Docencia en licenciaturas 2000-01

Materias de primeiro e segundo ciclos impartidas polo departamento de Xeometría e Topoloxía durante o curso 2000-01.
 
 
Licenciatura en farmacia:
Ampliación de Matemáticas.
Matemática aplicada.
Licenciatura en matemáticas:
Curvas e superficies.
Grupos de Lie.
Homotopía.
Métodos xeométricos da Mecánica clásica.
Teoría global de superficies.
Topoloxía.
Topoloxía alxebraica.
Topoloxía de superficies.
Topoloxía diferencial.
Topoloxía dos espacios euclidianos.
Xeometría de Riemann.
Xeometría e civilización.
Xeometría e Topoloxía.

Ampliación de Matemáticas
Licenciatura: Farmacia.
Curso: Terceiro.
Créditos: 6.
Profesorado: Manuela Beatriz Rodríguez Moreiras.
Curvas e superficies.
Licenciatura: Matemáticas.
Curso: Terceiro.
Créditos: 9.
Contidos: Teoría local de curvas. Curvatura, torsión e triedro de Frenet. Superficies regulares. Coordenadas. Plano tanxente, diferencial dunha aplicación. Formas fundamentais. Curvatura de Gauss e curvaturas normais. Teorema egregium.
Bibliografía: M.P. do Carmo, "Geometría diferencial de curvas y superficies" (Alianza Editorial). P.V. Araujo, "Geometria Diferencial" (IMPA). L.A. Cordero, M. Fernández e A. Gray, "Geometría diferencial de curvas y superficies" (Addison-Wesley).
Profesorado:  Luís Ángel Cordero Rego, Luís María Hervella Torrón e María Elena Vázquez Abal.
Grupos de Lie.
Licenciatura: Matemáticas.
Curso: Cuarto.
Créditos: 6.
Contidos: Subvariedades. Teorema de Frobenius. Grupos de Lie. Álxebras de Lie. Aplicación exponencial. Grupos de Lie clásicos.
Bibliografía: C. Chevalley, "Theory of Lie Groups". R. Mneimne e F. Testard, "Introduction a la theorie des groupes de Lie classiques". V.S. Varadarajan, "Lie groups, Lie algebras and their representations".
Profesorado: Enrique Macías Virgós.
Homotopía.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Homotopía de aplicacións. Retractos por deformación. Equivalencia de homotopía. Espacios contráctiles. Complexos celulares. Categorías funtores. O grupo fundamental. Grupos libres e productos libres de grupos. Teorema de Seifert e Van Kampen. Espacios de revestimento.
Bibliografía: R.H. Crowell e R.H. Fox, "Introduction to Knot Theory", Boston, 1963. A. Hatcher, "Algebraic Topology", 1997. W.S. Massey, "Introducción a la topología algebraica", Ed. Reverté, 1972. J. Rotman, "The Theory of Groups", Boston, 1965. G.W. Whitehead, "Elements of Homotopy Theory", Springer Verlag, 1972.
Profesorado: Antonio Mariano Gómez Tato.
Métodos xeométricos da Mecánica clásica.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Mecánica lagranxiana e hamiltoniana. Formulacións lagranxiana e hamiltoniana en variedades diferenciables. Variedades de Poisson. Aplicacións momento.
Bibliografía: R. Abraham e J.E. Marsden, "Foundations of Mechanics". J.E. Marsden e T.S. Ratiu, "Introduction to Mechanics and Symmetry".
Profesorado: Modesto Ramón Salgado Seco.
Matemática aplicada.
Licenciatura: Farmacia.
Curso: Primeiro.
Créditos: 6,5.
Contidos: Principios básicos de matemáticas. Biometría e estatística aplicadas ás ciencias farmacéuticas.
Profesorado: Enrique Macías Virgós, Manuela Beatriz Rodríguez Moreiras, Modesto Ramón Salgado Seco e Juan Francisco Torres Lopera.
Teoría global de superficies.
Licenciatura: Matemáticas.
Curso: Terceiro.
Créditos: 7,5.
Contidos: Cálculo vectorial. Integración ó longo de camiños e integración en superficies: teoremas de Green, Stokes e Gauss. Desprazamento paralelo. Teorema de Gauss-Bonnet. Xeometría global de superficies.
Bibliografía: M.P. do Carmo, "Geometría diferencial de curvas y superficies" (Alianza Editorial). P.V. Araujo, "Geometria Diferencial" (IMPA). J.E. Marsden e A.J. Tromba, "Cálculo vectorial" (Fondo Educativo Interamericano).
Profesorado: Agustín Bonome Dopico, Eduardo García Río, Luís Ángel Cordero Rego, Luís María Hervella Torrón, Juan Francisco Torres Lopera e María Elena Vázquez Abal.
Topoloxía.
Licenciatura: Matemáticas.
Curso: Segundo.
Créditos: 9.
Contidos: Espacios topolóxicos. Espacios métricos. Funcións continuas. Espacios suma, producto e cociente. Compacidade. Conexidade. Compleción e compacidade en espacios métricos. Espacios normais.
Bibliografía:  E.L. Lima, "Espaços métricos" (IMPA). X.M. Masa, "Topoloxía xeral" (Universidade de Santiago de Compostela). J.R. Munkres, "Topology: a first course" (Prentice-Hall). S. Willard, "General Topology" (Addison-Wesley).
Profesorado: Jesús Antonio Álvarez López, Xosé Manuel Carballés Vázquez e José Antonio Oubiña Galiñanes.
Topoloxía alxebraica.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos:
Bibliografía:
Profesorado: Xosé María Masa Vázquez.
Topoloxía de superficies.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Grupo fundamental das superficies. Funcións de Morse sobre as superficies. Clasificación de superficies.
Bibliografía: André Gramain, "Topologie des Surfaces" (Presses Universitaires de France).
Profesorado: Jesús Antonio Álvarez López.
Topoloxía diferencial.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Teorema de Sard. Transversalidade. Grado dunha aplicación. Cohomoloxía de De Rham.
Bibliografía: T.Bröcker e K. Jänich, "Introducción a la Topología Diferencial" (A.C., Madrid, 1977). M.W. Hirsch, "Differential Topology" (Springer, New York, 1976).
Profesorado: Xosé Manuel Carballés Vázquez.
Topoloxía dos espacios euclidianos.
Licenciatura: Matemáticas.
Curso: Primeiro.
Créditos: 7,5.
Contidos: Elementos de topoloxía: descripción da topoloxía de Rn. Norma euclidiana e distancia. Converxencia de sucesións. Continuidade.Compacidade. Conexidade.
Bibliografía: X.M. Masa, "Topoloxía xeral" (Universidade de Santiago de Compostela, 1999). W.A. Sutherland, "Introduction to metric and topological spaces" (Clarendon Press, Oxford, 1975.
Profesorado: Fernando Alcalde Cuesta, Regina María Castro Bolaño, Xosé María Masa Vázquez e José Antonio Oubiña Galiñanes.
Xeometría de Riemann.
Licenciatura: Matemáticas.
Curso: Quinto.
Créditos: 6.
Contidos: Métricas de Riemann. Conexións afins e riemannianas. Xeodésicas. Entornos convexos. Curvaturas. Inmersións isométricas. Variedades completas. Teorema de Hopf-Rinow. Espacios de curvatura constante. Variacións da enerxia.
Bibliografía: M.P. do Carmo, "Geometría Riemanniana" (IMPA). B. O'Neill, "Semi-Riemannian Geometry with Applications to Relativity" (Academic Press).
Profesorado: Eduardo García Río.
Xeometría e civilización.
Licenciatura: Matemáticas.
Curso: Libre configuración.
Créditos: 6.
Contidos: Xeometría e pensamento científico: Os libros de Euclides, xeometrías non euclidianas, xeometría do universo, etc. Xeometría e arte: Mosaicos, fractais, simetría, o seu uso na pintura, arquitectura, deseño, etc. Xeometría e desenrolo tecnolóxico: Aspectos xeométricos da cartografía, enxeñería, navegación. Xeometría na era dixital. Xeometría computacional.
Bibliografía: D. Pedoe, "La geometría en el arte" (Barcelona, 1979). J.L. Heilbron, "Geometry civilized: history, culture and technique" (Oxford, 1998).
Profesorado: Antonio Gómez Tato.
Xeometría e Topoloxía.
Licenciatura: Matemáticas.
Curso: Cuarto.
Créditos: 9.
Contidos: Topoloxía: variedades topolóxicas.Variedades diferenciables. Espacios tanxente e cotanxente. Campos de vectores e formas diferenciais. Diferencial exterior. Particións da unidade. Orientación en variedades. Integración e teorema de Stokes.
Bibliografía: W.M. Boothby, "An introduction to Differentiable Manifolds and Riemannian Geometry" (Academic Press). L. Conlon, "Differentiable Manifolds. A First Course" (Birkhäuser). Y. Matsushima, "Differentiable Manifolds" (Marcel Dekker).
Profesorado: Fernando Alcalde Cuesta, Agustín Bonome Dopico e Regina María Castro Bolaño.