and a spectral sequence, similar to the de
Rham one for a foliation, to relate continuous basic and foliated cohomology with
the cohomology of the space. This construction is based upon the Alexander-
Spanier continuous cochains.

Applied to the classifying space of a Lie group, the spectral sequence is
isomorphic to the Bott spectral sequence from E2 on.

For a G -Lie foliation, we give an isomorphism between the E2 term
of the spectral sequence and the reduced cohomology of G (in the sense of S-T
Hu, [7]) with coefficients in the foliated cohomology of F . This permits us to
conclude that both spectral sequences, the de Rham one and the Alexander-
Spanier one, are isomorphic for any Riemannian foliation. And, in particular,
the topological invariance of these cohomologies.

Complete proofs will appear in [10].

1. Continuous cohomology

First of all, let me recall the classical definitions of cohomology of a group.
Denote by

( F ∗(G, R ), δ )

the complex of homogeneous cochains of G , ϕ ∈ F q(G, R ),

ϕ : G×
q+1
�· · · ×G −→ R ,

verifying the condition

g · ϕ(x0, x1, . . . , xq) = ϕ(gx0, gx1, . . . , gxq)

and with differential

δϕ(x0, . . . , xq+1) =

q+1∑

i=0

(−1)i ϕ(x0, . . . , x̂i, . . . , xq+1) .
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Its cohomology H∗(G) is the cohomology of the abstract group G . This definition
may be generalized by introducing coefficients: an arbitrary L (i.e., an abelian
group in which G acts by group automorphisms). The space of cochains F q(G, L)

is defined as the set of G-maps G×
q+1
�· · · ×G → L .

If we denote by BGδ the classifying space for principal G−bundle, G with
the discrete topology, it is

H∗(G) ∼= H∗(BGδ ) ,

the algebraic cohomology of G is isomorphic to the topological cohomology of its
classifying space as discrete group.

Assume now G is a topological group, and let

(F ∗
c (G, R ), δ)

be the subcomplex of F ∗(G, R) of continuous cochains. Its cohomology, H∗
c (G),

is the continuous cohomology of the topological group G . If G is a Lie group,
the same cohomology is defined by using smooth cochains. In this case,

H∗
c (G) ∼= H∗(g,K )

where g is the Lie algebra of G , K a maximal compact subgroup (W. T. van Est
[18]).

Finally, one says that ϕ is a locally trivial or with empty support cochain
if there exists a neighbourhood U of e in G such that

ϕ(e, x1, . . . , xq) = 0

whenever all x1, . . . , xq are in U . Denote by F ∗
c (G, R )0 the subcomplex of locally

trivial cochains and let

Fc
∗
(G, R ) = F ∗

c (G, R )/F ∗
c (G, R )0

be the quotient complex. Its cohomology, H∗
�(G, R ), is the continuous coho-

moloy with empty supports, in the sense of Sze-tse Hu ([7]). In [16] S. Swier-
czkowski proves that if G is a Lie group, then

H∗
�(G) ∼= H∗(g ) .

Now let X be a topological space, X ′ the same set as X , with a finer
topology. The continuous cohomology in this frame,

H∗
c ( X ′ | X )

defined by R. Bott and A. Haefliger, is the cohomology of the cochains on X ′

which are continuous relative to the topology of X . A cochain is a continuous
map

c : Map (�q, X ′ ) −→ R ,

where Map (�q, X ′ ) is provided with the topology pulled back from Map (�q, X )c.o.

via the map induced by i : X ′ → X .

Let G be a topological group, Gδ the same group with the discrete topology.
Then

H∗
c (BGδ | BG) ∼= H∗

c (G ) .

This isomorphism gives the relation between Bott and Haefliger’s concept and the
continuous cohomology of groups.
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2. Spectral sequence associated to a space with two topologies

Let X be a topological space, X ′ the same set as X , with a finer topology.
Let U be an open set in X . A map

ϕ : Up+1 −→ R

is said to be a basic Alexander-Spanier p-cochain in U if it is locally constant
when one considers in Up+1 the topology induced from X ′ .

With the obvious restriction maps, the Alexander-Spanier cochains define a
presheaf, and this presheaf generates the sheaf of basic Alexander-Spanier cochains
AS∗

(X′|X) . With the usual differential

δ ϕ(x0, . . . , xp) =

p∑

i=0

(−1)i ϕ(x0, . . . , x̂i, . . . , xp) (1)

we have a resolution

AS0
(X′|X)

δ−→ AS1
(X′|X)

δ−→ AS2
(X′|X)

δ−→ · · · (2)

of the constant sheaf RX on X .

As a consequence, there is a spectral sequence

Ep,q
2 (X ′ | X) = HpHq(X, AS∗

(X′|X)) ⇒ Hp+q(X, R) . (3)

Ep,0
2 (X ′ | X) is the cohomology of the sections of the sheaves AS∗

(X′|X) and will

be called the basic cohomology of (X ′ | X).

In the cochain definition, we can consider continuous (or smooth, in the
appropriate case) rather than arbitrary functions. In this case we say about con-
tinuous or differentiable Alexander-Spanier cohomology. The above constructions
for the resolution and spectral sequence work also in the continuous and differen-
tiable cases. In this work we are principally concerned with the continuous and the
differentiable cohomologies. If it is necessary, to avoid confusion, we shall write

dAS(X′|X) , cAS(X′|X) , ∞AS(X′|X) ,

for the discrete (arbitrary functions), continuous or differentiable Alexander-Spanier
sheaf.

Remark 2.1. Mostow [13] proves that the continuous cohomology is the co-
homology of X with values in the sheaf of continuous functions on X , locally
constants in X ′ . I. e., Hq(X, cAS0

(X′|X)) is the continuous cohomology of Bott
and Haefliger.

Example 2.2. Let f : X → Y be a continuous and closed map, such that each
f−1(y) is compact and relatively Hausdorff in X . Take

X ′ =
∐

y∈Y

f−1(y) ,

the topological sum of each space f−1(y). Then Ep,q
r ( X ′ | X ) is the Leray spectral

sequence of f .
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Example 2.3. (cf. [2]) Let G be a topological group and let BG be its Milnor
classifying space. Denote by Gδ the group G with the discrete topology. Then
BGδ is the same set as BG , but with a finer topology. As BG is the semi-simplicial
space associated to the nerve NG of G , to compute the spectral sequence

Er(BGδ | BG) ⇒ H(BG) (4)

one can use a theorem by Segal ([15, Proposition 5.1]), that asserts

E1(BGδ | BG) = Hq(BG, ASp
(BGδ |BG))

∼= Hq(ASp(N∗G)) ,

to conclude that this spectral sequence is associated to the double complex

ASp(N qG)

with p as filtrant degree. The differential of the complex is D = δ1,0 + δ0,1 , where
δ1,0 : ASp(N qG) → ASp+1(N qG) is the differential of Alexander-Spanier cochains
and δ0,1 : ASp(N qG) → ASp(N q+1G) is induced by the simplicial structure of NG .
For a Lie group this spectral sequence is very close to that considered by Bott and
Hochschild, constructed from the Čech-de Rham complex of G ,

Ap(N qG) .

They prove that the E1 term of this spectral sequence is isomorphic to

Hq−p
c (G, Spg∗) ,

where g is the Lie algebra of G considered as a G-module under the adjoint
action, Sqg∗ denotes the q -th symmetric power, and the subscript c denotes the
smooth (or equivalent continuous) cohomology of G with values in Sqg∗ . The
Bott spectral sequence is a direct summand of (4), and they are isomorphic from
the term E2 on. In the particular case q = 0, as A0(NG) = AS0(NG), we have

H∗(BG, cAS0
(BGδ |BG))

∼= Hc(G) .

(For this isomorphism, see also [13, Corollary 7.6]).

3. Foliated manifolds

Let (M,F) be a foliated manifold, M = ∪x∈MLx . Denote by MF the
set M with the leaves topology: a basis is formed by the connected components
of intersections of open sets of M with leaves. The Alexander-Spanier sheaf and
spectral sequence of the foliated manifold will be the associated to (MF | M). We
better write ASF instead of AS(MF |M) and we use the notations

Ep,q
2 (cASF) and Ep,q

2 (∞ASF) ,

for the continuous and the differentiable cases, respec. Es,0
2 (ASF) is the Alexander-

Spanier basic cohomology,

Ep,0
2 (ASF) = Hp

AS( M/F ) = Hp( AS∗
F (M) , d ) .
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For smooth foliations (or Cr -foliations, r ≥ 1) one can construct the
de Rham spectral sequence of F . Let (A∗(M), d) be the de Rham complex of
M . A smooth form η is said to be basic if it satisfies:

iY η = 0 and iY dη = 0 (5)

for all Y ∈ ΓF , the algebra of vector fields tangent to the foliation, where iY
is the interior product by Y . The basic forms algebra A∗

F(M) is a differential
subcomplex of the de Rham complex A∗(M).

The sheaves A∗
F of germs of basic forms define a resolution of RM , the sheaf

of locally constants functions on M ,

A0
F

d−→ A1
F

d−→ · · · d−→ Ak
F −→ 0 , (6)

where d is the exterior derivative and k is the codimension of F . Associated to
this resolution, we have the de Rham spectral sequence of F ,

Ep,q
2 (AF) = Hp(Hq(M, A∗

F)) ⇒ Hp+q(M, R) . (7)

Ep,0
2 (AF) is the basic de Rham cohomology of F . We denote by

Hq
F = Hq(M, A0

F) (8)

the differentiable foliated cohomology of the foliation. Remark that

∞AS0
F = A0

F ,

the sheaf of smooth functions on M locally constant along the leaves.

There exists a morphism onto of differential sheaves

Λ : ∞AS∗
F −→ A∗

F .

If we take for an open set U of M a p-cochain ϕ given by the product of p + 1
smooth functions fi : U → R , 0 ≤ i ≤ p ,

ϕ(x0, x1, . . . , xp) = f0(x0)f1(x1) . . . fp(xp) ,

then
Λ(ϕ) = f0 df1 ∧ . . . ∧ dfp .

In the general case, for x ∈ U and Z1, . . . , Zp ∈ TxM ,

Λ(ϕ)x(Z1, . . . , Zp) =

1

p!

∑

τ∈Sp

sgn(τ)
∂

∂ε1

· · · ∂

∂εp

ϕ(x, expx ε1Zτ(1), . . . , expx εpZτ(p)) |εi=0 .
(9)

This map Λ defines a spectral sequence morphism

Λp,q
r : Ep,q

r (∞ASF) −→ Ep,q
r (AF)

that converges to an isomorphism.
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Theorem 3.1. For Riemannian foliations Ep,q
2 (ASF) and Ep,q

2 (AF) are finite
dimensional,

Ep,q
2 (cASF) ∼= Ep,q

2 (∞ASF)

and Λ induces an isomorphism

Ep,q
2 (∞ASF) ∼= Ep,q

2 (AF) .

This theorem will be a consequence of the particular case of a Lie foliation.

4. Cohomology of Lie foliations

Let F be a Lie foliation on M with dense leaves. A suitable description of
this structure is the following one: there exists a homomorphism

Π1 : π1(M) −→ G

G being a simply connected Lie group, a covering map π : M̃ → M associated to
the homomorphism, with group of deck transformations Γ, the image of π1(M) by
the morphism Π1 , and a locally trivial fibration Π: M̃ → G , equivariant relative
to the action of Γ over M̃ and over G by left product. The fibers of Π are the
leaves of the lifting foliation F̃ and Γ is dense in G .

Proposition 4.1. Let F be a Lie foliation on a compact manifold M . The
inclusion ∞AS∗

F →c AS∗
F induces an isomorphism

E2( ∞ASF) ∼= E2( cASF) .

The proof is not very different to that for continuous and differentiable
cohomology of a Lie group ([12]). One must construct a “regularisation operator”.
See [14] and [9] for similar constructions. One could conclude also that E2(ASF)
are finite dimensional, but this will be a consequence of Theorem 3.1 above.

In general there is no isomorphism between the E1 terms. The torus T 2

foliated by lines of constant irrational slope provides a counter-example: as it is
equal to the de Rham foliated cohomology, H1(T 2, ∞AS0

F) has either infinite di-
mension or dimension one, depending upon whether the irrational slope is Liouville
or diophantine, while H1(T 2, cAS0

F) has always infinite dimension (cf. [13]).

The G-module structure of Hq
F permits to express the spectral sequences

as follows.

Proposition 4.2. Let F be a Lie foliation. There exists isomorphisms

Ep,q
2 (AF) ∼= Hp(g, Hq

F) ,

Ep,q
2 (∞ASF) ∼= Hp

�(G, Hq
F) .

For the first isomorphism, see [8]. The second is similar: to get an isomorphism

Hq(M, ∞ASp
F) ∼= F

p

c(G, Hq
F)

one can use a suitable resolution of ∞ASp
F .
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Proposition 4.3. Let F be a Lie foliation. There exists an isomorphism

Hp
�(G, Hq

F) ∼= Hp(g, Hq
F) .

For Hq
F finite dimensional (a very unusual property), this is a theorem by

Swierczkowski ([16]). For the general case, we start with the double complex

Cp,q = F p
c (G, A

∼
q
e(G, H i

F)) ,

where A
∼

q
e(G, H i

F) is the space of germs at e of de Rham forms on G with values on

H i
F , and F p

c (G, A
∼

q
e(G, H i

F)) are the continuous homogeneous cochains of G with

values on A
∼

q
e(G, H i

F). The two differentiation operators d1 and d2 of degree (1, 0)

and (0, 1), respectively, are defined as follows. Let d1 = δ , the usual differentiation
as defined in (1). The operator d2 is induced by the following one:

d2(η) = dGη +
k∑

j=1

ωj ∧ θj ◦ η ,

where dG is the exterior derivative on G , ω1, . . . , ωk is a basis of the left invariant
1-forms on G , ξ1, . . . , ξk a basis of g dual of {ωi} and θj stands for the action of
ξj ∈ g on H i

F . The Proposition follows by a standard spectral sequence argument.

Finally, the structure theorem for Riemannian foliations, by Molino ([11]),
permits conclude the Theorem 3.1.

Corollary 4.4. The de Rham spectral sequence Er(AF) of a Riemannian foli-
ation is a topological invariant for r ≥ 2.

For the basic cohomology, Ep,0
2 (AF), this result was proved by El Kacimi

and Nicolau ([5]). In the general case, it was also proven in ([1]), by a different
method.

For arbitrary foliations this is not true. We are considering foliations of
codimension 1, without compact leaves. There are well known examples of such
foliations in the torus topologically equivalent but with de Rham spectral sequences
different. All these foliations, if they are transversally orientable, can be defined
by a nonsingular closed 1-form, but to do that it is necessary sometimes to change
the smooth structure of M (it is a well known theorem by Sacksteder). This
change does not modify the continuous cohomology, but, certainly, it changes the
de Rham spectral sequence: E1,0

2 (AF) is isomorphic to R , in the new smooth
structure, and null in the old. But for a codimension one foliation always

E0,q
r (∞ASF) ∼= E0,q

r (AF)

for r ≥ 1, and

E1,0
r (∞ASF) ∼= E1,0

r (AF) ,

for r ≥ 2.
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