# José Carlos Díaz-Ramos

- Profesor Contratado Doutor
- Department of Mathematics
- Faculty of Mathematics
- University of Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
- Email:
- Tel.: +34 8818 13363
- http://xtsunxet.usc.es/carlos/

## Highlights

Symmetry and shape - Celebrating Prof. J. Berndt's 60th birthday

## Research

My research is on Differential Geometry, although I am also interested in other areas of Mathematics and Science. More concretely, my investigation is focused on submanifold geometry, especially in the classification and characterization of the orbits of isometric actions on Riemannian manifolds.

- List of publications
- Talks
- Curriculum vitae
- Research statement
- Research group: Research group in Mathematics GI-2136, University of Santiago de Compostela.

### Highlighted publications

- J. C. Díaz-Ramos, M. Domínguez-Vázquez, V. Sanmartín-López: Isoparametric hypersurfaces in complex hyperbolic spaces,
*Adv. Math.***314**(2017), 756-805. - J. C. Díaz-Ramos, M. Domínguez-Vázquez, A. Kollross: Polar actions on complex hyperbolic spaces,
*Math. Z.***287**(2017), 1183-1213. - J. C. Díaz-Ramos, M. Domínguez-Vázquez: Isoparametric hypersurfaces in Damek-Ricci spaces,
*Adv. Math.***239**(2013), 1-17. - J. Berndt, J. C. Díaz-Ramos, H. Tamaru: Hyperpolar homogeneous foliations on symmetric spaces of noncompact type,
*J. Differential Geom.***86**(2010), 191-235. - J. Berndt, J. C. Díaz-Ramos: Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces,
*J. London Math. Soc.***74**(2006), 778-798.

## Current teaching

Here is a list of my current teachings activities. You can find a record of my teaching experience in my curriculum vitae in the link above.

- Mathematics and Statistics II, 2019-2020, 2nd semester.
- Geometry and Topology of manifolds, 2019-2020, 1st semester.
- Teaching group: Algebra/Geometry group in educational innovation GrID-A/XD, University of Santiago de Compostela.

## Software development

`RP`

: A Python 3 package that implements the tie-breaking methods based on Recursive Performance.`RiemannianGeometry`

: a Mathematica package to calculate geometric objects of pseudo-Riemannian manifolds.