Docencia en licenciaturas 1996-97

Materias de primeiro e segundo ciclos impartidas polo departamento de Xeometría e Topoloxía durante o curso 1996-97.

 

Licenciatura en farmacia:
Ampliación de Matemáticas.
Matemática aplicada.
Licenciatura en matemáticas:
Curvas e superficies.
Elementos de topoloxía xeral.
Homotopía.
Sistemas diferenciais e grupos de Lie.
Teoría global de superficies.
Topoloxía alxebraica.
Topoloxía de superficies.
Topoloxía dos espacios euclidianos.
Topoloxía e cálculo en variedades.
Topoloxía xeométrica.
Topoloxía xeral.
Xeometría de Riemann.
 


Ampliación de Matemáticas
Licenciatura: Farmacia.
Curso: Cuarto e quinto.
Créditos: 6.
Profesorado: Manuela Beatriz Rodríguez Moreiras.
Curvas e superficies.
Licenciatura: Matemáticas.
Curso: Terceiro.
Créditos: 9.
Contidos: Teoría local de curvas. Curvatura, torsión, triedro de Frenet. Superficies regulares. Coordenadas. Plano tanxente, diferencial dunha aplicación. Formas fundamentais. Curvatura.
Bibliografía: M.P. do Carmo, "Geometría diferencial de curvas y superficies" (Alianza Editorial). L.A. Cordero, M. Fernández e A. Gray, "Geometría diferencial de curvas y superficies" (Addison-Wesley).
Profesorado: Agustín Bonome Dopico, Luís Ángel Cordero Rego, Luís María Hervella Torrón e María Elena Vázquez Abal.
Elementos de topoloxía xeral.
Licenciatura: Matemáticas.
Curso: Segundo.
Créditos: 6.
Contidos: Introducción ó concepto de espacio topolóxico. Bases e bases locais. Propiedades de numerabilidade e metrizabilidade. Continuidade, homeomorfismos, propiedades topolóxicas. Subespacios. Espacio suma, espacio producto e espacio cociente. Compacidade. Conexidade e conexidade por camiños. O problema de extensión e os espacios normais.
Bibliografía: C. Kosniowski, "Topología algebraica" (Reverté). J.R. Munkres, "Topology: a first course" (Prentice-Hall).
Profesorado: Agustín Bonome Dopico, Antonio Mariano Gómez Tato, Xosé María Masa Vázquez e José Antonio Oubiña Galiñanes.
Homotopía.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Aplicacións homótopas, homotopía de camiños, grupo fundamental. Espacios de recobrimento, teoremas de levantamento, clasificación.
Bibliografía: M. Greenberg, "Lectures on Algebraic Topology" (Benjamin). E.L. Lima, "Grupo Fundamental de Espaços de Recobrimento" (IMPA).
Profesorado: Antonio Mariano Gómez Tato e Xosé María Masa Vázquez.
Matemática aplicada.
Licenciatura: Farmacia.
Curso: Primeiro.
Créditos: 6,5.
Contidos: Principios básicos de matemáticas. Biometría e estatística aplicadas ás ciencias farmacéuticas.
Profesorado: Agustín Bonome Dopico, Enrique Macías Virgós, Manuela Beatriz Rodríguez Moreiras e Modesto Ramón Salgado Seco.
Sistemas diferenciais e grupos de Lie.
Licenciatura: Matemáticas.
Curso: Cuarto.
Créditos: 6.
Contidos: Distribucións. Teorema de Frobenius. Sistemas de Pfaff. Grupos de Lie. Álxebras de Lie. Aplicación exponencial. Grupos de Lie clásicos.
Bibliografía: Chevalley, "Lie Groups". Varadarajan, "Lie groups and Lie algebras".
Profesorado: Enrique Macías Virgós.
Teoría global de superficies.
Licenciatura: Matemáticas.
Curso: Terceiro.
Créditos: 6.
Contidos: Cálculo vectorial: integrais sobre curvas e superficies. Transporte paralelo, xeodésicas. Teorema de Gauss-Bonnet. Aplicación exponencial. Teoremas globais de superficies: rixidez da esfera e superficies completas.
Bibliografía: M.P. do Carmo, "Differential Geometry of curves and surfaces" (Prentice-Hall; trad.: Alianza Editorial). J.E. Marsden e A.J. Tromba, "Vector calculus" (Freeman & Co.; trad.: Fondo Educativo Interamericano).
Profesorado: Juan Francisco Torres Lopera e María Elena Vázquez Abal.
Topoloxía alxebraica.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Exemplos de espacios topolóxicos: grupos topolóxicos e accións CW-complexos. Homoloxía singular. Mayer-Vietoris. Homoloxía relativa. Excisión. Homoloxía dos CW-complexos. Cohomoloxía singular. Aplicacións.
Bibliografía: Munkres, "Elements of algebraic topology" (Addison-Wesley). Vick, "Homology Theory" (Academic Press).
Profesorado: Fernando Alcalde Cuesta.
Topoloxía de superficies.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Grupo fundamental das superficies. Funcións de Morse sobre as superficies. Clasificación de superficies.
Bibliografía: André Gramain, "Topologie des Surfaces" (Presses Universitaires de France).
Profesorado: Jesús Antonio Álvarez López.
Topoloxía dos espacios euclidianos.
Licenciatura: Matemáticas.
Curso: Primeiro.
Créditos: 9.
Contidos: Elementos de topoloxía: descripción da topoloxía de Rn. Concepto xeral de espacio topolóxico. Compacidade e conexidade en Rn. Espacios métricos. Converxencia. Continuidade uniforme. Teorema de compleción.
Bibliografía: E.T. Copson, "Metric Spaces" (Cambridge University Press). E. L. Lima, "Espaços Métricos" (IMPA).
Profesorado: Xosé Manuel Carballés Vázquez, Regina Castro Bolaño, Luís María Hervella Torrón e Juan Francisco Torres Lopera.
Topoloxía e cálculo en variedades.
Licenciatura: Matemáticas.
Curso: Cuarto.
Créditos: 9.
Contidos: Variedades diferenciables.Topoloxía das variedades. Aplicacións diferenciables; particións da unidade. O espacio tanxente. Subvariedades e variedades cociente. Campos de vectores. Cálculo tensorial.
Formas diferenciais. Orientación en variedades. Integración e teorema de Stokes.
Bibliografía: W.M. Boothby, "An introduction to Differentiable Manifolds and Riemannian Geometry" (Academic Press). Y. Matsushima, "Differentiable Manifolds" (Marcel Dekker).
Profesorado: José Antonio Oubiña Galiñanes.
Topoloxía xeométrica.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Topoloxía cociente. Variedades topolóxicas e diferenciables. Grupos topolóxicos e grupos de Lie. Accións de grupos. Accións de grupos discretos. Accións de grupos compactos. Fibracións de Hopf. Grassmannianas.
Bibliografía: Armstrong, "Topología básica" (Reverté). Conlon, "Differentiable Manifolds" (Birkhäuser).
Profesorado: Fernando Alcalde Cuesta.
Topoloxía xeral.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Axiomas de separación. Teorema de Tychonov. Teoremas de encaixamento. Compactificación. Metrizabilidade.
Bibliografía: S. Willard, "General Topology" (Addison-Wesley).
Profesorado: Jesús Antonio Álvarez López.
Xeometría de Riemann.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Métricas de Riemann. Conexións afins e riemannianas. Xeodésicas. Entornos convexos. Curvaturas. Inmersións isométricas. Variedades completas. Teorema de Hopf-Rinow. Espacios de curvatura constante. Variacións da enerxia.
Bibliografía: M.P. do Carmo, "Geometría Riemanniana" (IMPA). B. O'Neill, "Semi-Riemannian Geometry with Applications to Relativity" (Academic Press).
Profesorado: Modesto Ramón Salgado Seco.